
Quintus Prolog User’s Manual
by the Intelligent Systems Laboratory

Swedish Institute of Computer Science
PO Box 1263

SE-164 29 Kista, Sweden

Release 3.5
December 2003

Swedish Institute of Computer Science
qpsales@sics.se http://www.sics.se/quintus/

mailto:qpsales@sics.se
http://www.sics.se/quintus/

This manual corresponds to:

Quintus Prolog Release 3.5

SICS PO Box 1263
SE-164 29 Kista, Sweden
+46 8 633 1500
http://www.sics.se/quintus/

Authorization Codes:
qpadmin@sics.se

Problem Reports and Product Suggestions:
qpsupport@sics.se

Additional Information:
qpsales@sics.se

Mailing List Subscription:
majordomo@sics.se
with ‘subscribe quintus-users’ in the message body

Copyright c© 2003, SICS

Swedish Institute of Computer Science
PO Box 1263
SE-164 29 Kista, Sweden

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by SICS.

http://www.sics.se/quintus/
mailto:qpadmin@sics.se
mailto:qpsupport@sics.se
mailto:qpsales@sics.se
mailto:majordomo@sics.se

i

Table of Contents

1 Introduction . 1
1.1 About this Manual . 1

1.1.1 Overview . 1
1.1.2 Organization of the Manual . 1
1.1.3 Notational Conventions . 2

1.1.3.1 Goal Templates and Mode Annotations . . 2
1.1.3.2 Examples . 2
1.1.3.3 Operating System Dependencies 2

1.1.4 Bibliographical Notes . 3
1.2 Highlights of release 3 . 4

1.2.1 Embeddability . 4
1.2.2 QOF Loading and Saving . 5
1.2.3 QUI: An X-based Development Environment 6
1.2.4 Source-linked Debugger . 6
1.2.5 Other New Features . 6
1.2.6 Compatibility Issues . 7

1.2.6.1 Saved States . 7
1.2.6.2 Error Reporting/Handling 7

1.2.7 New Built-in Predicates . 8
1.2.8 New Hook Predicates . 10
1.2.9 Removed Built-in Predicates . 10

1.3 The Quintus Directory. 11
1.3.1 Structure of the Quintus Directory under UNIX . . 11
1.3.2 Structure of the Quintus Directory under Windows

. 13
1.3.3 Search Paths . 15

2 User’s Guide . 17
2.1 Getting Started . 17

2.1.1 Overview . 17
2.1.2 Starting Prolog . 17
2.1.3 Exiting Prolog . 17
2.1.4 The Top-level Prolog Prompt 18
2.1.5 Using the On-line Help System 19

2.2 Loading Programs into Prolog . 21
2.2.1 Loading a File into Prolog . 21
2.2.2 Loading Pre-Compiled (QOF) Files 22
2.2.3 Commands in Files . 22
2.2.4 Syntax Errors . 23
2.2.5 Style Warnings . 24
2.2.6 Saving and Restoring a Program State 26

2.2.6.1 Basic Information . 26
2.2.7 Using an Initialization File . 27

ii Quintus Prolog

2.3 Running Programs . 27
2.3.1 Overview . 27
2.3.2 Interrupting the Execution of a Program 27
2.3.3 Errors, Warnings and Informational Messages 28
2.3.4 Undefined Predicates . 29
2.3.5 Executing Commands from Prolog 29
2.3.6 Dynamic Predicates . 30
2.3.7 Prompts . 31

2.4 Limits in Quintus Prolog . 31
2.5 Writing Efficient Programs . 32

2.5.1 Overview . 32
2.5.2 The Cut . 33

2.5.2.1 Overview . 33
2.5.2.2 Making Predicates Determinate 33
2.5.2.3 Placement of Cuts . 35
2.5.2.4 Terminating a Backtracking Loop 35

2.5.3 Indexing . 36
2.5.3.1 Overview . 36
2.5.3.2 Data Tables . 36
2.5.3.3 Determinacy Detection 37

2.5.4 Last Clause Determinacy Detection 38
2.5.5 The Quintus Determinacy Checker 39

2.5.5.1 Using the Determinacy Checker 39
2.5.5.2 Declaring Nondeterminacy 40
2.5.5.3 Checker Output . 41
2.5.5.4 Example . 41
2.5.5.5 Options . 42
2.5.5.6 What is Detected . 43

2.5.6 Last Call Optimization . 44
2.5.6.1 Accumulating Parameters. 45
2.5.6.2 Accumulating Lists . 45

2.5.7 Building and Dismantling Terms 47
2.5.8 Conditionals and Disjunction 49
2.5.9 The Quintus Cross-Referencer 51

2.5.9.1 Introduction . 51
2.5.9.2 Basic Use . 51
2.5.9.3 Practice and Experience 52

iii

3 The Quintus User Interface. 53
3.1 Quintus User Interface . 53

3.1.1 Starting Up QUI . 53
3.1.2 Exiting QUI . 54

3.2 QUI Main Window . 54
3.2.1 Main Window Menu Bar . 56

3.2.1.1 File Pulldown . 56
3.2.1.2 Debug Pulldown . 56
3.2.1.3 Help Pulldown . 57

3.2.2 QUI Query History Menu . 57
3.2.3 QUI Query Interpreter Sub-Window 57

3.2.3.1 Prolog Output and Input 57
3.2.3.2 Key Bindings . 57

3.2.4 QUI Interrupt Button . 58
3.2.5 QUI Next Answer Buttons . 58
3.2.6 QUI Error Dialogue Window 59

3.3 Edit Windows . 59
3.3.1 Invoking an Edit Window . 59
3.3.2 File Pulldown . 62
3.3.3 Misc Pulldown . 64
3.3.4 Help Pulldown . 64
3.3.5 Key Bindings . 64

3.4 Interface to External Editors . 65
3.4.1 Interface to GNU Emacs . 65

3.4.1.1 Invoking GNU Emacs to Edit Files From
QUI . 66

3.4.1.2 Key Bindings in "qui" mode 66
3.5 QUI Debug Window . 66
3.6 QUI Help Window . 67

3.6.1 Invoking Help . 69
3.6.2 Help Window . 69

3.6.2.1 Selecting a Sub-Section from a Menu . . . 69
3.6.2.2 Following Cross-References in Text 69
3.6.2.3 Selecting a Topic in Text 69

3.6.3 Help Window Menu Bar . 70
3.6.3.1 File Pulldown . 70
3.6.3.2 Goto Pulldown. 70
3.6.3.3 Invoking Goto Options from Prolog

Predicates . 71
3.6.3.4 History Pulldown . 71
3.6.3.5 Misc Pulldown — Search 71

3.7 Customizing and Interfacing with QUI 72
3.7.1 The QUI Resource File . 72
3.7.2 Customizing QUI Resources . 73

3.7.2.1 Global Resources . 73
3.7.2.2 Labels and Messages 73
3.7.2.3 Menu Entries . 74
3.7.2.4 Key Bindings . 74

iv Quintus Prolog

3.7.2.5 Editor Resources . 75
3.7.2.6 Debugger Resources 75
3.7.2.7 Help System Resources 76

3.7.3 Restrictions on developing programs under QUI . . 76
3.7.3.1 Hook Predicates . 76
3.7.3.2 Embeddable C Function 76
3.7.3.3 UNIX Signal Handling. 77

4 The Emacs Interface . 79
4.1 Overview . 79

4.1.1 Overview . 79
4.1.2 Environment Variables . 79
4.1.3 Using Prolog with the Emacs Editor 80

4.1.3.1 Overview . 80
4.1.3.2 Terminal and Operating System

Requirements . 80
4.1.3.3 Entering Prolog and Emacs 80
4.1.3.4 Exiting Emacs . 81
4.1.3.5 Suspending an Emacs Session 81

4.1.4 The Source Linked Debugger 82
4.1.5 Accessing the On-line Manual 83
4.1.6 Loading Programs . 83

4.1.6.1 Basic Information . 84
4.1.6.2 Loading an Entire Buffer 85
4.1.6.3 Loading a Region in a Buffer 85
4.1.6.4 Loading a Single Procedure 85

4.1.7 Repeating a Query. 85
4.1.7.1 Repeating Queries under Gnu Emacs . . . 86

4.1.8 Displaying Previous Input . 86
4.1.9 Locating Procedures . 86

4.2 The GNU Emacs Interface . 88
4.2.1 Overview . 88
4.2.2 Key Bindings . 88
4.2.3 Prolog Mode . 91
4.2.4 Prolog Source Code Layout Restrictions 91
4.2.5 Rebinding Keys in Your Initialization File 91
4.2.6 Programming the Prolog/GNU Emacs Interface . . 92

4.2.6.1 Submitting Prolog Queries from GNU
Emacs . 93

4.2.6.2 Invoking Emacs-Lisp Functions from Prolog
. 94

v

5 The Visual Basic Interface 97
5.1 Overview . 97
5.2 How to Call Prolog from Visual Basic . 97

5.2.1 Opening and Closing a Query 97
5.2.2 Finding the Solutions of a Query 98
5.2.3 Retrieving Variable Values . 98
5.2.4 Evaluating a Query with Side-Effects 99
5.2.5 Handling Exceptions in Visual Basic 100

5.3 How to Use the Interface . 100
5.3.1 Setting Up the interface . 100
5.3.2 Initializing the Prolog engine 101
5.3.3 Deinitializing the Prolog Engine From VB 101
5.3.4 Loading the Prolog code . 101

5.4 Examples . 101
5.4.1 Example 1 - Calculator . 101
5.4.2 Example 2 - Train . 104
5.4.3 Example 3 - Queens . 107

5.5 Summary of the Interface Functions . 111

6 The Debugger . 113
6.1 Debugging Basics . 113

6.1.1 Introduction . 113
6.1.2 The Procedure Box Control Flow Model 113
6.1.3 Understanding Prolog Execution Using The

Debugger . 114
6.1.4 Traveling Between Ports . 116

6.1.4.1 Basic Traveling Commands 116
6.1.4.2 Spypoints . 117
6.1.4.3 Traveling Commands Sensitive to Spypoints

. 117
6.1.4.4 Commands That Change The Flow Of

Control . 118
6.1.5 Debugger Concepts . 118

6.1.5.1 Trace Mode, Debug Mode, And Zip Mode
. 118

6.1.5.2 Leashing . 119
6.1.5.3 Locked Predicates . 119
6.1.5.4 Unknown Procedures 120
6.1.5.5 Current Debugging State 120

6.1.6 Summary of Predicates . 120
6.2 The Source Linked Debugger . 121

6.2.1 Introduction . 121
6.2.2 Showing Your Place In The Source Code 122

6.2.2.1 The Call Port. 122
6.2.2.2 The Exit And Done Ports 122
6.2.2.3 The Redo Port . 123
6.2.2.4 The Fail Port . 123
6.2.2.5 The Head Port. 124

vi Quintus Prolog

6.2.2.6 The Exception Port 124
6.2.3 When Source Linking Is Not Possible 124
6.2.4 Traveling Between Ports . 125
6.2.5 Seeing Ancestor Frames . 125
6.2.6 Debugger Menus. 126

6.2.6.1 The File Menu . 126
6.2.6.2 The Options Menu 128
6.2.6.3 The Spypoint Menu 129
6.2.6.4 The Window Menu 130
6.2.6.5 The Travel Menu . 130
6.2.6.6 The Help Menu . 131

6.2.7 The Status Panel . 131
6.2.8 Other Windows . 132

6.2.8.1 The Variable Bindings Window 132
6.2.8.2 The Standard Debugger Window 132
6.2.8.3 The Ancestors Window 133
6.2.8.4 Menus For These Windows 134

6.3 The Standard Debugger . 134
6.3.1 Format of Debugging Messages 134

6.3.1.1 Format of Head Port Messages 136
6.3.1.2 Format of Exception Port Messages . . . 137

6.3.2 Options Available during Debugging 137
6.3.2.1 Introduction . 137
6.3.2.2 Basic Control Options 138
6.3.2.3 Printing Options . 138
6.3.2.4 Advanced Control Options 139
6.3.2.5 Environment Options 139
6.3.2.6 Help Options . 140

6.4 The Advice Facility . 141
6.4.1 Use of Advice Predicates . 141
6.4.2 Performance . 143
6.4.3 Summary of Predicates . 143

6.5 The Profiler . 143
6.5.1 Use of the Profiler . 144
6.5.2 Customized Output . 146
6.5.3 Performance . 147
6.5.4 Summary of Predicates . 147

7 Glossary . 149
Glossary . 149

vii

8 The Prolog Language . 159
8.1 Syntax . 159

8.1.1 Overview . 159
8.1.2 Terms . 159

8.1.2.1 Overview . 159
8.1.2.2 Integers . 159
8.1.2.3 Floating-point Numbers 160
8.1.2.4 Atoms . 160
8.1.2.5 Variables . 161
8.1.2.6 Foreign Terms . 161

8.1.3 Compound Terms . 161
8.1.3.1 Lists . 162
8.1.3.2 Strings As Lists . 163

8.1.4 Character Escaping . 163
8.1.5 Operators and their Built-in Predicates. 165

8.1.5.1 Overview . 165
8.1.5.2 Manipulating and Inspecting Operators

. 167
8.1.5.3 Syntax Restrictions 167
8.1.5.4 Built-in Operators 168

8.1.6 Commenting . 169
8.1.7 Predicate Specifications . 169
8.1.8 Formal Syntax . 171

8.1.8.1 Overview . 171
8.1.8.2 Notation . 171
8.1.8.3 Syntax of Sentences as Terms 172
8.1.8.4 Syntax of Terms as Tokens 173
8.1.8.5 Syntax of Tokens as Character Strings

. 175
8.1.8.6 Notes . 178

8.1.9 Summary of Predicates . 178
8.2 Semantics . 179

8.2.1 Programs . 179
8.2.2 Types of Predicates Supplied with Quintus Prolog

. 181
8.2.2.1 Hook Predicates . 181
8.2.2.2 Redefinable Predicates 181

8.2.3 Disjunction . 181
8.2.4 Declarative and Procedural Semantics 182
8.2.5 The Cut . 184
8.2.6 Occur Check . 185
8.2.7 Control . 186

8.3 Invoking Prolog . 186
8.3.1 Prolog Command Line Argument Handling 186

8.3.1.1 The Initialization File 188
8.3.2 Exiting Prolog . 188

8.4 Loading Programs . 189
8.4.1 Overview . 189

viii Quintus Prolog

8.4.2 The Load Predicates . 189
8.4.3 Redefining Procedures during Program Execution

. 191
8.4.4 Predicate List . 191

8.5 Saving and Loading the Prolog Database 192
8.5.1 Overview of QOF Files . 192
8.5.2 Compatibility with save/restore in previous releases

. 193
8.5.3 Foreign Code . 194
8.5.4 Saved-States . 195
8.5.5 Selective saving and loading of QOF files 197
8.5.6 Initializing Goals in Saved States 199

8.5.6.1 The Initialization Declaration 201
8.5.6.2 Volatile Predicates 203
8.5.6.3 Fine Tuning . 204

8.5.7 Predicate List . 205
8.6 Files and Directories . 205

8.6.1 The File Search Path Mechanism 205
8.6.1.1 Defining File Search Paths 206
8.6.1.2 Frequently Used File Specifications 209
8.6.1.3 Filename Defaults . 209
8.6.1.4 Predefined file search path Facts 210
8.6.1.5 The system file search path 213
8.6.1.6 The Library Paths 213
8.6.1.7 Editor Command for Library Search . . . 214

8.6.2 List of Predicates . 214
8.7 Input and Output . 214

8.7.1 Introduction . 214
8.7.2 About Streams . 215

8.7.2.1 Programming Note 215
8.7.2.2 Stream Categories 216

8.7.3 Term Input . 216
8.7.3.1 Reading Terms: The "Read" Predicates

. 216
8.7.3.2 Changing the Prompt 217

8.7.4 Term Output . 217
8.7.4.1 Writing Terms: the "Write" Predicates

. 217
8.7.4.2 Common Characteristics 218
8.7.4.3 Distinctions Among the "write" Predicates

. 218
8.7.4.4 Displaying Terms . 219
8.7.4.5 Using the ‘portray’ hook 219
8.7.4.6 Portraying a Clause 220

8.7.5 Character Input . 220
8.7.5.1 Overview . 220
8.7.5.2 Reading Characters 221
8.7.5.3 Peeking . 221

ix

8.7.5.4 Skipping . 221
8.7.5.5 Finding the End of Line and End of File

. 222
8.7.6 Character Output . 222

8.7.6.1 Writing Characters 222
8.7.6.2 New Line . 222
8.7.6.3 Tabs . 222
8.7.6.4 Formatted Output 223

8.7.7 Stream and File Handling . 223
8.7.7.1 Stream Objects . 226
8.7.7.2 Exceptions related to Streams 226
8.7.7.3 Suppressing Error Messages 226
8.7.7.4 Opening a Stream . 227
8.7.7.5 Finding the Current Input Stream 228
8.7.7.6 Finding the current output stream 228
8.7.7.7 Backtracking through Open Streams . . . 229
8.7.7.8 Closing a Stream . 229
8.7.7.9 Flushing Output . 230

8.7.8 Reading the State of Opened Streams 230
8.7.8.1 Stream Position Information for Terminal

I/O . 230
8.7.9 Random Access to Files . 231
8.7.10 Summary of Predicates and Functions 231
8.7.11 Library Support . 233

8.8 Arithmetic . 233
8.8.1 Overview . 233
8.8.2 Evaluating Arithmetic Expressions 234
8.8.3 Arithmetic Comparison . 234
8.8.4 Arithmetic Expressions . 235

8.8.4.1 Arithmetic calculations 235
8.8.4.2 Peeking into Memory 236
8.8.4.3 Bit-vector Operations 237
8.8.4.4 Character Codes . 237

8.8.5 Predicate Summary . 237
8.8.6 Library Support . 238

8.9 Looking at Terms . 238
8.9.1 Meta-logical Predicates . 238

8.9.1.1 Type Checking. 238
8.9.1.2 Unification and Subsumption 239

8.9.2 Analyzing and Constructing Terms. 239
8.9.3 Analyzing and Constructing Lists 239
8.9.4 Converting between Constants and Text 240
8.9.5 Assigning Names to Variables 240
8.9.6 Copying Terms . 241
8.9.7 Comparing Terms . 242

8.9.7.1 Introduction . 242
8.9.7.2 Standard Order of Terms 242
8.9.7.3 Sorting Terms . 243

x Quintus Prolog

8.9.8 Library Support . 243
8.9.9 Summary of Predicates . 244

8.10 Looking at the Program State . 244
8.10.1 Overview . 244
8.10.2 Associating Predicates with their Properties . . . 245
8.10.3 Associating Predicates with Files 246
8.10.4 Prolog Flags . 246

8.10.4.1 Changing or Querying System Parameters
. 246

8.10.4.2 Parameters that can be Queried Only
. 247

8.10.5 Load Context . 248
8.10.5.1 Predicate Summary 250

8.11 Interrupting Execution . 250
8.11.1 Control-c Interrupts . 250
8.11.2 Interrupt Handling . 251

8.11.2.1 Changing Prolog’s Control Flow from C
. 251

8.11.2.2 User-specified signal handlers 252
8.11.2.3 Critical Regions. 255

8.11.3 Predicate/Function Summary 255
8.11.4 Library Support . 255

8.12 Memory Use and Garbage Collection 256
8.12.1 Overview . 256

8.12.1.1 Reclaiming Space 257
8.12.1.2 Displaying Statistics 257

8.12.2 Garbage Collection and Programming Style. . . . 259
8.12.3 Enabling and Disabling the Garbage Collector

. 261
8.12.4 Monitoring Garbage Collections 261
8.12.5 Interaction of Garbage Collection and Heap

Expansion . 262
8.12.6 Invoking the Garbage Collector Directly 263
8.12.7 Operating System Interaction 263
8.12.8 Atom Garbage Collection . 265

8.12.8.1 The Atom Garbage Collector User
Interface . 266

8.12.8.2 Protecting Atoms in Foreign Memory
. 267

8.12.8.3 Permanent Atoms 269
8.12.8.4 Details of Atom Registration 269

8.12.9 Summary of Predicates . 270
8.13 Modules . 270

8.13.1 Overview . 271
8.13.2 Basic Concepts . 271
8.13.3 Defining a Module . 272
8.13.4 Converting Non-module-files into Module-files . . 272
8.13.5 Loading a Module . 273

xi

8.13.6 Visibility Rules . 274
8.13.7 The Source Module . 274
8.13.8 The Type-in Module . 276
8.13.9 Creating a Module Dynamically 276
8.13.10 Module Prefixes on Clauses 277

8.13.10.1 Current Modules 278
8.13.11 Debugging Code in a Module 278
8.13.12 Modules and Loading through the Editor Interface

. 278
8.13.13 Name Clashes . 279
8.13.14 Obtaining Information about Loaded Modules

. 280
8.13.14.1 Predicates Defined in a Module 280
8.13.14.2 Predicates Visible in a Module 281

8.13.15 Importing Dynamic Predicates 281
8.13.16 Module Name Expansion . 282
8.13.17 The meta_predicate Declaration 284
8.13.18 Predicate Summary . 286

8.14 Modification of the Database . 286
8.14.1 Introduction . 286
8.14.2 Dynamic and Static Procedures 287
8.14.3 Database References . 288
8.14.4 Adding Clauses to the Database 289
8.14.5 Removing Clauses from the Database 290

8.14.5.1 A Note on Efficient Use of retract/1
. 290

8.14.6 Accessing Clauses . 291
8.14.7 Modification of Running Code: Examples 292

8.14.7.1 Example: assertz. 292
8.14.7.2 Example: retract. 293
8.14.7.3 Example: abolish 293

8.14.8 The Internal Database . 294
8.14.9 Summary of Predicates . 295

8.15 Sets and Bags: Collecting Solutions to a Goal 295
8.15.1 Introduction . 295
8.15.2 Collecting a Sorted List . 296

8.15.2.1 Existential Quantifier 297
8.15.3 Collecting a Bag of Solutions 298

8.15.3.1 Collecting All Instances 298
8.15.4 Library Support . 298
8.15.5 Predicate Summary . 298

8.16 Grammar Rules . 298
8.16.1 Definite Clause Grammars 298
8.16.2 How to Use the Grammar Rule Facility 300
8.16.3 An Example . 300
8.16.4 Translation of Grammar Rules into Prolog Clauses

. 301
8.16.4.1 Listing Grammar Rules. 303

xii Quintus Prolog

8.16.5 Summary of Predicates . 303
8.17 On-line Help . 304

8.17.1 Introduction . 304
8.17.2 Help Files . 304

8.17.2.1 Overview . 304
8.17.2.2 Menus . 305
8.17.2.3 Cross-References . 305
8.17.2.4 Displaying help files 305

8.17.3 Emacs Commands for Using the Help System . . 306
8.17.3.1 Emacs Commands 306
8.17.3.2 Predicate Summary 306

8.18 Access to the Operating System . 307
8.18.1 Overview . 307
8.18.2 Executing Commands from Prolog 307

8.18.2.1 Changing the Working Directory 307
8.18.2.2 Other Commands 307
8.18.2.3 Spawning an Interactive Shell 308

8.18.3 Accessing Command Line Arguments 308
8.18.3.1 Arguments as Numbers or as Strings . . 308
8.18.3.2 Accessing Prolog’s Arguments from C

. 310
8.18.4 Predicate Summary . 310
8.18.5 Library Support . 310

8.19 Errors and Exceptions . 310
8.19.1 Overview . 310
8.19.2 Raising Exceptions . 311
8.19.3 Handling Exceptions . 311

8.19.3.1 Protecting a Particular Goal 312
8.19.3.2 Handling Unknown Predicates 313

8.19.4 Error Classes . 313
8.19.4.1 Instantiation Errors 314
8.19.4.2 Type Errors . 315
8.19.4.3 Domain Errors . 316
8.19.4.4 Range Errors . 317
8.19.4.5 Representation Errors 318
8.19.4.6 Existence Errors . 318
8.19.4.7 Permission Errors 319
8.19.4.8 Context Errors . 320
8.19.4.9 Consistency Errors 321
8.19.4.10 Syntax Errors . 321
8.19.4.11 Resource Errors. 322
8.19.4.12 System Errors . 323

8.19.5 An Example . 323
8.19.6 Exceptions and Critical Regions 324
8.19.7 Summary of Predicates and Functions 325
8.19.8 Summary of Relevant Libraries 325

8.20 Messages . 325
8.20.1 Overview . 325

xiii

8.20.2 Implementation: Term-Based Messages 327
8.20.3 Examples of Using the Message Facility 329

8.20.3.1 Adding messages . 329
8.20.3.2 Changing message text 330
8.20.3.3 Intercepting the printing of a message

. 330
8.20.3.4 Interaction . 331

8.20.4 Internationalization of Quintus Prolog messages
. 332

8.20.4.1 Translating the Messages 332
8.20.4.2 Testing and Installing the Translated

Messages . 334
8.20.4.3 Building a Version of Prolog using the

Translated Messages . 334
8.20.4.4 Using Kanji characters 334

8.20.5 Summary of Predicates . 335

9 Creating Executables . 337
9.1 Stand-Alone Programs & Runtime Systems 337

9.1.1 Basic Concepts . 337
9.1.1.1 Terminology . 337
9.1.1.2 Shared Libraries and Delivering

Execuatables . 337
9.1.1.3 Stand-Alone Programs 338
9.1.1.4 Runtime Systems . 338
9.1.1.5 Compiling and Linking 339
9.1.1.6 The Runtime Kernel vs. Development

Kernel . 341
9.1.2 Invoking qpc, the Prolog-to-QOF Compiler 341
9.1.3 Invoking qld, the QOF Link eDitor 342

9.1.3.1 Implicit invocation via qpc 344
9.1.3.2 Explicit Invocation 344

9.1.4 Dependencies of QOF files. 345
9.1.4.1 Generating QOF Files and Dependencies

. 346
9.1.4.2 Example . 347
9.1.4.3 Using the make(1) utility 348

9.1.5 File Search Paths and qld . 348
9.1.6 Embedded Commands and Initialization Files . . . 349

9.1.6.1 Compile-time code vs. Runtime code . . 349
9.1.6.2 Initialization Files . 350
9.1.6.3 Side-Effects in Compile-Time Code 350
9.1.6.4 Modules and Embedded Commands . . . 351
9.1.6.5 Predicates Treated in a Special Way . . . 351
9.1.6.6 Restriction on Compile-Time Code 353

9.1.7 Operator Declarations . 353
9.1.8 Saved-States and QOF files . 353
9.1.9 Dynamic Foreign Interface . 354

xiv Quintus Prolog

9.1.10 Linking with QUI . 354
9.2 The Runtime Generator . 355

9.2.1 Introduction . 355
9.2.2 Predicates not supported by the Runtime Kernel

. 356
9.2.3 Providing a Starting Point: runtime_entry/1 . . 357
9.2.4 Control-c Interrupt Handling 358
9.2.5 Shared vs. Static Object Files 358
9.2.6 Building DLLs containing Prolog code. 361

9.2.6.1 Setting up the environment 362
9.2.6.2 Compiling the Prolog code 362
9.2.6.3 Compiling the C code 362
9.2.6.4 Linking the DLL . 362

9.2.7 Installing an Application: runtime(File) 363

10 Foreign Language Interface 365
10.1 Overview . 365
10.2 Embedding Prolog Programs . 365

10.2.1 Overview . 365
10.2.2 The Embedding Layer . 366

10.2.2.1 Contrasting Old and New Models 367
10.2.3 How Embedding Works . 371

10.2.3.1 Defining your own main() 372
10.2.3.2 The Embedding Functions for Memory

Management . 373
10.2.3.3 The Embedding Functions For

Input/Output . 374
10.2.4 Summary of Functions . 374

10.3 Prolog Calling Foreign Code . 375
10.3.1 Introduction . 375

10.3.1.1 Summary of steps 376
10.3.2 Using Shared Object Files and Archive Files . . . 376

10.3.2.1 Loading Foreign Executables 378
10.3.2.2 Loading Foreign Files 380

10.3.3 Linking Foreign Functions to Prolog Procedures
. 380

10.3.4 Specifying the Argument Passing Interface 382
10.3.5 Passing Integers . 383

10.3.5.1 Passing an Integer to a Foreign Function
. 384

10.3.5.2 Returning an Integer from a Foreign
Function . 384

10.3.5.3 An Integer Function Return Value. . . . 384
10.3.6 Passing Floats . 385

10.3.6.1 Passing a Float to a Foreign Function
. 385

10.3.6.2 Returning a Float from a Foreign Function
. 386

xv

10.3.6.3 A Floating-point Function Return Value
. 387

10.3.7 Passing Atoms . 388
10.3.7.1 Passing Atoms in Canonical Form 389
10.3.7.2 Passing Atoms as Strings between Prolog

and C . 390
10.3.7.3 Passing Atoms as Strings to/from Pascal

or FORTRAN . 392
10.3.7.4 Converting between Atoms and Strings

. 393
10.3.8 Passing Prolog Terms . 395

10.3.8.1 Passing a Prolog term to a Foreign
Function . 396

10.3.8.2 Returning a Prolog term from a Foreign
Function . 396

10.3.8.3 A Prolog term returned as a value of a
Foreign Function . 396

10.3.9 Passing Pointers . 397
10.3.10 Important Prolog Assumptions 400
10.3.11 Debugging Foreign Code Routines 400
10.3.12 Implementation of load_foreign_executable/1

. 400
10.3.13 Implementation of load_foreign_files/2 . . . 401
10.3.14 Library support for linking foreign code 401
10.3.15 Foreign Code Examples: UNIX 401

10.3.15.1 C Interface . 402
10.3.15.2 Pascal Interface . 404
10.3.15.3 FORTRAN Interface 406
10.3.15.4 Passing pointers between Prolog and

Foreign Code . 410
10.3.16 Summary of Predicates and Functions 412
10.3.17 Library Support . 412

10.4 Foreign Functions Calling Prolog . 413
10.4.1 Introduction . 413

10.4.1.1 Summary of steps 413
10.4.2 Making Prolog Procedures Callable by Foreign

Functions . 414
10.4.2.1 Specifying the Argument Passing

Interface: extern/1 . 415
10.4.3 Passing Data to and from Prolog 415

10.4.3.1 Passing Integers . 416
10.4.3.2 Passing Floats . 416
10.4.3.3 Passing Atoms in Canonical Form 418

10.4.4 Converting Between Atoms and Strings 419
10.4.4.1 Passing Atoms as Strings 419
10.4.4.2 Passing Terms . 420
10.4.4.3 Passing Addresses 420

10.4.5 Invoking a Callable Predicate from C 421

xvi Quintus Prolog

10.4.5.1 Looking Up a Callable Prolog Predicate
. 422

10.4.5.2 Making a Determinate Prolog Query . . 423
10.4.5.3 Initiating a Nondeterminate Prolog Query

. 423
10.4.5.4 Requesting a Solution to a

Nondeterminate Prolog Query 424
10.4.5.5 Terminating a Nondeterminate Prolog

Query . 425
10.4.6 Examples . 425

10.4.6.1 Calling Arbitrary Prolog Goals from C
. 425

10.4.6.2 Generating Fibonacci Numbers 426
10.4.6.3 Calling a Nondeterminate Predicate . . 428
10.4.6.4 Nested Prolog Queries 431

10.4.7 Calling Prolog from Pascal and FORTRAN 432
10.4.8 Summary of Predicates and Functions 433
10.4.9 Library Support . 433

10.5 Quintus Prolog Input / Output System 433
10.5.1 Overview . 433
10.5.2 Input/Output Model. 434
10.5.3 Stream Structure . 437

10.5.3.1 Filename of A Stream 437
10.5.3.2 Mode of A Stream 437
10.5.3.3 Format of A Stream 438
10.5.3.4 Maximum Record Length 439
10.5.3.5 Line Border Code 439
10.5.3.6 File Border Code 439
10.5.3.7 Reading Past End Of File 439
10.5.3.8 Prompt String . 440
10.5.3.9 Record Trimming 440
10.5.3.10 Seek Type . 441
10.5.3.11 Flushing An Output Stream 441
10.5.3.12 Output Stream Buffer Overflow 442
10.5.3.13 Storing Error Condition Of A Stream

. 442
10.5.3.14 System-Dependent Address In A File

Stream . 443
10.5.3.15 Bottom Layer Functions 443

10.5.4 TTY Stream . 444
10.5.5 Defining A Customized Prolog Stream 445

10.5.5.1 Summary of Steps 445
10.5.5.2 Defining a Stream Structure 446
10.5.5.3 Opening The User-Defined Stream . . . 447
10.5.5.4 Allocating Space And Setting Field Values

For the User-Defined Stream 448
10.5.5.5 Setting Up The QP stream Structure

. 449

xvii

10.5.5.6 Initialize and Register The Created
Stream . 450

10.5.5.7 TTY Group For TTY Stream 450
10.5.6 The Bottom Layer Functions 451

10.5.6.1 The Bottom Layer Read Function 451
10.5.6.2 The Bottom Layer Write Function . . . 452
10.5.6.3 The Bottom Layer Flush Function . . . 453
10.5.6.4 The Bottom Layer Seek Function 454
10.5.6.5 The Bottom Layer Close Function 456

10.5.7 Examples Of User-Defined Streams 457
10.5.7.1 Creating A Binary Stream 457
10.5.7.2 Creating A Stream To Read An Encrypted

File . 464
10.5.7.3 Creating A Stream Based On C Standard

I/O Library . 472
10.5.8 Built-in C Functions And Macros For I/O 479
10.5.9 Backward Compatibility I/O Issues 481

10.5.9.1 Default Stream . 481
10.5.9.2 User defined Streams 482

11 Inter-Process Communication 485
11.1 tcp: Network Communication Package 485

11.1.1 The client/server relationship 486
11.1.2 Using tcp . 487

11.1.2.1 tcp_trace(-OldValue, +On_or_Off)
. 487

11.1.2.2 tcp_watch_user(-Old, +On_or_Off)
. 487

11.1.2.3 tcp_reset . 488
11.1.3 Maintaining Connections . 488

11.1.3.1 tcp_create_listener(?Address,
-PassiveSocket) . 488

11.1.3.2 tcp_destroy_listener(+PassiveSocket
) . 488

11.1.3.3 tcp_listener(?PassiveSocket) 488
11.1.3.4 tcp_address_to_file(+ServerFile,

+Address) . 489
11.1.3.5 tcp_address_from_file(+ServerFile,

-Address) . 489
11.1.3.6 tcp_address_from_shell(+Host,

+ServerFile, -Address) 489
11.1.3.7 tcp_address_from_shell(+Host,

+UserId, +ServerFile, -Address) 489
11.1.3.8 tcp_connect(+Address, -Socket) . . 489
11.1.3.9 tcp_connected(?Socket) 490
11.1.3.10

tcp_connected(?Socket,?PassiveSocket)
. 490

xviii Quintus Prolog

11.1.3.11 tcp_shutdown(+Socket) 490
11.1.3.12 Short lived connections 490

11.1.4 Sending and Receiving Terms 491
11.1.4.1 tcp_select(-Term) 491
11.1.4.2 tcp_select(+Timeout, -Term) 492
11.1.4.3 tcp_send(+Socket, +Term) 492

11.1.5 Time Predicates . 493
11.1.5.1 tcp_now(-Timeval) 494
11.1.5.2 tcp_time_plus(?Timeval1, ?DeltaTime,

?Timeval2) . 494
11.1.5.3 tcp_schedule_wakeup(+Timeval, +Term)

. 494
11.1.5.4 tcp_scheduled_wakeup(?Timeval, ?Term

) . 494
11.1.5.5 Canceling Wakeups 495
11.1.5.6 tcp_daily(+Hour, +Minute, +Seconds,

-Timeval) . 495
11.1.5.7 tcp_date_timeval(?Date, ?Timeval)

. 495
11.1.6 Using Prolog streams . 496

11.1.6.1 tcp_select_from(-Term) 497
11.1.6.2 tcp_select_from(+Timeout, -Term)

. 497
11.1.6.3 tcp_input_stream(?Socket, -Stream)

. 497
11.1.6.4 tcp_output_stream(?Socket, -Stream)

. 498
11.1.7 The Callback Interface . 498

11.1.7.1 tcp_create_input_callback(+Socket,
+Goal) . 498

11.1.7.2 tcp_destroy_input_callback(+Socket)
. 499

11.1.7.3 tcp_input_callback(*Socket, *Goal)
. 499

11.1.7.4 tcp_create_timer_callback(+Timeval,
+Goal, -TimerId) . 499

11.1.7.5 tcp_destroy_timer_callback(+TimerId
) . 499

11.1.7.6 tcp_timer_callback(*Timerid, *Goal)
. 499

11.1.7.7 tcp_accept(+PassiveSocket, -Socket)
. 500

11.1.8 The C functions . 500
11.1.8.1 tcp_create_listener() 501
11.1.8.2 tcp_address_to_file() 501
11.1.8.3 tcp_address_from_file() 501
11.1.8.4 tcp_address_from_shell() 502
11.1.8.5 tcp_connect() . 502

xix

11.1.8.6 tcp_accept() . 503
11.1.8.7 tcp_select() . 503
11.1.8.8 tcp_shutdown() . 504

11.1.9 Examples . 504
11.2 IPC/RPC: Remote Predicate Calling 505

11.2.1 Overview . 505
11.2.2 Prolog Process Calling Prolog Process 506

11.2.2.1 save_servant(+SavedState) 507
11.2.2.2 create_servant(+Machine,

+SavedState, +OutFile) 507
11.2.2.3 call_servant(+Goal) 508
11.2.2.4 bag_of_all_servant(?Template, +Goal,

-Bag) . 508
11.2.2.5 set_of_all_servant(?Template, +Goal,

-Set) . 509
11.2.2.6 reset_servant . 509
11.2.2.7 shutdown_servant 509

11.2.3 C Process Calling Prolog Process 509
11.2.3.1 The Prolog Side . 509
11.2.3.2 save_ipc_servant(+SavedState) . . . 511
11.2.3.3 The C Side . 511
11.2.3.4 QP_ipc_create_servant() 511
11.2.3.5 QP_ipc_lookup() 512
11.2.3.6 QP_ipc_prepare() 512
11.2.3.7 QP_ipc_next() . 512
11.2.3.8 QP_ipc_close() . 513
11.2.3.9 QP_ipc_shutdown_servant() 513
11.2.3.10 QP_ipc_atom_from_string() 513
11.2.3.11 QP_ipc_string_from_atom() 513
11.2.3.12 Examples . 514

11.2.4 Tracing . 518
11.2.4.1 msg_trace(-OldValue, +OnOrOff) . . 518

11.2.5 Known Bugs . 519

12 Library . 521
12.1 Introduction . 521

12.1.1 Directory Structure . 521
12.1.2 Status of Library Packages 526
12.1.3 Documentation of Library Packages 526

12.1.3.1 Accessing Code Comments 526
12.1.4 Notation . 527

12.1.4.1 Character Codes . 527
12.1.4.2 Mode Annotations 528

12.2 List Processing. 528
12.2.1 Introduction . 528
12.2.2 What is a “Proper” List? . 528
12.2.3 Five List Processing Packages 529
12.2.4 Basic List Processing — library(basics) 530

xx Quintus Prolog

12.2.4.1 Related Built-in Predicates 530
12.2.4.2 member(?Element, ?List) 530
12.2.4.3 memberchk(+Element, +List) 532
12.2.4.4 nonmember(+Element, +List) 532

12.2.5 Lists as Sequences — library(lists) 533
12.2.6 Lists as Sets . 542

12.2.6.1 Set Processing — library(sets) 542
12.2.6.2 Predicates Related to Sets 546

12.2.7 Lists as Ordered Sets — library(ordsets) . . . 546
12.2.8 Parts of lists — library(listparts) 549

12.3 Term Manipulation . 550
12.3.1 Introduction . 550
12.3.2 The Six Term Manipulation Packages 551
12.3.3 Finding a Term’s Arguments — library(arg)

. 551
12.3.4 Altering Term Arguments — library(changearg)

. 555
12.3.5 Checking Terms for Subterms — library(occurs)

. 558
12.3.6 Note on Argument Order. 560
12.3.7 Checking Functors — library(samefunctor)

. 560
12.3.8 Term Subsumption — library(subsumes) 562
12.3.9 Unification — library(unify) 562
12.3.10 library(termdepth) . 563

12.4 Text Processing . 564
12.4.1 Introduction — library(strings) 564

12.4.1.1 Access to operating system — system/1
. 564

12.4.2 Type Testing . 565
12.4.3 Converting Between Constants and Characters

. 565
12.4.3.1 name(?Constant, ?Chars) 566
12.4.3.2 atom_chars(?Atom, ?Chars) 567
12.4.3.3 number_chars(?Number, ?Chars) 567
12.4.3.4 char_atom(?Char, ?Atom) 567

12.4.4 Comparing Text Objects . 568
12.4.5 Concatenation . 571

12.4.5.1 Concatenation Functions 573
12.4.6 Finding the Length and Contents of a Text Object

. 575
12.4.7 Finding the width of a term —

library(printlength) . 577
12.4.8 Finding and Extracting Substrings 577

12.4.8.1 midstring/[3,4,5,6] 579
12.4.8.2 substring/[4,5] 582
12.4.8.3 subchars/[4,5] . 583
12.4.8.4 The "span" family 583

xxi

12.4.9 Generating Atoms . 587
12.4.10 Case Conversion — library(ctypes) 587
12.4.11 Note . 591

12.5 XML Parsing and Generation . 591
12.6 Negation . 592

12.6.1 Introduction — library(not) 592
12.6.2 The “is-not-provable” Operator 593
12.6.3 “is-not-provable” vs. “is-not-true” — not(Goal)

. 593
12.6.4 Inequality . 596

12.6.4.1 Term1 \= Term2 . 597
12.6.4.2 Term1 ~= Term2 . 597

12.6.5 Forcing Goal Determinacy — once(Goal) 597
12.6.6 Summary . 598

12.7 Operations on Files . 598
12.7.1 Introduction — library(files) 599
12.7.2 Built-in Operations on Files 599
12.7.3 Renaming and Deleting Files 600
12.7.4 Checking To See If A File Exists 602
12.7.5 Other Related Library Files 605

12.7.5.1 library(aropen) 605
12.7.5.2 library(ask) . 605
12.7.5.3 library(big_text) 605
12.7.5.4 library(crypt) . 605
12.7.5.5 library(directory) 606
12.7.5.6 library(fromonto) 606
12.7.5.7 library(unix) . 606

12.8 Looking Up Files . 606
12.8.1 Introduction — library(directory) 607
12.8.2 Finding Files in Directories 608
12.8.3 Finding Subdirectories . 609
12.8.4 Finding Properties of Files and Directories 610
12.8.5 Summary . 612

12.9 Obtaining User Input . 612
12.9.1 Introduction . 612
12.9.2 Classifying Characters — library(ctypes) . . . 613
12.9.3 Reading and Writing Lines — library(lineio)

. 617
12.9.4 Reading Continued Lines — library(continued)

. 619
12.9.5 Reading English Sentences 620

12.9.5.1 Overview . 620
12.9.5.2 library(readin) 621
12.9.5.3 library(readsent) 621

12.9.6 Yes-no Questions, and Others — library(ask)
. 623

12.9.7 Other Prompted Input — library(prompt) . . . 629
12.9.8 Pascal-like Input — library(readconstant) . . 630

xxii Quintus Prolog

12.10 Interface to Math Library . 632
12.10.1 Introduction — library(math) 633

12.11 Miscellaneous Packages . 635
12.11.1 library(ctr) . 635
12.11.2 library(date) . 636
12.11.3 Arbitrary Expressions — library(activeread)

. 638
12.11.4 library(addportray) . 639

12.12 Tools . 640
12.12.1 The ‘tools’ Directory . 640

12.12.1.1 Overview . 640
12.12.2 The Cross-Referencer — qpxref 640
12.12.3 Determinacy Checker — qpdet 641

12.13 Abstracts . 641

13 The Structs Package . 655
13.1 Foreign Types . 655

13.1.1 Declaring Types . 657
13.2 Using Structs with QPC . 657
13.3 Checking Foreign Term Types . 658
13.4 Creating and Destroying Foreign Terms 658
13.5 Accessing and Modifying Foreign Term Contents 659
13.6 Casting . 660
13.7 Null Foreign Terms . 660
13.8 Interfacing with Foreign Code . 660
13.9 Examining Type Definitions at Runtime 661
13.10 Structs to C . 662
13.11 Tips . 662

14 The Quintus Objects Package 665
14.1 Introduction . 665

14.1.1 Using Quintus Objects . 665
14.1.2 Defining Classes . 667
14.1.3 Using Classes . 668
14.1.4 Looking Ahead . 669

14.2 Simple Classes . 669
14.2.1 Scope of a Class Definition 669
14.2.2 Slots . 670

14.2.2.1 Visibility . 670
14.2.2.2 Types . 671
14.2.2.3 Initial Values . 672
14.2.2.4 The null object . 672

14.2.3 Methods . 673
14.2.3.1 Get and Put Methods 674
14.2.3.2 Direct Slot Access. 676
14.2.3.3 Send Methods . 677
14.2.3.4 Create and Destroy Methods 679
14.2.3.5 Instance Methods 681

xxiii

14.3 Inheritance . 682
14.3.1 Single Inheritance . 682

14.3.1.1 Class Definitions . 682
14.3.1.2 Slots . 683
14.3.1.3 Methods . 684
14.3.1.4 Send Super . 685

14.3.2 Multiple Inheritance . 685
14.3.2.1 Class Definitions . 686
14.3.2.2 Slots . 686
14.3.2.3 Methods . 686
14.3.2.4 Abstract and Mixin Classes 688

14.3.3 Asking About Classes and Objects 689
14.3.3.1 Objects . 690
14.3.3.2 Classes . 690
14.3.3.3 Messages . 691

14.4 Term Classes . 691
14.4.1 Simple Term Classes . 692
14.4.2 Restricted Term Classes . 692
14.4.3 Specifying a Term Class Essence 693

14.5 Technical Details . 694
14.5.1 Syntax of Class Definitions 695
14.5.2 Limitations . 696

14.5.2.1 Debugging. 696
14.5.2.2 Garbage Collection 697
14.5.2.3 Multiple Inheritance 697
14.5.2.4 Persistence . 697

14.6 Exported Predicates . 697
14.6.1 <-/2. 699
14.6.2 <</2. 701
14.6.3 >>/2. 703
14.6.4 class/1 directive 705
14.6.5 class_ancestor/2 . 708
14.6.6 class_method/1 directive 709
14.6.7 class_superclass/2 . 710
14.6.8 class_of/2 . 711
14.6.9 create/2 . 712
14.6.10 current_class/1 . 714
14.6.11 debug_message/0 directive 715
14.6.12 define_method/3 . 716
14.6.13 descendant_of/2 . 717
14.6.14 destroy/1 . 718
14.6.15 direct_message/4 . 719
14.6.16 end_class/[0,1] directive 720
14.6.17 fetch_slot/2 . 721
14.6.18 inherit/1 directive 722
14.6.19 instance_method/1 directive 724
14.6.20 message/4 . 725
14.6.21 nodebug_message/0 directive 726

xxiv Quintus Prolog

14.6.22 pointer_object/2 . 727
14.6.23 store_slot/2 . 728
14.6.24 undefine_method/3 . 729
14.6.25 uninherit/1 directive 730

14.7 Glossary . 730

15 The PrologBeans Package 735
15.1 Introduction . 735
15.2 Features . 736
15.3 A First Example . 736
15.4 Java Interface . 738
15.5 Prolog Interface . 742
15.6 Examples . 744

15.6.1 Embedding Prolog in Java Applications 745
15.6.2 Application Servers . 745
15.6.3 Configuring Tomcat for PrologBeans 747

16 The ProXL Package . 749
16.1 Introduction . 749

16.1.1 User Benefits . 749
16.1.2 ProXL Features . 749
16.1.3 Windows . 751
16.1.4 Drawing and filling lines and shapes 751
16.1.5 Drawing text . 752
16.1.6 Drawing Pixmaps and drawing into Pixmaps . . 753
16.1.7 Graphics attributes of drawables 753

16.1.7.1 Fonts . 753
16.1.7.2 Color and colormaps 753
16.1.7.3 Graphics contexts (GCs) 754

16.1.8 Cursors . 754
16.1.9 Inferring arguments . 754
16.1.10 Attributes: Specifying properties of ProXL objects

. 755
16.1.11 Handling keyboard and mouse input 756

16.1.11.1 Callbacks . 756
16.1.11.2 Refreshing windows 756
16.1.11.3 Errors . 757

16.1.12 Displays and Screens. 757
16.2 Tutorial . 757

16.2.1 Displaying a Window on the Screen 758
16.2.2 Displaying Text in the Window 759
16.2.3 Making the Window the Right Size 760
16.2.4 Drawing a Textured Background 762
16.2.5 Drawing a Drop Shadow . 763
16.2.6 Specifying a Title for the Window 766
16.2.7 Color . 767
16.2.8 Specifying a Cursor for the Window 768

xxv

16.2.9 Specifying a Callback Procedure for a Window
Event . 769

16.2.9.1 Redrawing a window using a callback
procedure . 769

16.2.9.2 handle_events and Terminating a
Dispatch Loop . 770

16.2.10 The ’hello.pl’ Program . 771
16.3 Windows . 774

16.3.1 Window Attributes . 774
16.3.2 Window Manager Interaction: Properties 778

16.3.2.1 Giving the Window a Name 779
16.3.2.2 Giving the Window’s Icon a Name . . . 779
16.3.2.3 Suggesting a Size and Shape for the

Window . 779
16.3.2.4 Suggesting Icon, Initial State, and Other

Features . 781
16.3.2.5 Transient windows 782
16.3.2.6 Icon Sizes . 782
16.3.2.7 Other Window Properties 783

16.3.3 Creating and Destroying Windows 784
16.3.3.1 create_window/[2,3] 784
16.3.3.2 destroy_window/1 784
16.3.3.3 destroy_subwindows/1 785

16.3.4 Finding and Changing Window Attributes 785
16.3.4.1 get_window_attributes/[2,3] 785
16.3.4.2 put_window_attributes/[2,3] 785
16.3.4.3 rotate_window_properties/[2,3] . . 786
16.3.4.4 delete_window_properties/[1,2] . . 786
16.3.4.5 map_subwindows/1 786
16.3.4.6 unmap_subwindows/1 786

16.3.5 Miscellaneous Window Primitives 786
16.3.5.1 restack_window/2 787
16.3.5.2 window_children/[1,2] 787
16.3.5.3 current_window/[1,2] 787

16.3.6 Selections . 788
16.3.6.1 set_selection_owner/[2,3,4] 788
16.3.6.2 get_selection_owner/[2,3] 788
16.3.6.3 convert_selection/[4,5,6] 788

16.3.7 Checking Window Validity 788
16.3.7.1 valid_window/1 . 788
16.3.7.2 valid_windowable/2 789
16.3.7.3 ensure_valid_window/2 789
16.3.7.4 ensure_valid_windowable/3 789

16.4 Events and Callbacks . 789
16.4.1 Introduction . 789
16.4.2 Event Specification . 790

16.4.2.1 Events uniquely selected by a single mask
. 791

xxvi Quintus Prolog

16.4.2.2 Events that come in pairs selected by a
single mask . 793

16.4.2.3 Multiple events selected by a single mask
. 794

16.4.2.4 Multiple events selected by different masks
. 794

16.4.2.5 Single events selected by multiple masks
. 796

16.4.2.6 Events that are always selected 797
16.4.3 Event Fields . 798

16.4.3.1 button_press and button_release
Events . 798

16.4.3.2 circulate_notify Event. 799
16.4.3.3 circulate_request Event 800
16.4.3.4 client_message Event 800
16.4.3.5 colormap_notify Event 801
16.4.3.6 configure_notify Event. 801
16.4.3.7 configure_request Event 802
16.4.3.8 create_notify Event 804
16.4.3.9 destroy_notify Event 804
16.4.3.10 enter_notify and leave_notify Events

. 805
16.4.3.11 expose Event . 806
16.4.3.12 focus_in and focus_out Events 807
16.4.3.13 graphics_expose Event 808
16.4.3.14 no_expose Event 808
16.4.3.15 gravity_notify Event 809
16.4.3.16 keymap_notify Event 809
16.4.3.17 key_press and key_release Events

. 810
16.4.3.18 map_notify Event 811
16.4.3.19 unmap_notify Event 812
16.4.3.20 mapping_notify Event 812
16.4.3.21 map_request Event 813
16.4.3.22 motion_notify Event 813
16.4.3.23 property_notify Event 814
16.4.3.24 reparent_notify Event 815
16.4.3.25 resize_request Event 815
16.4.3.26 selection_clear Event 816
16.4.3.27 selection_notify Event 816
16.4.3.28 selection_request Event 816
16.4.3.29 visibility_notify Event 817
16.4.3.30 default Event . 817

16.4.4 Activating the callback mechanism 818
16.4.4.1 handle_events/[0,1,2,3] 818
16.4.4.2 dispatch_event/[1,2,3] 819
16.4.4.3 Exit Variables . 819

16.5 Drawing Primitives . 819

xxvii

16.5.1 Clearing and Copying Areas 820
16.5.1.1 clear_area/[5,6] 820
16.5.1.2 clear_window/1 . 820
16.5.1.3 copy_area/[8,9] 820
16.5.1.4 copy_plane/[9,10] 820

16.5.2 Drawing Points . 821
16.5.2.1 draw_point/[3,4] 821
16.5.2.2 draw_points/[2,3] 821
16.5.2.3 draw_points_relative/[2,3]. 821

16.5.3 Drawing Lines . 821
16.5.3.1 draw_line/[5,6] 821
16.5.3.2 draw_lines/[2,3] 821
16.5.3.3 draw_lines_relative/[2,3] 822
16.5.3.4 draw_segments/[2,3] 822

16.5.4 Drawing and Filling Polygons 822
16.5.4.1 draw_polygon/[2,3] 822
16.5.4.2 draw_polygon_relative/[2,3] 822
16.5.4.3 fill_polygon/[3,4] 822
16.5.4.4 fill_polygon_relative/[3,4] 823

16.5.5 Drawing and Filling Rectangles 823
16.5.5.1 draw_rectangle/[5,6] 823
16.5.5.2 draw_rectangles/[2,3] 823
16.5.5.3 fill_rectangle/[5,6] 823
16.5.5.4 fill_rectangles/[2,3] 823

16.5.6 Drawing and Filling Arcs. 824
16.5.6.1 draw_arc/[7,8] . 824
16.5.6.2 draw_arcs/[2,3] 824
16.5.6.3 fill_arc/[7,8] . 824
16.5.6.4 fill_arcs/[2,3] 824

16.5.7 Drawing and Filling Ellipses and Circles 825
16.5.7.1 draw_ellipse/[5,6] 825
16.5.7.2 draw_ellipses/[2,3] 825
16.5.7.3 fill_ellipse/[5,6] 825
16.5.7.4 fill_ellipses/[2,3] 825

16.5.8 Drawing Text . 826
16.5.8.1 draw_string/[4,5] 826
16.5.8.2 draw_image_string/[4,5] 826
16.5.8.3 draw_text/[4,5] 826

16.6 Graphics Attributes and Graphics Contexts 827
16.6.1 Graphics Attributes . 827
16.6.2 Finding and Changing Graphics Attributes 829

16.6.2.1 get_graphics_attributes/2 829
16.6.2.2 put_graphics_attributes/2 830
16.6.2.3 Example . 830

16.6.3 Creating and Destroying GCs 830
16.6.3.1 create_gc/[2,3] 830
16.6.3.2 release_gc/1 . 830
16.6.3.3 Using Gcs . 831

xxviii Quintus Prolog

16.6.3.4 Sharing and Cloning of Gcs 831
16.6.4 Checking GC validity . 831

16.6.4.1 valid_gc/1 . 832
16.6.4.2 ensure_valid_gc/2 832
16.6.4.3 valid_gcable/2 . 832
16.6.4.4 ensure_valid_gcable/3 832

16.7 Fonts. 832
16.7.1 Font Attributes. 832
16.7.2 Loading and Unloading Fonts. 834

16.7.2.1 load_font/[2,3] 834
16.7.2.2 release_font/1 . 835

16.7.3 Finding Font Attributes . 835
16.7.3.1 get_font_attributes/2 835

16.7.4 The Font Search Path. 835
16.7.4.1 get_font_path/[1,2] 835
16.7.4.2 set_font_path/[1,2] 835

16.7.5 What Fonts Are Available? 836
16.7.5.1 current_font/[1,2,3,4] 836
16.7.5.2 current_font_attributes/[2,3,4,5]

. 836
16.7.6 The Size of a String . 836

16.7.6.1 text_width/3 . 836
16.7.6.2 text_extents/[7,8] 836
16.7.6.3 query_text_extents/[7,8] 837

16.7.7 Checking Font Validity . 837
16.7.7.1 valid_font/1 . 837
16.7.7.2 ensure_valid_font/2 838
16.7.7.3 valid_fontable/2 838
16.7.7.4 ensure_valid_fontable/3 838

16.8 Colors and Colormaps . 838
16.8.1 Color Specifications . 838
16.8.2 Visuals . 839
16.8.3 Using Colors . 839
16.8.4 Allocating and Freeing Colors 840

16.8.4.1 alloc_color/[2,3,4,5] 840
16.8.4.2 parse_color/[2,3] 840
16.8.4.3 free_colors/[2,3] 841

16.8.5 Standard Colormaps . 841
16.8.5.1 get_standard_colormap/[2,3] 841

16.8.6 Allocating Color Cells and Planes 841
16.8.6.1 alloc_color_cells/5 and

alloc_contig_color_cells/5 841
16.8.6.2 alloc_color_planes/[8,9] and

alloc_contig_color_planes/[8,9] 842
16.8.6.3 Freeing Color Cells and Planes 842

16.8.7 Finding and Changing Colors 842
16.8.7.1 put_color/[2,3] 842
16.8.7.2 put_colors/[1,2] 842

xxix

16.8.7.3 get_color/[2,3] 843
16.8.7.4 get_colors/[1,2] 843

16.8.8 Creating and Freeing Colormaps 843
16.8.8.1 create_colormap/[1,2,3] 843
16.8.8.2 create_colormap_and_alloc/[1,2,3]

. 843
16.8.8.3 free_colormap/1 844
16.8.8.4 copy_colormap_and_free/2 844

16.8.9 Colormap Installation . 844
16.8.9.1 install_colormap/1 844
16.8.9.2 uninstall_colormap/1 844
16.8.9.3 installed_colormap/[1,2] 844

16.8.10 Checking Colormap Validity 845
16.8.10.1 valid_colormap/1 845
16.8.10.2 valid_colormapable/2 845
16.8.10.3 ensure_valid_colormap/2 845
16.8.10.4 ensure_valid_colormapable/3 845

16.9 Pixmaps and Bitmaps . 845
16.9.1 Pixmap Attributes . 845
16.9.2 Finding and Changing Pixmap Attributes 846

16.9.2.1 get_pixmap_attributes/[2,3] 846
16.9.2.2 put_pixmap_attributes/[2,3] 846

16.9.3 Creating and Freeing Pixmaps 846
16.9.3.1 create_pixmap/[2,3] 846
16.9.3.2 free_pixmap/1 . 847

16.9.4 Reading and Writing Bitmap Files 847
16.9.4.1 read_bitmap_file/[2,3,4,5]. 847
16.9.4.2 write_bitmap_file/[2,4] 847

16.9.5 Checking Pixmap Validity . 847
16.9.5.1 valid_pixmap/1 . 847
16.9.5.2 ensure_valid_pixmap/2 847

16.10 Cursors . 848
16.10.1 Creating and Freeing Cursors 848

16.10.1.1 create_cursor/[2,3,4,5] 848
16.10.1.2 free_cursor/1 . 849

16.10.2 Cursor Utilities . 849
16.10.2.1 recolor_cursor/3 849
16.10.2.2 query_best_cursor/[4,5] 849

16.10.3 Checking Cursor Validity. 849
16.10.3.1 valid_cursor/1 849
16.10.3.2 ensure_valid_cursor/2 849

16.11 Displays and Screens . 850
16.11.1 Display Attributes . 850

16.11.1.1 get_display_attributes/[1,2] . . . 851
16.11.2 Opening and Closing Displays 851

16.11.2.1 open_display/2 851
16.11.2.2 close_display/1 851

16.11.3 Flushing and Syncing Displays 851

xxx Quintus Prolog

16.11.3.1 flush/[0,1] . 851
16.11.3.2 sync/[0,1] and sync_discard/[0,1]

. 851
16.11.4 Finding Currently Open Displays 852

16.11.4.1 current_display/1 852
16.11.4.2 default_display/1 852

16.11.5 Checking Display Validity 852
16.11.5.1 valid_display/1 852
16.11.5.2 valid_displayable/2 852
16.11.5.3 ensure_valid_display/2 852
16.11.5.4 ensure_valid_displayable/3 853

16.11.6 Screen Attributes . 853
16.11.6.1 get_screen_attributes/[1,2] 854

16.11.7 The Default Screen . 854
16.11.7.1 default_screen/2 854

16.11.8 Checking Screen Validity . 854
16.11.8.1 valid_screen/1 854
16.11.8.2 valid_screenable/2 854
16.11.8.3 ensure_valid_screen/2 855
16.11.8.4 ensure_valid_screenable/3 855

16.11.9 Interfacing with Foreign Code 855
16.11.9.1 proxl_xlib/[3,4] 855
16.11.9.2 display_xdisplay/2 855
16.11.9.3 screen_xscreen/2 856
16.11.9.4 visual_id/[2,3] 856

16.12 Event Handling Functions . 856
16.12.1 active_windows/[0,1] . 856
16.12.2 events_queued/[2,3] . 856
16.12.3 pending/[1,2] . 857
16.12.4 new_event/[1,2] . 857
16.12.5 dispose_event/1 . 858
16.12.6 next_event/[2,3] . 858
16.12.7 peek_event/[2,3] . 858
16.12.8 window_event/4 . 859
16.12.9 check_window_event/4 . 859
16.12.10 mask_event/[3,4] . 859
16.12.11 check_mask_event/[3,4] 860
16.12.12 check_typed_event/[2,3] 860
16.12.13 check_typed_window_event/3 860
16.12.14 put_back_event/[1,2] . 861
16.12.15 send_event/[4,5] . 861
16.12.16 send/[4,5] . 862
16.12.17 get_event_values/2 . 862
16.12.18 put_event_values/2 . 862
16.12.19 get_motion_events/4 . 863

16.13 Handling Errors Under ProXL . 863
16.13.1 Introduction . 863
16.13.2 Recoverable Errors . 863

xxxi

16.13.3 Fatal Errors . 864
16.13.4 The ProXL Error Handler 865
16.13.5 Error Handling Options . 865

16.13.5.1 error_action/[2,3] 865
16.13.5.2 synchronize/[1,2] 866

16.14 Window Manager Functions . 866
16.14.1 Controlling the Lifetime of a Window 867

16.14.1.1 change_save_set/[2,3] 867
16.14.2 Grabbing the Pointer . 867

16.14.2.1 grab_pointer/9 867
16.14.2.2 grab_button/9 . 869
16.14.2.3 ungrab_button/3 871
16.14.2.4 ungrab_pointer/[0,1,2] 871
16.14.2.5 change_active_pointer_grab/[3,4]

. 871
16.14.3 Grabbing the Keyboard . 872

16.14.3.1 grab_keyboard/6 873
16.14.3.2 ungrab_keyboard/[0,1,2] 874
16.14.3.3 grab_key/6 . 874
16.14.3.4 ungrab_key/3 . 875
16.14.3.5 allow_events/[1,2,3] 875

16.14.4 Grabbing the Server . 876
16.14.4.1 grab_server/[0,1] 876
16.14.4.2 ungrab_server/[0,1] 876

16.14.5 Miscellaneous Control Functions 876
16.14.5.1 warp_pointer/8 876
16.14.5.2 set_input_focus/3 877
16.14.5.3 get_input_focus/[2,3] 878
16.14.5.4 set_close_down_mode/[1,2] 878
16.14.5.5 kill_client/[0,1,2] 878

16.14.6 Pointer Control . 879
16.14.6.1 get_pointer_attributes/[1,2] . . . 879
16.14.6.2 put_pointer_attributes/[1,2] . . . 880

16.14.7 Keyboard Control . 880
16.14.7.1 get_keyboard_attributes/[1,2] . . 881
16.14.7.2 put_keyboard_attributes/[1,2] . . 881
16.14.7.3 bell/[1,2] . 882

16.14.8 Screen Saver Control. 882
16.14.8.1 set_screen_saver/[4,5] 882
16.14.8.2 force_screen_saver/[1,2] 883
16.14.8.3 get_screen_saver/[4,5] 883

16.15 Utility Functions . 884
16.15.1 Bitmask Handling . 884

16.15.1.1 state_mask/2 . 884
16.15.1.2 buttons_mask/2 884
16.15.1.3 modifiers_mask/2 884
16.15.1.4 event_list_mask/2 885
16.15.1.5 bitset_composition/3 886

xxxii Quintus Prolog

16.15.2 Key Handling . 886
16.15.2.1 rebind_key/[3,4] 886
16.15.2.2 key_keycode/[3,4] 886
16.15.2.3 keysym/[1,2] . 887
16.15.2.4 is_key/[2,3] . 887
16.15.2.5 key_state/[3,4] 888
16.15.2.6 key_auto_repeat/[3,4] 888

16.15.3 Application Preferences . 888
16.15.3.1 get_default/[3,4] 889
16.15.3.2 parse_geometry/5 889
16.15.3.3 geometry/[12,13] 889

16.16 ProXL for Xlib speakers . 890
16.16.1 Naming Conventions . 890
16.16.2 Arguments . 891
16.16.3 Data Structures . 891
16.16.4 Prolog Terms . 892
16.16.5 Convenience Functions . 892
16.16.6 Caching . 892
16.16.7 Default Screen and Display 893
16.16.8 Graphics Contexts . 893
16.16.9 Default GCs . 893
16.16.10 Modifying GCs . 894
16.16.11 Sharing and Cloning of GCs 894
16.16.12 Memory Management . 894
16.16.13 Mixed Language Programming 895

17 The ProXT Package . 897
17.1 Technical Overview and Manual . 897

17.1.1 Introduction . 897
17.1.2 Using ProXT . 897
17.1.3 Naming Conventions . 897
17.1.4 Predicate Arguments . 898
17.1.5 Type Matching . 898
17.1.6 Widget Resources . 898
17.1.7 Callbacks . 899
17.1.8 Using ProXT with ProXL . 899

17.1.8.1 xif_initialize/3 899
17.1.8.2 widget_window/2 899
17.1.8.3 widget_to_screen/2 900
17.1.8.4 widget_to_display/2 900
17.1.8.5 xif_main_loop/[0,1,2,3] 900

17.2 Tutorial . 900
17.2.1 Introduction . 900
17.2.2 The ProXT programming model 901
17.2.3 The Motif Widget Set . 901
17.2.4 Widget Resources . 901
17.2.5 Event Handling . 902

17.2.5.1 Widget Callbacks 902

xxxiii

17.2.5.2 Translations . 903
17.2.5.3 Accelerators . 904
17.2.5.4 Event Handlers . 905
17.2.5.5 Other Events Types 905
17.2.5.6 Event Handling Loop. 906

17.2.6 Using The Resource Database 907
17.2.7 Interaction with Xlib . 908

17.3 ProXT 3.5 Data Types . 908
17.4 ProXT 3.5 Widget Resource Data Types 924
17.5 ProXT 3.5 Exported Predicates . 934

17.5.1 Motif Predicates . 934
17.5.2 X Toolkit Predicates . 971
17.5.3 ProXT Specific Predicates . 981

17.6 Changes from ProXT 3.1 . 981
17.6.1 Highlights . 981
17.6.2 Backward Compatibility . 982

18 Prolog Reference Pages 985
18.1 Reading the Reference pages . 985

18.1.1 Overview . 985
18.1.2 Mode Annotations . 985
18.1.3 Predicate Categories . 986
18.1.4 Argument Types . 988

18.1.4.1 Simple Types . 988
18.1.4.2 Extended Types . 988

18.1.5 Exceptions . 990
18.2 Topical List of Prolog Built-ins . 990

18.2.1 Arithmetic . 990
18.2.2 Character I/O . 991
18.2.3 Control . 992
18.2.4 Database . 992
18.2.5 Debugging . 994
18.2.6 Executables and QOF-Saving 995
18.2.7 Execution State . 995
18.2.8 Filename Manipulation . 995
18.2.9 File and Stream Handling . 996
18.2.10 Foreign Interface . 997
18.2.11 Grammar Rules . 998
18.2.12 Help . 998
18.2.13 Hook Predicates . 998
18.2.14 List Processing . 999
18.2.15 Loading Programs . 999
18.2.16 Memory . 1000
18.2.17 Messages . 1000
18.2.18 Modules . 1001
18.2.19 Program State . 1001
18.2.20 Term Comparison . 1002
18.2.21 Term Handling . 1002

xxxiv Quintus Prolog

18.2.22 Term I/O . 1003
18.2.23 Type Tests . 1004

18.3 Built-in Predicates . 1005
18.3.1 !/0 . 1006
18.3.2 ;/2 — disjunction . 1007
18.3.3 ,/2 . 1008
18.3.4 ;/2 — if-then-else . 1009
18.3.5 ->/2 . 1010
18.3.6 =/2 . 1011
18.3.7 =../2 . 1012
18.3.8 </2, =:=/2, =</2, =\=/2, >/2, >=/2 1013
18.3.9 \+/1 . 1016
18.3.10 ==/2, \==/2 . 1018
18.3.11 @</2, @=</2, @>/2, @>=/2 1020
18.3.12 –>/2 . 1022
18.3.13 ^/2. 1023
18.3.14 abolish/[1,2] . 1025
18.3.15 abort/0 . 1027
18.3.16 absolute_file_name/[2,3] 1028
18.3.17 add_advice/3 development 1036
18.3.18 add_spypoint/1 development 1038
18.3.19 append/3 . 1040
18.3.20 arg/3 meta-logical 1043
18.3.21 assert/[1,2]. 1044
18.3.22 assign/2 . 1047
18.3.23 at_end_of_file/[0,1] . 1050
18.3.24 at_end_of_line/[0,1] . 1052
18.3.25 atom/1 meta-logical 1053
18.3.26 atom_chars/2. 1054
18.3.27 atomic/1 meta-logical 1056
18.3.28 bagof/3 . 1057
18.3.29 break/0 development 1058
18.3.30 C/3. 1059
18.3.31 call/1 . 1060
18.3.32 callable/1 meta-logical 1061
18.3.33 character_count/2 . 1062
18.3.34 check_advice/[0,1] development 1063
18.3.35 clause/[2,3]. 1065
18.3.36 close/1 . 1068
18.3.37 compare/3 . 1070
18.3.38 compile/1 . 1072
18.3.39 compound/1 meta-logical 1074
18.3.40 consult/1 . 1075
18.3.41 copy_term/2 meta-logical 1076
18.3.42 current_advice/3 development 1078
18.3.43 current_atom/1 meta-logical 1079
18.3.44 current_input/1 . 1080
18.3.45 current_key/2 . 1081

xxxv

18.3.46 current_module/[1,2] . 1082
18.3.47 current_output/1 . 1084
18.3.48 current_op/3. 1085
18.3.49 current_predicate/2 . 1086
18.3.50 current_spypoint/1 development 1088
18.3.51 current_stream/3 . 1089
18.3.52 db_reference/1 meta-logical 1090
18.3.53 debug/0 development 1091
18.3.54 debugging/0 development 1092
18.3.55 discontiguous/1 declaration 1093
18.3.56 display/1 . 1094
18.3.57 dynamic/1 declaration 1096
18.3.58 ensure_loaded/1 . 1097
18.3.59 erase/1 . 1099
18.3.60 expand_term/2 hookable 1100
18.3.61 extern/1 declaration 1101
18.3.62 fail/0 . 1104
18.3.63 false/0 . 1105
18.3.64 file_search_path/2 extendable 1106
18.3.65 fileerrors/0. 1108
18.3.66 findall/3 . 1109
18.3.67 float/1 meta-logical 1112
18.3.68 flush_output/1 . 1113
18.3.69 foreign/[2,3] hook 1114
18.3.70 foreign_file/2 hook 1117
18.3.71 format/[2,3]. 1119
18.3.72 functor/3 meta-logical 1126
18.3.73 garbage_collect/0 . 1128
18.3.74 garbage_collect_atoms/0 1130
18.3.75 gc/0 . 1131
18.3.76 ’QU messages’:generate message/3 extendable

. 1132
18.3.77 generate message hook/3 hook 1135
18.3.78 get/[1,2] . 1137
18.3.79 get0/[1,2] . 1139
18.3.80 get_profile_results/4 development 1140
18.3.81 ground/1 meta-logical 1142
18.3.82 halt/[0,1] . 1143
18.3.83 hash_term/2 . 1144
18.3.84 help/[0,1] hookable,development 1146
18.3.85 initialization/1 declaration 1147
18.3.86 instance/2 . 1149
18.3.87 integer/1 meta-logical 1151
18.3.88 is/2 . 1152
18.3.89 keysort/2 . 1155
18.3.90 leash/1 development 1157
18.3.91 length/2 . 1159
18.3.92 library directory/1 extendable 1161

xxxvi Quintus Prolog

18.3.93 line_count/2. 1163
18.3.94 line_position/2 . 1164
18.3.95 listing/[0,1] . 1165
18.3.96 load_files/[1,2] . 1167
18.3.97 load_foreign_executable/1 hookable 1171
18.3.98 load_foreign_files/2 hookable 1173
18.3.99 manual/[0,1] development 1175
18.3.100 message_hook/3 hook 1177
18.3.101 meta_predicate/1 declaration 1179
18.3.102 mode/1 declaration 1181
18.3.103 module/1 . 1182
18.3.104 module/2 declaration 1183
18.3.105 multifile/1 declaration 1184
18.3.106 multifile_assertz/1 . 1186
18.3.107 name/2 . 1187
18.3.108 nl/[0,1] . 1189
18.3.109 no_style_check/1 . 1191
18.3.110 nocheck_advice/[0,1] development 1193
18.3.111 nodebug/0 development 1195
18.3.112 nofileerrors/0 . 1196
18.3.113 nogc/0 . 1197
18.3.114 nonvar/1 meta-logical 1198
18.3.115 noprofile/0 development 1199
18.3.116 nospy/1 development. 1200
18.3.117 nospyall/0 development 1201
18.3.118 notrace/0 development 1202
18.3.119 number/1 meta-logical 1203
18.3.120 number_chars/2 . 1204
18.3.121 numbervars/3 meta-logical 1206
18.3.122 on_exception/3 . 1208
18.3.123 op/3 . 1210
18.3.124 open/[3,4] . 1212
18.3.125 open_null_stream/1 . 1218
18.3.126 otherwise/0 . 1219
18.3.127 peek_char/[1,2] . 1220
18.3.128 phrase/[2,3] . 1222
18.3.129 portray/1 hook 1224
18.3.130 portray_clause/1 . 1225
18.3.131 predicate_property/2 1227
18.3.132 print/1 hookable 1230
18.3.133 print_message/2 hookable 1232
18.3.134 print_message_lines/3 1234
18.3.135 profile/[0,1,2,3] development 1236
18.3.136 prolog_flag/[2,3] . 1237
18.3.137 prolog_load_context/2 1240
18.3.138 prompt/[2,3] . 1242
18.3.139 public/1 declaration 1244
18.3.140 put/[1,2] . 1245

xxxvii

18.3.141 query_abbreviation/3 extendable 1247
18.3.142 query_hook/6 hook 1248
18.3.143 raise_exception/1 . 1251
18.3.144 read/[1,2] . 1252
18.3.145 read_term/[2,3] . 1254
18.3.146 reconsult/1 . 1257
18.3.147 recorda/3 . 1258
18.3.148 recorded/3 . 1259
18.3.149 recordz/3 . 1261
18.3.150 remove_advice/3 development 1262
18.3.151 remove_spypoint/1 development 1263
18.3.152 repeat/0 . 1264
18.3.153 restore/1 . 1266
18.3.154 retract/1 . 1268
18.3.155 retractall/1 . 1270
18.3.156 runtime entry/1 hook 1272
18.3.157 save_modules/2 . 1273
18.3.158 save_predicates/2 . 1275
18.3.159 save_program/[1,2] . 1277
18.3.160 see/1 . 1279
18.3.161 seeing/1 . 1281
18.3.162 seek/4 . 1283
18.3.163 seen/0 . 1285
18.3.164 set_input/1 . 1286
18.3.165 set_output/1 . 1287
18.3.166 setof/3 . 1288
18.3.167 show_profile_results/[0,1,2] development

. 1290
18.3.168 simple/1 meta-logical 1292
18.3.169 skip/[1,2] . 1293
18.3.170 skip_line/[0,1] . 1295
18.3.171 sort/2 . 1296
18.3.172 source_file/[1,2,3] . 1297
18.3.173 spy/1 development 1299
18.3.174 statistics/[0,2] . 1301
18.3.175 stream_code/2 . 1304
18.3.176 stream_position/[2,3] 1306
18.3.177 style_check/1 . 1308
18.3.178 subsumes_chk/2 meta-logical 1309
18.3.179 tab/[1,2] . 1310
18.3.180 tell/1 . 1311
18.3.181 telling/1 . 1313
18.3.182 term_expansion/2 hook 1315
18.3.183 told/0 . 1316
18.3.184 trace/0 development. 1317
18.3.185 trimcore/0 . 1318
18.3.186 true/0 . 1319

xxxviii Quintus Prolog

18.3.187 ttyflush/0, ttyget/1, ttyget0/1, ttynl/0,
ttyput/1, ttyskip/1, ttytab/1 1320

18.3.188 unix/1 . 1321
18.3.189 unknown/2 . 1324
18.3.190 unknown_predicate_handler/3 hook 1325
18.3.191 use_module/[1,2,3] . 1327
18.3.192 user_help/0 hook 1330
18.3.193 var/1 meta-logical 1332
18.3.194 version/[0,1] . 1333
18.3.195 vms/[1,2] . 1334
18.3.196 volatile/1 declaration. 1335
18.3.197 write/[1,2] . 1337
18.3.198 write_canonical/[1,2] 1338
18.3.199 write_term/[2,3] . 1340
18.3.200 writeq/[1,2] . 1343

19 C Reference Pages . 1345
19.1 Return Values and Errors . 1345
19.2 Topical List of C Functions . 1345

19.2.1 C Errors . 1346
19.2.2 Character I/O . 1346
19.2.3 Exceptions . 1347
19.2.4 Files and Streams . 1347
19.2.5 Foreign Interface . 1349
19.2.6 Input Services . 1350
19.2.7 main() . 1351
19.2.8 Memory Management . 1351
19.2.9 Signal Handling . 1352
19.2.10 Terms in C . 1352
19.2.11 Term I/O . 1352
19.2.12 Type Tests . 1352

19.3 C Functions . 1353
19.3.1 QP_action() . 1354
19.3.2 QP_add_*() . 1356
19.3.3 QP_add_tty() . 1358
19.3.4 QP_atom_from_string(),

QP_atom_from_padded_string() 1359
19.3.5 QP_char_count() . 1361
19.3.6 QP_clearerr() . 1362
19.3.7 QP_close_query() . 1363
19.3.8 QP_compare() . 1364
19.3.9 QP_cons_*() . 1366
19.3.10 QP_cut_query() . 1368
19.3.11 QP_error_message() . 1369
19.3.12 QP_exception_term() . 1371
19.3.13 QP_fclose() . 1373
19.3.14 QP_fdopen() . 1374
19.3.15 QP_ferror() . 1375

xxxix

19.3.16 QP_fgetc() . 1376
19.3.17 QP_fgets() . 1377
19.3.18 QP_flush() . 1378
19.3.19 QP_fnewln() . 1379
19.3.20 QP_fopen() . 1380
19.3.21 QP_fpeekc() . 1381
19.3.22 QP_fprintf(). 1382
19.3.23 QP_fputc() . 1383
19.3.24 QP_fputs() . 1384
19.3.25 QP_fread() . 1385
19.3.26 QP_fskipln(). 1386
19.3.27 QP_fwrite() . 1387
19.3.28 QP_get_*() . 1388
19.3.29 QP_getchar(). 1393
19.3.30 QP_getpos() . 1394
19.3.31 QP_initialize() . 1395
19.3.32 QP_is_*() . 1399
19.3.33 QP_line_count() . 1402
19.3.34 QP_line_position() . 1403
19.3.35 QP_malloc(), QP_free() 1404
19.3.36 QP_new_term_ref() . 1405
19.3.37 QP_newline(). 1407
19.3.38 QP_newln() . 1408
19.3.39 QP_next_solution() . 1409
19.3.40 QP_open_query() . 1411
19.3.41 QP_peekc() . 1413
19.3.42 QP_peekchar() . 1414
19.3.43 QP_perror() . 1415
19.3.44 QP_pred() . 1416
19.3.45 QP_predicate() . 1417
19.3.46 QP_prepare_stream() . 1419
19.3.47 QP_printf() . 1420
19.3.48 QP_put_*() . 1421
19.3.49 QP_puts() . 1424
19.3.50 QP_query() . 1425
19.3.51 QP_register_atom(), QP_unregister_atom()

. 1427
19.3.52 QP_register_stream() . 1428
19.3.53 QP_remove_*() . 1429
19.3.54 QP_rewind() . 1430
19.3.55 QP_seek() . 1431
19.3.56 QP_select() . 1433
19.3.57 QP_setinput() . 1435
19.3.58 QP_setoutput() . 1436
19.3.59 QP_setpos() . 1437
19.3.60 QP_skipline() . 1438
19.3.61 QP_skipln() . 1439

xl Quintus Prolog

19.3.62 QP_string_from_atom(),
QP_padded_string_from_atom() 1440

19.3.63 QP_tab() . 1442
19.3.64 QP_tabto() . 1443
19.3.65 QP_term_type() . 1444
19.3.66 QP_toplevel() . 1446
19.3.67 QP_trimcore() . 1447
19.3.68 QP_ungetc() . 1448
19.3.69 QP_unify() . 1449
19.3.70 QP_vfprintf() . 1450
19.3.71 QP_wait_input() . 1451
19.3.72 QU_alloc_mem(), QU_alloc_init_mem(),

QU_free_mem() . 1452
19.3.73 QU_fdopen() user-redefinable 1456
19.3.74 QU_free_mem() user-redefinable 1457
19.3.75 QU_initio() user-redefinable 1458
19.3.76 QU_open() user-redefinable 1462
19.3.77 QU_stream_param() user-redefinable 1472

20 Command Reference Pages. 1475
20.1 Command Line Utilities . 1475

20.1.1 prolog — Quintus Prolog Development System
. 1476

20.1.2 qcon — QOF consolidator 1479
20.1.3 qgetpath — Get parameters of Quintus utilities

and runtime applications . 1480
20.1.4 qld — QOF link editor . 1481
20.1.5 qnm — print QOF file information 1487
20.1.6 qpc — Quintus Prolog compiler 1489
20.1.7 qplm — Quintus Prolog license manager 1493
20.1.8 qsetpath — Set parameters of Quintus utilities and

runtime applications . 1495
20.1.9 qui — Quintus User Interface 1497

Predicate Index. 1499

Keystroke Index . 1509

Book Index . 1511

Chapter 1: Introduction 1

1 Introduction

1.1 About this Manual

1.1.1 Overview

The purpose of this manual is to provide a complete description of the Quintus Prolog
system. It is not necessary to read the entire manual before starting to use Quintus Prolog.
On the contrary, it is organized so that you should be able to quickly find out whatever you
need to know about the system.

Start by reading Chapter 1. Section 1.2 [int-hig], page 4 provides an overview of all the new
functionality and includes references to places where this new functionality is documented.
Section 1.3 [int-dir], page 11 provides an overview of the installation hierarchy, which will
be helpful in orienting you at many points in the manual.

Familiarity with some form of Prolog programming is assumed, at least at the level of
textbooks such as those listed at the end of this chapter. It is the particular syntax,
semantics and functionality of Quintus Prolog that is treated here. The material in the first
10 chapters is meant to introduce you to Quintus Prolog, not Prolog in general.

The entire manual is accessible on-line as discussed in Section 8.17 [ref-olh], page 304, and,
for Quintus User Interface users, Section 3.6 [qui-hlp], page 68. This facility allows you to
access the manual directly from Prolog whenever you need to look something up.

The manual, printed and on-line, is supplemented by various on-line resources including
tutorials, demos, and code comments in library packages. See Section 1.3 [int-dir], page 11
for the location of these materials in the Quintus Directory.

1.1.2 Organization of the Manual

The documentation for release 3 consists of 19 chapters (see the Table of Contents).

There is a separate reference entry, following a standard format, for every Prolog built-in
predicate, callable function, and command-line tool. They are arranged alphabetically for
ease of reference. The other parts of the manual describe how predicates, functions, and
tools are used, and how they work together, but the reader will be referred to the “Reference
Pages” for a detailed description of each predicate, function, and tool.

While reading the descriptions of functionality provided, you can always find more detail
on these routines in the Reference Pages. Since they are listed alphabetically within those
major groupings, explicit cross-references to them are not spelled out.

2 Quintus Prolog

Preceding the reference pages of each category there is a list of predicates, functions, or
tools arranged by functional categories to assist the reader in locating unfamiliar names of
routines.

At the end of each section, you will be referred to relevant reference pages and libraries when
such supporting documentation or packages exist. Reference pages include cross-references
to related reference pages and to relevant sections throughout the manual.

1.1.3 Notational Conventions

1.1.3.1 Goal Templates and Mode Annotations

Goal templates such as this are used in reference page synopses and elsewhere:

setof(+Template, +*Generator, *Set)

Here Template, Generator, and Set are meta-variables, mnemonic names for the arguments.
Preceding each meta-variable is a symbol indicating the mode of the argument: whether it
is an input or output, and information about its determinacy. These mode annotations are
discussed in detail in Section 18.1.2 [mpg-ref-mod], page 986.

Please note: The system of mode annotations used in release 3 has not been
applied to the Quintus Prolog Library.

1.1.3.2 Examples

Examples illustrating interactive terminal sessions show what the user types in as well
as system output. The operating system prompt is represented as ‘% ’ in examples. For
example:

% prolog +
| ?- display(a+b).
+(a,b)
yes

1.1.3.3 Operating System Dependencies

The name of certain command line tools and file extensions are operating system dependent.
When reading this manual, you may have to substitute the actual name for the one used in
the manual. This applies to:

cc The C compiler, called cc or gcc under UNIX and cl under Windows.

ld The linker, called ld under UNIX and link under Windows.

Chapter 1: Introduction 3

‘.o’ File extension for object files, ‘.o’ under UNIX and ‘.obj’ under Windows.

‘.so’ File extension for shared object files, ‘.sl’ under HPUX, ‘.so’ under other
UNIX, and ‘.dll’ under Windows.

‘.a’ File extension for archive files, ‘.a’ under UNIX and ‘.lib’ under Windows.

1.1.4 Bibliographical Notes

There are now a number of excellent books that teach Prolog. The following six books offer
fully comprehensive courses in Prolog.

Programming in Prolog
William Clocksin and Christopher Mellish, Springer Verlag 1987, (third edi-
tion), ISBN 0-387-17539-3.

Prolog: A Logical Approach
Tony Dodd, Oxford University Press 1990, ISBN 0-19-853821-9.

Advanced Prolog
Peter Ross, Addison Wesley 1989, ISBN 0-201-17527-4.

Prolog Programming for Artificial Intelligence
Ivan Bratko, Addison Wesley 1990 (second edition), ISBN 0-201-41606-9.

The Art of Prolog, 2nd ed.
Leon Sterling and Ehud Shapiro, MIT Press 1994, ISBN 0-262-19338-8.

Prolog Programming In Depth
Michael Covington, Donald Nute and Andre Vellino, Prentice-Hall, 1996, ISBN
0-13-138645-X.

More advanced texts:

The Craft of Prolog
Richard O’Keefe, MIT Press 1990, ISBN 0-262-15039-5.
An advanced text dedicated to the proposition that elegance is not optional.

The Practice of Prolog
Leon Sterling (ed.), MIT Press 1990, ISBN 0-262-19301-9.
Each chapter presents and explains a particular application program written in
Prolog.

Artificial Intelligence: A Modern Approach
Stuart Russell, Peter Norvig, Prentice Hall 1995, ISBN 0-13-103805-2.
A textbook on Artificial Intelligence using Prolog.

Techniques for Prolog Programming
T. Van Lee, John Wiley, 1993.

4 Quintus Prolog

Computational Intelligence—A Logical Approach
David Poole, Alan Mackworth, Randy Goebel, Oxford University Press, 1998,
ISBN 0-195-10270-3.

Natural Language Processing for Prolog Programmers
Michael Covington, Prentice Hall, 1994, ISBN 0-13-629213-5.

From Logic Programming to Prolog
K. Apt. Prentice-Hall, 1997, ISBN 0-132-30368-X.

The author explains the procedural and logical interpretation of Prolog programs, which
eases the transition for C programmers.

Tools used in the Quintus Prolog programming environment are documented in these man-
uals:

GNU Emacs Manual, Version 20
Richard Stallman, Free Software Foundation, 1998.

Introduction to the X Window System
Jones, Oliver, Prentice-Hall, 1988, ISBN 0-13-499997-5.
An introduction to programming with Xlib

X Window System: Programming and Applications With Xt
Young, Douglas A., OSF/Motif Edition, Prentice-Hall, 1990, ISBN 0-13-497074-
8.
A basic tutorial on writing programs using the Xt and Motif toolkits.

OSF/Motif Series
(5 volumes) Open Software Foundation, Prentice Hall, 1990. The volumes in-
clude Motif Style Guide, Programmer’s Guide, Programmer’s Reference, User’s
Guide, and Application Environment Specification (AES) User Environment
Volume. Editions of these books, available for Release 1.1 and Release 1.2.

The X Window System Series
(8 volumes), O’Reilly and Associates, 1988, 1989, 1990.

X Window System Toolkit
Asente, Paul J. and Ralph R. Swick, DEC Press, 1990, ISBN 1-55558-051-3.
The X Toolkit bible.

1.2 Highlights of release 3

This section summarizes the new functionality in release 3.

Chapter 1: Introduction 5

1.2.1 Embeddability

Embeddability means the ability to embed a Prolog sub-program in a program written in
some other language or languages. It is described in Section 10.2 [fli-emb], page 365. The
specific features of this release that contribute towards embeddability are:

• Callable Prolog: In earlier releases, Prolog could call routines written in other languages
but the reverse was not possible. Now each language can call the other, allowing
much greater freedom in the way that multi-language programs can be organized (see
Section 10.4 [fli-ffp], page 413).

• Terms in C: Compound terms can be passed to and from C. Routines are provided for
testing, unifying, comparing and constructing terms in C. (See Section 10.3.8 [fli-p2f-
trm], page 395)

• Access to C data structures: Arithmetic evaluation has been extended so that elements
of C data structures can be accessed. Also, there is a new built-in predicate assign/2,
which allows assignment into C data structures (see Chapter 18 [mpg], page 985).

• Open OS Interface: The main interfaces between the Prolog system and the operating
system are now open. That is, the I/O and memory management interfaces are a
set of documented functions, which can be replaced by user-defined functions. Source
code is supplied for the default versions of these functions. (See Section 10.2 [fli-emb],
page 365)

• Discontiguous Memory Management: As in previous releases, the system requests
memory from the operating system only as it needs it, and it frees it up again when
possible. (This contrasts with many other Prolog implementations in which all needed
memory must be pre-allocated.) An important difference with this release is that the
allocated memory need not be contiguous. This allows Prolog to better co-exist with
other components that share its process’ address space.

• User-defined main(): There is no longer any necessity to use the default main() rou-
tine. An application may call individual Prolog predicates and may never need to start
an interactive Prolog session (See Section 10.2 [fli-emb], page 365).

• Signal Handling: Prolog used to trap all signals and then call any signal handler that
had been specified by a user. release 3 does not intercept signals that are being handled
by the user’s code.

1.2.2 QOF Loading and Saving

Since Release 2.5, the Runtime Generator compiler qpc has been made available as part
of the Development System. qpc compiles Prolog files into QOF (Quintus Object Format)
files. QOF files can be linked together to make an executable file, which is an extended
version of the development system. If you have a Runtime Generator license, you have
the alternative of linking your QOF files into a runtime system, which omits development
features (the compiler and debugger) and which can be conveniently deployed to different
machines since it requires no authorization code in order to be run.

6 Quintus Prolog

Release 3 introduces the ability to load QOF files directly into a running Prolog system.
Loading a QOF file is up to 100 times faster than compiling it from source. File loading
has been adapted to take advantage fo this new functionality. For instance, the form

| ?- [file].

now loads ‘file.qof’ if it exists and is more recent than ‘file.pl’; otherwise it compiles
‘file.pl’.

The saved-state produced by save_program/1 is now a QOF file. This means that it is now
portable between different hardware and operating systems as well as between all releases
of Quintus Prolog. It can still be executed as if it were an executable file, or it can be loaded
into a running Prolog system. Another alternative is to call the QOF-linker qld on it to
convert it to an executable file. It is also possible to save individual predicates or modules
into a QOF file.

Section 8.4 [ref-lod], page 189 and Section 8.5 [ref-sls], page 192 describe QOF loading and
QOF saving respectively. See Section 9.1.1.5 [sap-srs-bas-cld], page 339 for how to link QOF
files to make an executable file.

1.2.3 QUI: An X-based Development Environment

The Quintus User Interface (QUI) is a new development environment based on the X-
Windows system. QUI makes use of windows, buttons and menus to increase programmer
productivity, and it includes an internal editor, access to GNU Emacs and access to the
on-line manual. See Chapter 3 [qui], page 53.

1.2.4 Source-linked Debugger

A source-linked debugger is provided via QUI as well as via Emacs, allowing you to single-
step through your source code. The debugger works by modification of compiled code, so
there is no longer any need to distinguish between “consulting” and “compiling”; all code
is compiled unless declared dynamic.

The new debugger also helps you to find inefficiencies in your program by

• showing visually the creation of choice points, and
• distinguishing between determinate and nondeterminate exit from a goal.

The debugger is documented in Chapter 6 [dbg], page 113.

1.2.5 Other New Features

• Exception Handler: Allows the programmer to specify a recovery action to be taken
if an exception occurs during the execution of a particular goal. All errors detected

Chapter 1: Introduction 7

by the system now cause an exception to be raised; exceptions can also be raised by
calling the built-in predicate raise_exception/1 (see Section 8.19 [ref-ere], page 310).

• Message Handler: Allows customization of the text of system messages and of how
they are displayed to the user. Major uses are customization or internationalization of
error messages, and building user interfaces. (See Section 8.20 [ref-msg], page 325)

• New I/O: The new I/O system has substantially faster character I/O and more efficient
(buffer-based rather than character-based) user-defined streams. There is now no limit
on the number of open streams other than that imposed by the operating system.

• New Arithmetic: Standard 32-bit integers and 64-bit floats are supported. Exceptions
are raised on overflows. Variables in arithmetic expressions can be bound to expressions
(not just numbers).

• Advice Package: Allows a developer to associate consistency checks (“advice”) to be
performed whenever specified predicates are entered or exited. Advice checking can be
enabled/disabled selectively or globally during the development process (see Section 6.4
[dbg-adv], page 141).

1.2.6 Compatibility Issues

1.2.6.1 Saved States

save/[1,2] are gone. Section 8.5 [ref-sls], page 192 explains why these have been removed.
In most cases save_program/2 can be used in their place, with a little rearrangement of
your code.

Foreign code is no longer included in saved-states. When a saved-state is used it needs to
be able to find the relevant object files and cause them to be linked in. Since this linking
can be slow, it will often be preferable to use qld to link your saved-state with its object
files into an executable file. See Section 9.1.1.5 [sap-srs-bas-cld], page 339 for how to do
this.

1.2.6.2 Error Reporting/Handling

In earlier releases, some errors caused simple failures. For example,

| ?- functor(A,B,C).

no

This is not logical, since it is easy to choose A, B, C such that functor(A,B,C) is true.
Generally, built-in predicates should enumerate all their logical solutions or else raise an
exception in cases such as this one where enumeration is impractical. Thus you now get:

8 Quintus Prolog

| ?- functor(A,B,C).

! Instantiation error in argument 2 of functor/3
! goal: functor(_530,_531,_532)

Existing code that relies on the old error behavior will need modification to take this into
account. The insertion of appropriate nonvar/1 checks is usually all that is required.

1.2.7 New Built-in Predicates

See the Reference Pages for information on the following new predicates.

absolute_file_name/3
generalization of absolute_file_name/2

add_spypoint/1
add a spypoint

add_advice/3
specify an advice action for a particular port of a predicate

append/3 list concatenation relation

assign/2 assign a value to a foreign data structure

at_end_of_file/0
test if the current input stream is at end of file

at_end_of_file/1
test if the specified stream is at end of file

at_end_of_line/0
test if the current input stream is at end of line

at_end_of_line/1
test if the specified stream is at end of line

callable/1
test if the a term is syntactically valid as an argument to call/1; that is, not
a variable, a number or a database reference

check_advice/0
enable advice-checking for all predicates with advice

check_advice/1
enable advice-checking for the specified predicates

compound/1
test if a term is a compound term

current_advice/3
find out what advice exists

current_spypoint/1
find out what spypoints exist

Chapter 1: Introduction 9

db_reference/1
test if a term is a database reference

extern/1 declare predicate to be callable from C

ground/1 test if a term is ground (contains no unbound variables)

hash_term/2
produce a hash-value corresponding to a term

initialization/1
declare a goal to be called when a file is loaded or when an executable file
containing it is run

load_files/1
load source or QOF files

load_files/2
load source or QOF files with specified options

nocheck_advice/0
turn off all advice checking

nocheck_advice/1
turn off advice checking for specified predicates

on_exception/3
execute a goal in the context of an exception handler

open/4 open a file with specified options

peek_char/1
return the next character in the current input stream without consuming it

peek_char/2
return the next character in specified stream without consuming it

print_message/2
print an error, warning, help, silent or informational message

print_message_lines/3
auxiliary routine for message printing

prompt/3 examine or change the prompt for a particular stream

raise_exception/1
raise an exception

read_term/2
read a term from current input stream

read_term/3
read a term from specified stream

remove_advice/3
remove advice for specified port of a predicate

remove_spypoint/1
remove a spypoint

10 Quintus Prolog

save_modules/2
save a module or modules to QOF

save_predicates/2
save a predicate or predicates to QOF

save_program/2
save the program state and specify goal to be run on start-up

seek/4 byte-oriented random access to files

simple/1 opposite of compound/1; true of variables, atoms, numbers and database refer-
ences

skip_line/0
skips characters on current input up to end of line

skip_line/1
skips characters on specified stream up to end of line

source_file/3
relation between source file, predicate and clause number

volatile/1
declare that a predicate should be excluded when saving

write_term/2
write a term to current output

write_term/3
write a term to specified stream

1.2.8 New Hook Predicates

These predicates are called at appropriate times by the Prolog system and are defined by
the user.

user:display_help_file/3
define how on-line help is displayed

user:message_hook/3
define how messages are displayed

user:generate_message_hook/3
define the textual form of messages

user:query_hook/2
define or bypass user-interaction

1.2.9 Removed Built-in Predicates

save/[1,2] has been removed as discussed above. Their names are still reserved so that
we can use them in a future release.

Chapter 1: Introduction 11

The following predicates were supported only by the interpreter and have now been elimi-
nated. If their functionality is required, it can be achieved by passing an explicit ancestors
list to all the predicates that need it as an extra argument.

• ancestors/1

• subgoal_of/1

• maxdepth/1

• depth/1

The following predicates that were previously provided only because they are defined in
other Prolog systems have now been removed. The user may supply definitions for them if
desired. (Many of these just printed error messages in earlier releases.)

• ’LC’/0

• ’NOLC’/0

• current_functor/2

• incore/1

• load_foreign_files/3

• log/0

• nolog/0

• plsys/1

• reinitialize/0

• restore/2

• revive/2

1.3 The Quintus Directory

All Quintus products are designed to be installed in a single directory hierarchy. For each
product, several different hardware and operating system platforms may be supported
within the same directory structure, provided that all platforms are able to access this
hierarchy using NFS. Also, multiple versions of each product may co-exist in the same
hierarchy.

The Quintus directory, quintus-directory (as seen in the figures below), is the root of the
whole installation, and is where the entire Quintus hierarchy is installed. The following
sections describe the files and directories located directly under the quintus-directory: The
structure of the Quintus Directory differs slightly between UNIX and Windows. We there-
fore describe the two cases separately.

12 Quintus Prolog

1.3.1 Structure of the Quintus Directory under UNIX

Chapter 1: Introduction 13

Quintus-directory structure under UNIX

‘bin3.5’ Contains one subdirectory for each platform (and operating system) on which
Quintus Prolog has been installed. For example, ‘sun4-5’ contains the exe-
cutables installed for a Sun4 running SunOS 5.x. When the manual refers to
runtime-directory, it is the subdirectories of ‘bin3.5’, such as ‘sun4-5’, that are
referred to. The runtime-directory for your platform is the default runtime_
directory Prolog flag. These directories are generated automatically for each
platform during the installation procedure.

‘generic’ a directory containing files shared by different platforms. Subdirectories are
described below.

‘editor3.5’
a directory containing the single directory ‘gnu’, which contains ‘.el’ and ‘.elc’
files for the GNU Emacs interface. See Section 4.1 [ema-ove], page 79.

‘qui3.5’ a directory containing support files for the Quintus User Interface. See Sec-
tion 3.1 [qui-qui], page 53.

‘proxl3.5’
a directory for the ProXL Package. See Chapter 16 [pxl], page 749.

‘proxt3.5’
a directory for the ProXT Package. See Chapter 17 [pxt], page 897.

‘dbi’, ‘flex’, etc.
one installation directory exists add-on product installed: Quintus Database
Interface, Flex, etc.

‘license3.5’
a directory containing license files for Quintus Prolog and its add-on products

‘java3.5’ a directory containing Java software components

The subdirectories of ‘generic’ are the library directory, ‘qplib3.5’, and the Quintus
information directory, ‘q3.5’.

‘qplib3.5’
the library directory. This directory contains source and QOF files for the pack-
ages in the Quintus Prolog Library and the ‘embed’ and ‘tools’ directories. The
contents of the library directory are detailed in Section 12.1 [lib-bas], page 521.

‘q3.5’ information about Quintus Prolog. Subdirectories:

‘demo’ demonstration programs

‘helpsys’ files for the Development System’s on-line help-system

‘man’ the man pages describing the executables found in the binary di-
rectory

‘tutorial’
small programs demonstrating aspects of Quintus Prolog

14 Quintus Prolog

1.3.2 Structure of the Quintus Directory under Windows

Chapter 1: Introduction 15

Quintus-directory structure under Windows

‘bin’ Contains the single subdirectory ‘ix86’. When the manual refers to runtime-
directory, it is that subdirectory that is referred to. It is also the value of the
runtime_directory Prolog flag.

‘lib’ Contains the single subdirectory ‘ix86’, which contains import libraries and
other files required for building Prolog executables.

‘include’ Contains ‘<quintus/quintus.h>’.

‘src’ a directory containing files shared by different platforms, in particular the li-
brary modules. The contents of this directory are detailed in Section 12.1
[lib-bas], page 521. Subdirectories include:

‘demo’ demonstration programs

‘helpsys’ files for the Development System’s on-line help-system

‘embed’ see Section 12.1 [lib-bas], page 521.

‘tools’ see Section 12.1 [lib-bas], page 521.

‘vbqp’ files for the Visual Basic interface.

‘editor3.5’
a directory containing the single directory ‘gnu’, which contains sq’.el’ and
‘.elc’ files for the GNU Emacs interface. See Section 4.1 [ema-ove], page 79.

‘dbi’, ‘flex’, etc.
one installation directory exists add-on product installed: Quintus Database
Interface, Flex, etc.

‘license3.5’
a directory containing license files for Quintus Prolog and its add-on products

‘java3.5’ a directory containing Java software components

1.3.3 Search Paths

The absolute name of quintus-directory is returned by (A) and is, by default, used to set
(B):

prolog_flag(quintus_directory, QuintusDir). (A)

file_search_path(quintus, QuintusDir). (B)

See Section 8.10.4.1 [ref-lps-flg-cha], page 246 for discussion of prolog_flag/2, and Sec-
tion 8.6.1.4 [ref-fdi-fsp-pre], page 210 for discussion of predefined file_search_path/2
facts.

16 Quintus Prolog

Chapter 2: User’s Guide 17

2 User’s Guide

2.1 Getting Started

2.1.1 Overview

This chapter describes things that you should know about Quintus Prolog. It assumes
only the default interface, the way you can use Prolog on terminals that do not support
X-Windows or Emacs.

This section describes how to run and halt Prolog, what you’ll see once you’ve started
Prolog, and how to use the on-line help system. Section 2.2 [bas-lod], page 21 describes
how to load programs into Prolog. Section 2.3 [bas-run], page 27 discusses various features
of the system related to running programs.

2.1.2 Starting Prolog

If you are using Windows, the batch file ‘runtime-directory\qpvars.bat’ needs to be
executed to set up the necessary environment variables. If you are using UNIX, your PATH
environment variable needs to include the directory containing the Quintus tools.

To start Prolog, type prolog at the operating system prompt (whether UNIX or Windows):

% prolog

The system responds by displaying a copyright message followed by the main Prolog prompt,
as shown below.

Quintus Prolog Release 3.5 (Sun 4, SunOS 5.5)

| ?-

The ‘| ?- ’ is the main Prolog prompt. It indicates that you are at the top level of the Prolog
system. At this point, the system is waiting for you to type a goal, such as a command to
load a previously created file containing a Prolog program.

If you are using Windows, it is probably more useful to run qpwin from the Start Menu. This
has the same appearance as the console-based version, except that the output is directed to
a window. The properties of this window can be tuned; see Section 20.1.1 [too-too-prolog],
page 1476. If you use qpwin you do not need to run the ‘runtime-directory\qpvars.bat’
batch file.

18 Quintus Prolog

2.1.3 Exiting Prolog

To exit from Prolog, type your end-of-file character at the main Prolog prompt. (The
standard end-of-file character is ^d for UNIX and ^z for Windows.)

| ?- ^D

Alternatively, you can exit from Prolog by typing halt. followed by a carriage return at
the main Prolog prompt:

| ?- halt.〈RET〉

〈RET〉 stands for the Return key on your terminal. Note that a period followed by a 〈RET〉
must always be typed after a goal. The 〈RET〉 will usually not be shown explicitly but will
be assumed in the examples that follow.

If all else fails, you can always use a ^c interrupt followed by an e to exit.

2.1.4 The Top-level Prolog Prompt

The prompt ‘| ?-’ indicates that Prolog is waiting for a goal to be typed in. For example,
you can call built-in predicates like this:

| ?- write(hello).

hello
yes

| ?- X is 2+2.

X = 4 〈RET〉

| ?-

When Prolog prints a variable binding at the top level like ‘X = 4’ in this example, it waits
for you to either type a 〈RET〉, which brings it back to the top level, or else type a ;, which
causes it to backtrack and look for another solution. In this case, you would get

| ?- X is 2+2.

X = 4 ;

no
| ?-

because there is only one X for which the goal can be satisfied.

Chapter 2: User’s Guide 19

It is always possible to interrupt any Prolog process and return to the top-level Prolog
prompt. To do this, type ^c. The system then displays the message

Prolog interruption (h for help)?

Type a (for abort) and press 〈RET〉. The system then displays a message indicating that
execution has been aborted, followed by the top-level Prolog prompt.

! Execution aborted

| ?-

2.1.5 Using the On-line Help System

Quintus Prolog provides an on-line help system, which allows on-line access to this manual.
The best ways to access the on-line manual are via QUI or Emacs, but it can also be accessed
from the TTY interface. Type manual. at the main Prolog prompt to access the on-line
help system as shown below.

| ?- manual.

The system then displays the following menu:

20 Quintus Prolog

File: quintus.info, Node: Top, Next: int, Prev: (dir), Up: (dir)

Quintus Prolog

* Menu:

* {manual(int)} Introduction
* {manual(bas)} User’s Guide
* {manual(qui)} The Quintus User Interface
* {manual(ema)} The Emacs Interface
* {manual(vb)} The Visual Basic Interface
* {manual(dbg)} The Debugger
* {manual(glo)} Glossary
* {manual(ref)} The Prolog Language
* {manual(sap)} Creating Executables
* {manual(fli)} Foreign Language Interface
* {manual(ipc)} Inter-Process Communication
* {manual(lib)} Library
* {manual(str)} The Structs Package
* {manual(obj)} The Objects Package
* {manual(pbn)} The PrologBeans Package
* {manual(pxl)} The ProXL Package
* {manual(pxt)} The ProXT Package
* {manual(mpg)} Prolog Reference pages
* {manual(cfu)} C Reference Pages
* {manual(too)} Command Reference Pages
* {manual(pindex)} Predicate Index

* {manual(kindex)} Keystroke Index
* {manual(bindex)} Book Index

This manual documents Quintus Prolog Release December 2003.

Prolog is a simple but powerful programming language devel-
oped at the
University of Marseille, as a practical tool for programming in logic.
From a user’s point of view the major attraction of the language is
ease of programming. Clear, readable, concise programs can be written
quickly with few errors.

{text}

To see the table of contents for the Quintus User Interface, type

| ?- manual(qui).

Chapter 2: User’s Guide 21

The table of contents of the QUI part will then be shown as another menu. You can then
choose a chapter/section in that part. For example, the second entry in the QUI menu is:

* {manual(qui-mai)} QUI Main Window

So, to find out about the main window of the QUI you would type:

| ?- manual(qui-mai).

In response, the system displays the appropriate section of the manual on the screen. You
can continue typing goals of this form until you reach a file of text that does not begin with
a menu.

You can control the way that manual files are written to the screen by setting your envi-
ronment variable PAGER to the name of a program to be used to display a file. If PAGER is
not set the default is more(1).

If you wish to save an on-line manual section into a file it can be done like this:

| ?- tell(’qui-mai.manual’), manual(qui-mai), told.

To request information about a specific topic, type help(Topic). at the main Prolog
prompt, where Topic represents the topic you want information about. The system dis-
plays a menu generated by scanning the index of the manual for all entries containing the
substring formed by Topic.

For example, you might type

| ?- help(debug).

if you are interested in learning about using the debugger. In response to this, the system
will display a menu indicating all the parts of the manual whose index entries contain the
substring ‘debug’. Note that you can abbreviate topics; if you type

| ?- help(deb).

you will get a menu referring to all topics containing with the substring ‘deb’. Thus, the
more you abbreviate, the larger the menu you are likely to get. If the menu would only
have one entry it is not displayed — that entry is selected automatically.

2.2 Loading Programs into Prolog

2.2.1 Loading a File into Prolog

If you have created a Prolog program and stored it in a file called ‘myfile.pl’, you can
load that file into Prolog by typing the following:

22 Quintus Prolog

| ?- compile(myfile).

This goal has the effect of compiling your file into the Prolog database. A message is
displayed showing the absolute filename:

% compiling /ufs/joe/myfile.pl...

When Prolog finishes compiling a file, it displays the name of the file that was compiled,
the amount of time it took to compile the file, and the number of bytes required to store
the compiled file in memory. If an earlier version of the file or another file of the same
name has been previously compiled during this Prolog session, this last number represents
the number of additional bytes required to recompile the file, and may be zero (or even
negative, if the new version takes up less space than the old).

% myfile.pl compiled 2.354 sec 2346 bytes
| ?-

As shown above, the main Prolog prompt reappears after the system finishes compiling a
file. At this point, you can begin running or testing by typing calls to the predicates that
the file defines.

The predicate compile/1 also accepts a list of files as an argument. For example, to compile
three files called ‘file1.pl’, ‘file2.pl’, and ‘file3.pl’, type

| ?- compile([file1,file2,file3]).

2.2.2 Loading Pre-Compiled (QOF) Files

It is possible to pre-compile files that you use frequently so that they can be rapidly loaded
whenever needed. See Section 9.1.1.5 [sap-srs-bas-cld], page 339 for information on how to
create such files. The standard naming convention is that the compiled file corresponding
to a source file called ‘myfile.pl’ is ‘myfile.qof’. If you use this convention, then the
command

| ?- [myfile].

is appropriate: it loads either ‘myfile.pl’ or ‘myfile.qof’, using the more recent of the
two if they both exist. Please note: you should not also have a file called just ‘myfile’,
without any extension, since this will take precedence over the ‘.pl’ and the ‘.qof’ files.

If you have several files to load, then you can use, for example:

| ?- [file1,file2,file3].

That is, a list of files typed as a goal is a command to load those files.

Chapter 2: User’s Guide 23

2.2.3 Commands in Files

A Prolog source file can contain commands as well as clauses. If you have a program that
is spread across many files, it may be useful to create a file containing commands to load
each of those files. For example, such a file could look like this:

:- compile(file1).
:- compile(file2).
:- compile(file3).

When this master-file is compiled, the ‘% compiling File...’ and ‘% File compiled’ mes-
sages for file1, file2 and file3 will be indented by one character. If they in turn cause other
files to be loaded, the messages for those files will be indented two characters, and so on.

Notes:

1. The ‘:- ’ symbol is placed at the beginning of the line just as it appears in the example
above.

2. When a file being compiled contains a command to compile another file, a relative file-
name in that command is interpreted with reference to the directory that contains the
first file. For example, if the file ‘/usr/fred/test.pl’ contains the following commands

:- compile(’../whatsit’).
:- compile(’xyz.pl’).

then the files to be compiled would be ‘/usr/whatsit.pl’ (or ‘/usr/whatsit’) and
‘/usr/fred/xyz.pl’.
For example, you can have a file called ‘mainfile.pl’ containing

:- [file1, file2, file3].

and provided that you keep all of these files in the same directory as ‘mainfile.pl’,
you can compile them all, no matter what your current working directory is, by giving
compile/1 a file specification for ‘mainfile.pl’.

2.2.4 Syntax Errors

If a clause being compiled contains a syntax error, Prolog tells you that a syntax error
has been found and displays the clause. For example, suppose you accidentally omitted a
closing parenthesis in a clause:

| ?- member(X,[a,b,c,d].

When you compile a file containing this clause, Prolog compiles all the clauses that precede
the clause containing the error. When it reaches this clause, it displays the message:

24 Quintus Prolog

! Syntax error
! between lines 26 and 27
! member(X,[a,b,c,d]
! <<here>>

to let you know

1. that the syntax of the clause is incorrect,
2. where the clause is in the file, and
3. at what point in the clause it found the syntax error.

Prolog then ignores the clause and continues loading the rest of the file into the database.

2.2.5 Style Warnings

In addition to checking for syntax errors, Quintus Prolog also has a style checker, which
displays warning messages whenever certain stylistic conventions are violated in a program.
Whereas syntax error messages indicate clauses that cannot be read into Prolog, style
warnings simply indicate possible typing mistakes, or program construction that doesn’t
follow Quintus Prolog style conventions. The style conventions for Quintus Prolog are
listed below. If you adhere to these conventions, you can use the style warnings to catch
simple errors very easily.

1. Define all clauses for a given procedure in one file. This is essential; the load predicates
do not allow the definition of a procedure to be spread across more than one file unless
the procedure is declared multifile — see multifile/1 for more information on this. If
a non-multifile procedure is defined in more than one file, and all the files in which the
procedure is defined are compiled, each definition of the procedure in a new file will
wipe out any clauses for the procedure that were defined in previous files.

2. Make all clauses for a given procedure contiguous in the source file. This doesn’t
mean that you should avoid leaving blank space or putting comments between clauses,
but simply that clauses for one procedure should not be interspersed with clauses for
another procedure.

3. If a variable appears only once in a clause, either write that variable as the single
character ‘_’ (the void variable), or begin the variable name with the character ‘_’.

If any of these conditions are not met, you will be warned when the file containing the
offending clauses is compiled.

If style convention 1 is violated, Prolog displays a message like the one shown below before it
compiles each procedure that has been defined in another file that has already been loaded:

* Procedure foo/2 is being redefined in a different file -
* Previous file: /ufs/george/file1
* New file: /ufs/george/file2
* Do you really want to redefine it? (y,n,p,s, or ?)

Chapter 2: User’s Guide 25

If you type y, the definition in the file currently being loaded replaces the existing pro-
cedure definition. If you type n, the existing definition remains intact, and the definition
in the file currently being loaded is ignored. If you type p (for proceed), the definition in
the file currently being loaded replaces the existing definition; furthermore, the remaining
procedure definitions in the file ‘/ufs/george/file2’ will automatically replace any ex-
isting definitions made by the file ‘/ufs/george/file1’ without displaying any warning
messages. If you type s (for suppress), the existing definition remains intact and the def-
inition in the file currently being loaded is ignored; furthermore, the remaining procedure
definitions in the file ‘/ufs/george/file2’ which attempt to replace definitions made by
the file ‘/ufs/george/file1’ will be ignored without displaying any warning messages.
(These options are particularly useful if you have changed the name or location of a file,
since it suppresses the warnings you would otherwise get for every procedure in the file.) If
you type ?, Prolog displays a message that briefly describes each of the options above, and
then asks you again if you want to redefine the procedure.

If style convention 2 is violated, you will get a message of the form:

* Clauses for foo/2 are not together in the source file

This indicates that between some pair of clauses defining procedure foo/2, there is a clause
for some other procedure. If you followed the style conventions in writing your code, this
message would indicate that some clause in your source file had either a mistyped name or
the wrong arity, or that the predicate foo/2 was defined more than once in the file. One
other possible cause for this message might be that a period was typed in place of a comma,
as in

foo(X, Y) :-
goal1(X, Z),
goal2(Z).
goal3(X, Y).

foo([], []).

Here the Prolog system will think that you are defining a clause for goal3/2 between the
clauses for foo/2, and will issue a style warning.

If style convention 3 is violated, as in

check_state(TheState):-
old_state(TheStaye, X),
write(TheState),
write(X).

you will get a message of the form:

* Singleton variables, clause 1 of check_state/1: TheStaye

indicating that in the first clause of procedure check_state/1, there is only one occurrence
of the variable TheStaye. If that variable is a misspelling, you should correct the source
text and recompile. If it was really meant to be a single variable occurrence, replace it with

26 Quintus Prolog

the anonymous variable ‘_’ or preface it with ‘_’ as in ‘_TheStaye’, and you will no longer
get the style warning message.

It is good programming practice to respond immediately to these warnings by correcting
the source text. By doing so, you will get the full benefit of the style warning facility in
finding many errors painlessly.

By default, all the style warning facilities are turned on. You can turn off any or all of the
style warning facilities by typing no_style_check(X). at the main Prolog prompt, where
X represents one of the arguments listed below. To turn on style warning facilities, type
style_check(X). at the main Prolog prompt, where X represents one of the arguments
listed below.

Argument Function

all turns on (or off) all style checking

single_var
turns on (or off) checking for single variable occurrences

discontiguous
turns on (or off) checking for discontiguous clauses for procedures

multiple turns on (or off) style checking for multiple definitions of same procedures (in
different files)

For example, to turn off all the style warning facilities, you would type

| ?- no_style_check(all).

2.2.6 Saving and Restoring a Program State

2.2.6.1 Basic Information

Once a program has been loaded, its facts and rules are resident in the Prolog database.
It is possible to save the current state of the database in its compiled form as a QOF file.
This allows you to restore the current database at a later time without having to re-compile
your Prolog source files.

The built-in predicate save_program/1 saves the Prolog state. For example,

| ?- save_program(myprog).

You can later reload the file ‘myprog’ into Prolog using the command

| ?- [myprog].

A saved program is a special kind of QOF file, which is capable of being run directly from
the operating system, as if it were an executable file. To run a saved program from the

Chapter 2: User’s Guide 27

command prompt, type the name of the file containing the saved program at the command
prompt. For example,

% myprog

This is equivalent to starting up Prolog and loading ‘myprog’. Under Windows, this only
works if the name of the file has the extension ‘bat’, e.g. ‘myprog.bat’.

You can also specify a goal to be run when a saved program is started up. This is done by:

| ?- save_program(myprog, start).

where start/0 is the predicate to be called.

2.2.7 Using an Initialization File

If you use certain customized features often, you might want to direct the system to load
them every time you start up Prolog. You can do this by creating an initialization file called
‘prolog.ini’ in your home directory. This file is loaded, if it exists, every time you start
up Prolog. It may be a Prolog source file or a QOF file.

Please note: if you wish to start up Prolog or a Prolog saved program without
loading your ‘prolog.ini’ file you can use the ‘+f’ for “fast start” option. That
is,

% prolog +f

or

% myprog +f

will both start up Prolog without loading your ‘prolog.ini’ file.

2.3 Running Programs

2.3.1 Overview

This section discusses certain features of Quintus Prolog that you will find helpful to know
about when you run your programs.

28 Quintus Prolog

2.3.2 Interrupting the Execution of a Program

You can interrupt the execution of a Prolog program at any time by typing ^c (^c^c under
GNU Emacs). For example, if you submit a query to Prolog and then decide you want to
stop (abort) the query, type ^c to which Prolog will respond by displaying the message

Prolog interruption (h for help)?

At this point, you can either type h to see a list of the options available to you, as shown
below, or you can simply type the letter that corresponds to the option you want to select.

If you type h, Prolog displays the following list of options:

Prolog interrupt options:
h help - this list
c continue - do nothing
d debug - debugger will start leaping
t trace - debugger will start creeping
a abort - abort to the current break level
q really abort - abort to the top level
e exit - exit from Prolog

Prolog interruption (h for help)?

To select an option, type the letter that corresponds to that option and press 〈RET〉. For
example, to stop the execution of the current query, type a followed by 〈RET〉. Prolog will
print

! Execution aborted

and then return to its top level, displaying the main Prolog prompt.

Typing c causes the current procedure to continue executing as if nothing had happened.
Typing t turns on the trace option of the debugger (see Section 6.1.5.1 [dbg-bas-con-tdz],
page 118). Typing d turns on the debug option of the debugger (see Section 6.1.1 [dbg-
bas-bas], page 113). Typing a causes the current query to be aborted and the main Prolog
prompt to be redisplayed, as shown above. Typing e ends your Prolog session.

2.3.3 Errors, Warnings and Informational Messages

If your program calls a built-in predicate with arguments that are not appropriate for that
predicate, the system will display an error message. For example, if your program called
the goal

| ?- atom_chars(X,a).

you would get an error message like this

Chapter 2: User’s Guide 29

! Type error in argument 2 of atom_chars/2
! list expected, but a found
! goal: atom_chars(_2016,a)

since atom_chars/2 expects a list of characters (or a variable) as its second argument. The
‘!’ prefix to each line signifies that this is an error. The other prefixes that are used are ‘*’
for warnings and ‘%’ for informational messages.

When an error occurs, your program is abandoned and you are returned to the top level.
There is an exception handling mechanism, which can be used to prevent this in specified
parts of your program. See Section 8.19.3 [ref-ere-hex], page 312 for more information.

A warning is less serious than an error; it indicates that something might be wrong. It may
save you debugging time later to check it right away.

Informational messages are just messages to let you know what the system is doing.

All these messages can be customized if you wish. See Section 8.20 [ref-msg], page 325 for
how to do this.

2.3.4 Undefined Predicates

By default, calling an undefined predicate is considered to be an error unless that predicate
is known to be dynamic (see Section 2.3.6 [bas-run-dpr], page 30 for an explanation of
dynamic predicates). For example,

| ?- f(x).

! Existence error in f/1
! procedure user:f/1 does not exist
! goal: f(x)

You can change this behavior to make undefined predicates fail quietly by means of the
built-in predicate unknown/2. There is also a facility, which allows you to have a predicate
of your own called whenever an undefined predicate is called: see unknown_predicate_
handler/3.

2.3.5 Executing Commands from Prolog

The built-in predicate unix/1 enables you to execute system commands from within the
Prolog environment. With some limitations it works also under Windows.

Under UNIX only, to access a shell (an interactive command interpreter) from within Prolog,
call

| ?- unix(shell).

30 Quintus Prolog

This command puts you within a command interpreter, from which you can execute any
commands you would normally type at a command prompt. To return to Prolog, either
type your end-of-file character (default: ^d), or else type exit.

Alternatively, on both UNIX and Windows, you can access the shell and execute a command
all at once:

| ?- unix(shell(Command)).

where Command is a Prolog atom representing the command you want to execute. For
example, to obtain a listing of the files in your UNIX working directory:

| ?- unix(shell(ls)).

The same example under Windows would be

| ?- unix(shell(dir)).

Under UNIX, ‘unix(shell).’ and ‘unix(shell(Command)).’ use the command interpreter
defined in your SHELL environment variable. If you want sh(1) instead, use ‘unix(system)’
or ‘unix(system(Command)).’

A special case is made for the common command to change your working directory. To do
so, call unix(cd(Directory)), where Directory is a Prolog atom naming the directory to
change to. For example, to change to a directory named ‘/ufs/albert’, you could type:

| ?- unix(cd(’/ufs/albert’)).

Notes:

1. The Prolog atom for the directory name ‘/ufs/albert’ is surrounded by single quotes
because it contains non-alphanumeric characters.

2. Under Windows, you can use either backward ‘\’ or forward slash ‘/’.
3. This command only affects the current directory while in Prolog; after exiting Prolog,

you will be in the directory from which Prolog was invoked.

The command unix(cd)} changes to your home directory.

For further information see Section 8.18 [ref-aos], page 307 and the reference page for
unix/1.

2.3.6 Dynamic Predicates

All predicates in Prolog fall into one of two categories: static or dynamic. Dynamic pred-
icates can be modified when a program is running; in contrast, static predicates can be
modified only by reloading or by abolish/[1,2].

Chapter 2: User’s Guide 31

If a predicate is first defined by being loaded from a file, it is static by default. Sometimes,
however, it is necessary to add (assert), remove (retract), or inspect (using clause/[2,3])
clauses for a predicate while a program is running. In order to do that, you must declare
the predicate to be dynamic. A predicate can be made dynamic by specifically declaring
it to be so, as described below, or by using one of the assertion predicates. For a list of
the assertion predicates, and for more information on using them, refer to Section 8.14.2
[ref-mdb-dsp], page 287.

To make a predicate dynamic, you insert in the file containing the predicate a line, which
declares the predicate to be dynamic. The format of the line is

:- dynamic name/arity.

So, for example, the following declarations make the named predicates dynamic.

:- dynamic exchange_rate/3, spouse_of/2, gravitational_constant/1.

Notes:

1. The ‘:- ’ symbol must appear at the beginning of any line with a dynamic declaration,
as shown above.

2. Dynamic declarations can only appear in files; dynamic/1 cannot be called as a predi-
cate.

3. The line that declares a predicate to be dynamic must occur before any definition of
the predicate itself in the file.

2.3.7 Prompts

The prompt ‘|: ’ is displayed instead of the ‘| ?- ’ prompt if your program requires input
from the terminal. The built-in predicate prompt/2 can be used to change the form of this
prompt.

If you are typing a term at any Prolog prompt, and your input is longer than one line, all
lines after the first one are indented five spaces. Sometimes this arises unexpectedly because
of a typing error. For example, if you type

| ?- f(’ABC).

_

you will see your cursor positioned where the underscore character appears here. This
signifies that you have not completed the input of a term: in this case there was no closing
quote. To get back to the top level prompt type a closing quote followed by a period and a
〈RET〉. This will give a syntax error after which you can type the correct goal.

32 Quintus Prolog

2.4 Limits in Quintus Prolog

This section describes the limits pertaining to atoms, functors, predicates, and other struc-
tures in Quintus Prolog.

Atoms cannot have more than 65532 characters.

Functors and predicates cannot have arities greater than 255.

There are no limits (apart from memory space) on the number of procedures or clauses
allowed.

Prolog floating point numbers have 64 bit precision and conform to the IEEE 754 standard.
The range of Prolog integers is -2147483648 (-2^31) to 2147483647 (2^31-1), both inclusive.

The size of a compiled clause is limited to 2^15 (32,768) bytes of compiled code.

There are internal limits on the size of compiled clauses, which are difficult to relate to
properties visible to the user. These are 512 “temporary variables” (which only occur in
the head goal), and 255 “permanent variables” (non-temporaries, which occur in goals in
the body). The compiler will generate warnings if these limits are exceeded. There is no
limit on the number of “symbols” (variables, atoms, numbers, or functors) in a compiled
clause.

There are no restrictions on the number of variables or symbols in dynamic or interpreted
clauses.

Prolog itself has no limit on the number of input/output streams that can be open at
any one time. But the underlying Operating System might. For instance, some default
configurations of UNIX might allow only 64 streams to be open at one time. Three of these
streams are reserved for standard input, standard output, and error output respectively.
These three streams are always open. Standard input and output normally refer to your
terminal, but can be redirected from outside Prolog by means of operating system facilities.
The error stream nearly always refers to the terminal, but can also be redirected.

Virtual memory for Prolog’s data areas must come from the low 1 gigabyte of virtual
memory. The maximum size of Prolog’s data areas is also 1 gigabyte. Prolog expands
its data areas as necessary. These areas can be contracted again by calling the built-in
predicate trimcore/0. This predicate is automatically called on completion of every goal
typed at the top level.

2.5 Writing Efficient Programs

Chapter 2: User’s Guide 33

2.5.1 Overview

This section gives a number of tips on how to organize your programs for increased efficiency.
A lot of clarity and efficiency is gained by sticking to a few basic rules. This list is necessarily
very incomplete. The reader is referred to textbooks such as The Craft of Prolog by Richard
O’Keefe, MIT Press, 1990, a thorough exposition of the elements of Prolog programming
style and techniques.

• Don’t write code in the first place if there is a library predicate that will do the job.
• Write clauses representing base case before clauses representing recursive cases.
• Input arguments before output arguments in clause heads and goals.
• Use pure data structures instead of database changes.
• Use cuts sparingly, and only at proper places. A cut should be placed at the exact

point that it is known that the current choice is the correct one: no sooner, no later.
• Make cuts as local in their effect as possible. If a predicate is intended to be determinate,

define it as such; do not rely on its callers to prevent unintended backtracking.
• Binding output arguments before a cut is a common source of programming errors, so

don’t do it.
• Replace cuts by if-then-else constructs if the test is simple enough.
• Use disjunctions sparingly, always put parentheses around them, never put parentheses

around the individual disjuncts, and never put the ‘;’ at the end of a line.
• Write the clauses of a predicate so that they discriminate on the principal functor of

the first argument (see below). For maximum efficiency, avoid “defaulty” programming
(“catch-all” clauses).

• Don’t use lists ([...]), “round lists” ((...)), or braces ({...}) to represent compound
terms, or “tuples”, of some fixed arity. The name of a compound term comes for free.

2.5.2 The Cut

2.5.2.1 Overview

One of the more difficult things to master when learning Prolog is the proper use of the cut.
Often, when beginners find unexpected backtracking occurring in their programs, they try
to prevent it by inserting cuts in a rather random fashion. This makes the programs harder
to understand and sometimes stops them from working.

During program development, each predicate in a program should be considered indepen-
dently to determine whether or not it should be able to succeed more than once. In most
applications, many predicates should at most, succeed only once; that is, they should be
determinate. Having decided that a predicate should be determinate, it should be verified
that, in fact, it is. The debugger can help in verifying that a predicate is determinate (see
Section 6.1.3 [dbg-bas-upe], page 115).

34 Quintus Prolog

2.5.2.2 Making Predicates Determinate

Consider the following predicate, which calculates the factorial of a number:

fac(0, 1).
fac(N, X) :-

N1 is N - 1,
fac(N1, Y),
X is N * Y.

The factorial of 5 can be found by typing

| ?- fac(5, X).

X = 120

However, backtracking into the above predicate by typing a semicolon at this point, causes
an infinite loop because the system starts attempting to satisfy the goals ‘fac(-1, X).’,
‘fac(-2, X).’, etc. The problem is that there are two clauses that match the goal ‘fac(0,
F).’, but the effect of the second clause on backtracking has not been taken into account.
There are at least three possible ways of fixing this:

1. Efficient solution: rewrite the first clause as
fac(0,1) :- !.

Adding the cut essentially makes the first solution the only one for the factorial of 0
and hence solves the immediate problem. This solution is space-efficient because as
soon as Prolog encounters the cut, it knows that the predicate is determinate. Thus,
when it tries the second clause, it can throw away the information it would otherwise
need in order to backtrack to this point. Unfortunately, if this solution is implemented,
typing fac(-1, X) still generates an infinite search.

2. Robust solution: rewrite the second clause as
fac(N, X) :-

N > 0,
N1 is N - 1,
fac(N1, Y),
X is N * Y.

This also solves the problem, but it is a more robust solution because this way it is
impossible to get into an infinite loop.
This solution makes the predicate logically determinate — there is only one possible
clause for any input — but the Prolog system is unable to detect this and must waste
space for backtracking information. The space-efficiency point is more important than
it may at first seem; if fac/2 is called from another determinate predicate, and if the
cut is omitted, Prolog cannot detect the fact that fac/2 is determinate. Therefore,
it will not be able to detect the fact that the calling predicate is determinate, and
space will be wasted for the calling predicate as well as for fac/2 itself. This argument

Chapter 2: User’s Guide 35

applies again if the calling predicate is itself called by a determinate predicate, and so
on, so that the cost of an omitted cut can be very high in certain circumstances.

3. Preferred solution: rewrite the entire predicate as the single clause
fac(N, X) :-

(N > 0 ->
N1 is N - 1,
fac(N1, Y),
X is N * Y

; N =:= 0 ->
X = 1

).

This solution is as robust as solution 2, and more efficient than solution 1, since it
exploits conditionals with arithmetic tests (see Section 8.2.7 [ref-sem-con], page 186,
and Section 2.5.8 [bas-eff-cdi], page 49, for more information on optimization using
conditionals).

2.5.2.3 Placement of Cuts

Programs can often be made more readable by the placing of cuts as early as possible in
clauses. For example, consider the predicate p/0 defined by

p :- a, b, !, c, d.
p :- e, f.

Suppose that b/0 is a test that determines which clause of p/0 applies; a/0 may or may
not be a test, but c/0 and d/0 are not supposed to fail under any circumstances. A cut
is most appropriately placed after the call to b/0. If in fact a/0 is the test and b/0 is not
supposed to fail, then it would be much clearer to move the cut before the call to b/0.

A tool to aid in determinacy checking is included in the ‘tools’ directory. It is described
in depth in Section 2.5.5 [bas-eff-det], page 39.

2.5.2.4 Terminating a Backtracking Loop

Cut is also commonly used in conjunction with the generate-and-test programming
paradigm. For example, consider the predicate find_solution/1 defined by

find_solution(X) :-
candidate_solution(X),
test_solution(X),
!.

where candidate_solution/1 generates possible answers on backtracking. The intent is
to stop generating candidates as soon as one is found that satisfies test_solution/1. If

36 Quintus Prolog

the cut were omitted, a future failure could cause backtracking into this clause and restart
the generation of candidate solutions. A similar example is shown below:

process_file(F) :-
see(F),
repeat,

read(X),
process_and_fail(X),

!,
seen.

process_and_fail(end_of_file) :- !.
process_and_fail(X) :-

process(X),
fail.

The cut in process_file/1 is another example of terminating a generate-and-test loop. In
general, a cut should always be placed after a repeat/0 so that the backtracking loop is
clearly terminated. If the cut were omitted in this case, on later backtracking Prolog might
try to read another term after the end of the file had been reached.

The cut in process_and_fail/1 might be considered unnecessary because, assuming the
call shown is the only call to it, the cut in process_file/1 ensures that backtracking into
process_and_fail/1 can never happen. While this is true, it is also a good safeguard to
include a cut in process_and_fail/1 because someone may unwittingly change process_
file/1 in the future.

2.5.3 Indexing

2.5.3.1 Overview

In Quintus Prolog, predicates are indexed on their first arguments. This means that when
a predicate is called with an instantiated first argument, a hash table is used to gain fast
access to only those clauses having a first argument with the same primary functor as the
one in the predicate call. If the first argument is atomic, only clauses with a matching first
argument are accessed. Indexes are maintained automatically by the built-in predicates
manipulating the Prolog database (for example, assert/1, retract/1, and compile/1).

Keeping this feature in mind when writing programs can help speed their execution. Some
hints for program structuring that will best use the indexing facility are given below. Note
that dynamic predicates as well as static predicates are indexed. The programming hints
given in this section apply equally to static and dynamic code.

Chapter 2: User’s Guide 37

2.5.3.2 Data Tables

The major advantage of indexing is that it provides fast access to tables of data. For
example, a table of employee records might be represented as shown below in order to gain
fast access to the records by employee name:

% employee(LastName,FirstNames,Department,Salary,DateOfBirth)

employee(’Smith’, [’John’], sales, 20000, 1-1-59).
employee(’Jones’, [’Mary’], engineering, 30000, 5-28-56).
...

If fast access to the data via department is also desired, the data can be organized little
differently. The employee records can be indexed by some unique identifier, such as employee
number, and additional tables can be created to facilitate access to this table, as shown in
the example below. For example,

% employee(Id,LastName,FirstNames,Department,Salary,DateOfBirth)

employee(1000000, ’Smith’, [’John’], sales, 20000, 1-1-59).
employee(1000020, ’Jones’, [’Mary’], engineering, 30000, 5-28-56).
...

% employee_name(LastName,EmpId)

employee_name(’Smith’, 1000000).
employee_name(’Jones’, 1000020).
...

% department_member(Department,EmpId)

department_member(sales, 1000000).
department_member(engineering, 1000020).
...

Indexing would now allow fast access to the records of every employee named Smith, and
these could then be backtracked through looking for John Smith. For example:

| ?- employee_name(’Smith’, Id),

employee(Id, ’Smith’, [’John’], Dept, Sal, DoB).

Similarly, all the members of the engineering department born since 1965 could be efficiently
found like this:

| ?- department_member(engineering, Id),

employee(Id, LN, FN, engineering, _, M-D-Y),

Y > 65.

38 Quintus Prolog

2.5.3.3 Determinacy Detection

The other advantage of indexing is that it often makes possible early detection of deter-
minacy, even if cuts are not included in the program. For example, consider the following
simple predicate, which joins two lists together:

concat([], L, L).
concat([X|L1], L2, [X|L3]) :- concat(L1, L2, L3).

If this predicate is called with an instantiated first argument, the first argument indexing
of Quintus Prolog will recognize that the call is determinate — only one of the two clauses
for concat/3 can possibly apply. Thus, the Prolog system knows it does not have to store
backtracking information for the call. This significantly reduces memory use and execution
time.

Determinacy detection can also reduce the number of cuts in predicates. In the above
example, if there was no indexing, a cut would not strictly be needed in the first clause as
long as the predicate was always to be called with the first argument instantiated. If the
first clause matched, then the second clause could not possibly match; discovery of this fact,
however, would be postponed until backtracking. The programmer might thus be tempted
to use a cut in the first clause to signal determinacy and recover space for backtracking
information as early as possible.

With indexing, if the example predicate is always called with its first argument instantiated,
backtracking information is never stored. This gives substantial performance improvements
over using a cut rather than indexing to force determinacy. At the same time greater
flexibility is maintained: the predicate can now be used in a nondeterminate fashion as
well, as in

| ?- concat(L1, L2, [a,b,c,d]).

which will generate on backtracking all the possible partitions of the list [a,b,c,d] on back-
tracking. If a cut had been used in the first clause, this would not work.

2.5.4 Last Clause Determinacy Detection

Even if the determinacy detection made possible by indexing (see Section 2.5.3.3 [bas-eff-ind-
det], page 38) is unavailable to a predicate call, Quintus Prolog still can detect determinacy
before determinate exit from the predicate. Space for backtracking information can thus be
recovered as early as possible, reducing memory requirements and increasing performance.
For instance, the predicate member/2 (found in the Quintus Prolog library) could be defined
by:

member(Element, [Element|_]).
member(Element, [_|Rest]) :-

member(Element, Rest).

Chapter 2: User’s Guide 39

member/2 might be called with an instantiated first argument in order to check for mem-
bership of the argument in a list, which is passed as a second argument, as in

| ?- member(4, [1,2,3,4]).

The first arguments of both clauses of member/2 are variables, so first argument indexing
cannot be used. However, determinacy can still be detected before determinate exit from
the predicate. This is because on entry to the last clause of a nondeterminate predicate, a
call becomes effectively determinate; it can tell that it has no more clauses to backtrack to.
Thus, backtracking information is no longer needed, and its space can be reclaimed. In the
example, each time a call fails to match the first clause and backtracks to the second (last)
clause, backtracking information for the call is automatically deleted.

Because of last clause determinacy detection, a cut is never needed as the first subgoal in
the last clause of a predicate. Backtracking information will have been deleted before a cut
in the last clause is executed, so the cut will have no effect except to waste time.

Note that last clause determinacy detection is exploited by dynamic code as well as static
code in Quintus Prolog.

2.5.5 The Quintus Determinacy Checker

The Quintus determinacy checker can help you spot unwanted nondeterminacy in your
programs. This tool examines your program source code and points out places where
nondeterminacy may arise. It is not in general possible to find exactly which parts of a
program will be nondeterminate without actually running the program, but this tool can
find most unwanted nondeterminacy. Unintended nondeterminacy should be eradicated
because

1. it may give you wrong answers on backtracking
2. it may cause a lot of memory to be wasted

2.5.5.1 Using the Determinacy Checker

There are two different ways to use the determinacy checker, either as a stand-alone tool, or
during compilation. You may use it whichever way fits best with the way you work. Either
way, it will discover the same nondeterminacy in your program.

The stand-alone determinacy checker is called qpdet, and is run from the shell prompt,
specifying the names of the Prolog source files you wish to check. You may omit the ‘.pl’
suffix if you like.

% qpdet [-r [-d] [-D] [-i ifile] fspec...]

40 Quintus Prolog

The qpdet program is placed in the Quintus ‘tools’ directory, and is not built by default
when Prolog is installed, so you may have to build it (by typing make qpdet in the ‘tools’
directory) first. The tool takes a number of options:

‘-r’ Process files recursively, fully checking the specified files and all the files they
load.

‘-d’ Print out declarations that should be added.

‘-D’ Print out all needed declarations.

‘-i ifile’ An initialization file, which is loaded before processing begins.

The determinacy checker can also be integrated into the compilation process, so that you
receive warnings about unwanted nondeterminacy along with warnings about singleton vari-
ables or discontinuous clauses. To make this happen, simply insert the line

:- load_files(library(detcheck),
[when(compile_time), if(changed)]).

Once this line is added, every time that file is compiled, whether using qpc or the compiler
in the development system, it will be checked for unwanted nondeterminacy.

2.5.5.2 Declaring Nondeterminacy

Some predicates are intended to be nondeterminate. By declaring intended nondeterminacy,
you avoid warnings about predicates you intend to be nondeterminate. Equally importantly,
you also inform the determinacy checker about nondeterminate predicates. It uses this
information to identify unwanted nondeterminacy.

Nondeterminacy is declared by putting a declaration of the form

:- nondet name/arity.

in your source file. This is similar to a dynamic or discontiguous declaration. You may have
multiple nondet declarations, and a single declaration may mention several predicates,
separating them by commas.

Similarly, a predicate P/N may be classified as nondeterminate by the checker, whereas in
reality it is determinate. This may happen e.g. if P/N calls a dynamic predicate that in
reality never has more than one clause. To prevent false alarms asiring from this, you can
inform the checker about determinate predicates by declarations of the form:

:- det name/arity.

If you wish to include det and nondet declarations in your file and you plan to use the
stand-alone determinacy checker, you must include the line

:- load_files(library(nondetdecl),
[when(compile_time), if(changed)]).

Chapter 2: User’s Guide 41

near the top of each file that contains such declarations. If you use the integrated determi-
nacy checker, you do not need (and should not have) this line.

2.5.5.3 Checker Output

The output of the determinacy checker is quite simple. For each clause containing unex-
pected nondeterminacy, a single line is printed showing the module, name, arity, and clause
number (counting from 1). The form of the information is:

* Non-determinate: module:name/arity (clause number)

A second line for each nondeterminate clause indicates the cause of the nondeterminacy.
The recognized causes are:

• The clause contains a disjunction that is not forced to be determinate with a cut or by
ending the clause with a call to fail/0 or raise_exception/1.

• The clause calls a nondeterminate predicate. In this case the predicate is named.
• There is a later clause for the same predicate whose first argument has the same prin-

cipal functor (or one of the two clauses has a variable for the first argument), and this
clause does not contain a cut or end with a call to fail/0 or raise_exception/1. In
this case, the clause number of the other clause is mentioned.

• If the predicate is multifile, clause indexing is not considered sufficient to ensure deter-
minacy. This is because other clauses may be added to the predicate in other files, so
the determinacy checker cannot be sure it has seen all the clauses for the predicate. It
is good practice to include a cut (or fail) in every clause of a multifile predicate.

The determinacy checker also occasionally prints warnings when declarations are made
too late in the file or not at all. For example, if you include a dynamic, nondet, or
discontiguous declaration for a predicate after some clauses for that predicate, or if you
put a dynamic or nondet declaration for a predicate after a clause that includes a call to
that predicate, the determinacy checker may have missed some nondeterminacy in your
program. The checker also detects undeclared discontiguous predicates, which may also
have undetected nondeterminacy. Finally, the checker looks for goals in your program that
indicate that predicates are dynamic; if no dynamic declaration for those predicates, you
will be warned.

These warnings take the following form:

! warning: predicate module:name/arity is property.
! Some nondeterminacy may have been missed.
! Add (or move) the directive~n
! :- property module:name/arity.
! near the top of this file.

42 Quintus Prolog

2.5.5.4 Example

Here is an example file:

:- load_files(library(detcheck),
[when(compile_time), if(changed)]).

parent(abe, rob).
parent(abe, sam).
parent(betty, rob).
parent(betty, sam).

is_parent(Parent) :- parent(Parent, _).

The determinacy checker notices that the first arguments of clauses 1 and 2 have the same
principal functor, and similarly for clauses 3 and 4. It reports:

* Non-determinate: user:parent/2 (clause 1)
* Indexing cannot distinguish this from clause 2.
* Non-determinate: user:parent/2 (clause 3)
* Indexing cannot distinguish this from clause 4.

In fact, parent/2 should be nondeterminate, so we should add the declaration

:- nondet parent/2.

before the clauses for parent/2. If run again after modifying file, the determinacy checker
prints:

* Non-determinate: user:is_parent/1 (clause 1)
* This clause calls user:parent/2, which may be nondeterminate.

It no longer complains about parent/2 being nondeterminate, since this is declared. But
now it notices that because parent/2 is nondeterminate, then so is is_parent/1.

2.5.5.5 Options

When run from the command line, the determinacy checker has a few options to control its
workings.

The ‘-r’ option specifies that the checker should recursively check files in such a way that
it finds nondeterminacy caused by calls to other nondeterminate predicates, whether they
are declared so or not. Also, predicates that appear to determinate will be treated as such,
whether declared nondet or not. This option is quite useful when first running the checker
on a file, as it will find all predicates that should be either made determinate or declared
nondet at once. Without this option, each time a nondet declaration is added, the checker
may find previously unnoticed nondeterminacy.

Chapter 2: User’s Guide 43

For example, if the original example above, without any nondet declarations, were checked
with the ‘-r’ option, the output would be:

* Non-determinate: user:parent/2 (clause 1)
* Indexing cannot distinguish this from clause 2.
* Non-determinate: user:parent/2 (clause 3)
* Indexing cannot distinguish this from clause 4.
* Non-determinate: user:is_parent/1 (clause 1)
* Calls nondet predicate user:parent/2.

The ‘-d’ option causes the tool to print out the needed nondet declarations. These can be
readily pasted into the source files. Note that it only prints the nondet declarations that
are not already present in the files. However, these declarations should not be pasted into
your code without each one first being checked to see if the reported nondeterminacy is
intended.

The ‘-D’ option is like ‘-d’, except that it prints out all nondet declarations that should
appear, whether they are already in the file or not. This is useful if you prefer to replace
all old nondet declarations with new ones.

Your code will probably rely on operator declarations and possibly term expansion. The
determinacy checker handles this in much the same way as qpc(1): you must supply an
initialization file, using the ‘-i ifile’ option.

2.5.5.6 What is Detected

As mentioned earlier, it is not in general possible to find exactly which places in a pro-
gram will lead to nondeterminacy. The determinacy checker gives predicates the benefit
of the doubt: when it’s possible that a predicate will be determinate, it will not be re-
ported. The checker will only report places in your program that will be nondeterminate
regardless of which arguments are bound. Despite this, the checker catches most unwanted
nondeterminacy in practice.

The determinacy checker looks for the following sources of nondeterminacy:

• multiple clauses that can’t be distinguished by the principal functor of the first ar-
guments, and are not made determinate with an explicit cut, fail/0, false/0, or
raise_exception/1. First argument indexing is not considered for multifile predi-
cates, because another file may have a clause for this predicate with the same principal
functor of its first argument.

• a clause with a disjunction not forced to be determinate by a cut, fail/0, false/0,
or raise_exception/1 in each arm of the disjunction but the last, or where the whole
disjunction is followed by a cut, fail/0, false/0, or raise_exception/1.

• a clause that calls something known to be nondeterminate, other than when it is fol-
lowed by a cut, fail/0, false/0, or raise_exception/1, or where it appears in the
condition of an if-then-else construct. Known nondeterminate predicates include those

44 Quintus Prolog

declared nondeterminate or dynamic (since they can be modified, dynamic predicates
are assumed to be nondeterminate), plus the following built-in predicates:
− absolute_file_name/3, when the second argument is a list containing the term

solutions(all)

− bagof/3 , when the second argument contains any variables not appearing earlier
in the clause (including the clause head).

− clause/[2,3]

− current_op/3, when any argument contains any variables not appearing earlier
in the clause (including the clause head).

− current_key/2, when the second argument contains any variables not appearing
earlier in the clause (including the clause head).

− current_predicate/2, when the second argument contains any variables not ap-
pearing earlier in the clause (including the clause head).

− length/2, when both arguments are variables not appearing earlier in the clause
(including the clause head).

− predicate_property/2, when either argument contains any variables not appear-
ing earlier in the clause (including the clause head).

− recorded/3

− repeat/0

− retract/1

− setof/3, when the second argument contains any variables not appearing earlier
in the clause (including the clause head).

− source_file/[1,2,3] when the last argument contains any variables not appear-
ing earlier in the clause (including the clause head).

2.5.6 Last Call Optimization

Another important efficiency feature of Quintus Prolog is last call optimization. This is a
space optimization technique, which applies when a predicate is determinate at the point
where it is about to call the last goal in the body of a clause. For example,

% for(Int, Lower, Upper)
% Lower and Upper should be integers such that Lower =< Upper.
% Int should be uninstantiated; it will be bound successively on
% backtracking to Lower, Lower+1, ... Upper.

for(Int, Int, _Upper).
for(Int, Lower, Upper) :-

Lower < Upper,
Next is Lower + 1,
for(Int, Next, Upper).

This predicate is determinate at the point where the recursive call is about to be made,
since this is the last clause and the preceding goals (</2 and is/2) are determinate. Thus

Chapter 2: User’s Guide 45

last call optimization can be applied; effectively, the stack space being used for the current
predicate call is reclaimed before the recursive call is made. This means that this predicate
uses only a constant amount of space, no matter how deep the recursion.

2.5.6.1 Accumulating Parameters

To take best advantage of this feature, make sure that goals in recursive predicates are
determinate, and whenever possible put the recursive call at the end of the predicate.

This isn’t always possible, but often can be done through the use of accumulating param-
eters. An accumulating parameter is an added argument to a predicate that builds up the
result as computation proceeds. For example, in our factorial example (see Section 2.5.2.2
[bas-eff-cut-mpd], page 34), the last goal in the body of the recursive case is is/2, not the
recursive call to fac/2.

fac(N, X) :-
(N > 0 ->

N1 is N - 1,
fac(N1, Y),
X is N * Y

; N =:= 0 ->
X = 1

).

This can be corrected by adding another argument to fac/2 to accumulate the factorial.

fac(N, X) :- fac(N, 1, X).

% fac(+N, +M, -X)
% X is M * the factorial of N.

fac(N, M, X) :-
(N > 0 ->

N1 is N - 1,
M1 is N * M,
fac(N1, M1, X)

; N =:= 0 ->
X = M

).

Here we do the multiplication before calling fac/3 recursively. Note that we supply the
base case, 1, at the start of the computation, and that we are multiplying by decreasing
numbers. In the earlier version, fac/2, we multiply after the recursive call, and so we
multiply by increasing numbers. Effectively, the new version builds the result backwards.
This is correct because multiplication is associative.

46 Quintus Prolog

2.5.6.2 Accumulating Lists

This technique becomes much more important when extended to lists, as in this case it can
save much building of unneeded lists through unnecessary calls to append sublists together.
For example, the naive way to reverse a list is:

nreverse([], []).
nreverse([H|T], L) :-

nreverse(T, L1),
append(L1, [H], L).

This is very wasteful, since each call to append/3 copies the initial part of the list, and adds
one element to it. Fortunately, this can be very easily rewritten to use an accumulating
parameter:

reverse(L1, L2) :- reverse(L1, [], L2).

% reverse(+X, +Y, -Z)
% Z is X reversed, followed by Y
reverse([], Z, Z).
reverse([H|T], L0, L) :-

reverse(T, [H|L0], L).

This version of reverse is many times faster than the naive version, and uses much less
memory. The key to understanding the behavior of this predicate is the observation made
earlier: using an accumulating parameter, we build the result backwards.

Don’t let this confuse you. Building a list forward is easy. For example, a predicate that
returns a list L of consecutive numbers from 1 to N could be written in two different ways:
counting up and collecting the resulting list forward, or counting down and accumulating
the result backward.

iota1(N, L) :- iota1(1, N, L).

iota1(N, Max, L) :-
(N > Max ->

L = []
; N1 is N+1,

L = [N|L1],
iota1(N1, Max, L1)

).

or,

Chapter 2: User’s Guide 47

iota2(N, L) :- iota2(N, [], L).

iota2(N, L0, L) :-
(N =< 0 ->

L = L0
; N1 is N-1,

iota2(N1, [N|L0], L)
).

Both versions generate the same results, and neither waste any space. The second version
is slightly faster. Choose whichever approach you prefer.

2.5.7 Building and Dismantling Terms

The built-in predicate =../2 is a clear way of building terms and taking them apart. How-
ever, it is almost never the most efficient way. functor/3 and arg/3 are generally much
more efficient, though less direct. The best blend of efficiency and clarity is to write a
clearly-named predicate that implements the desired operation and to use functor/3 and
arg/3 in that predicate.

Here is an actual example. The task is to reimplement the built-in predicate ==/2. The
first variant uses =../2 (this symbol is pronounced “univ” for historical reasons). Some
Prolog textbooks recommend code similar to this.

ident_univ(X, Y) :-
var(X), % If X is a variable,
!,
var(Y), % so must Y be, and
samevar(X, Y). % they must be the same.

ident_univ(X, Y) :- % If X is not a variable,
nonvar(Y), % neither may Y be;
X =.. [F|L], % they must have the
Y =.. [F|M], % same function symbol F
ident_list(L, M). % and identical arguments

ident_list([], []).
ident_list([H1|T1], [H2|T2]) :-

ident_univ(H1, H2),
ident_list(T1, T2).

samevar(29, Y) :- % If binding X to 29
var(Y), % leaves Y unbound,
!, % they were not the same
fail. % variable.

samevar(_, _). % Otherwise they were.

48 Quintus Prolog

This code performs the function intended; however, every time it touches a non-variable
term of arity N, it constructs a list with N+1 elements, and if the two terms are identical,
these lists are reclaimed only when backtracked over or garbage-collected.

Better code uses functor/3 and arg/3.

ident_farg(X, Y) :-
(var(X) -> % If X is a variable,

var(Y), % so must Y be, and
samevar(X, Y) % they must be the same;

; nonvar(Y), % otherwise Y must be nonvar
functor(X, F, N), % The principal functors of X
functor(Y, F, N), % and Y must be identical,
ident_farg(N, X, Y) % including the last N args.

).

ident_farg(0, _, _) :- !.
ident_farg(N, X, Y) :- % The last N arguments are

arg(N, X, Xn), % identical
arg(N, Y, Yn), % if the Nth arguments
ident_farg(Xn, Yn), % are identical,
M is N-1, % and the last N-1 arguments
ident_farg(M, X, Y). % are also identical.

This approach to walking through terms using functor/3 and arg/3 avoids the construction
of useless lists.

The pattern shown in the example, in which a predicate of arity K calls an auxiliary predi-
cate of the same name of arity K+1 (the additional argument denoting the number of items
remaining to process), is very common. It is not necessary to use the same name for this
auxiliary predicate, but this convention is generally less prone to confusion.

In order to simply find out the principal function symbol of a term, use

| ?- the_term_is(Term),

| functor(Term, FunctionSymbol, _).

The use of =../2, as in

| ?- the_term_is(Term),

| Term =.. [FunctionSymbol|_].

is wasteful, and should generally be avoided. The same remark applies if the arity of a term
is desired.

=../2 should not be used to locate a particular argument of some term. For example,
instead of

Term =.. [_F,_,ArgTwo|_]

Chapter 2: User’s Guide 49

you should write

arg(2, Term, ArgTwo)

It is generally easier to get the explicit number “2” right than to write the correct number
of “don’t care” variables in the call to =../2. Other people reading the program will find
the call to arg/3 a much clearer expression of the program’s intent. The program will also
be more efficient. Even if several arguments of a term must be located, it is clearer and
more efficient to write

arg(1, Term, First),
arg(3, Term, Third),
arg(4, Term, Fourth)

than to write

Term =.. [_,First,_,Third,Fourth|_]

Finally, =../2 should not be used when the functor of the term to be operated on is known
(that is, when both the function symbol and the arity are known). For example, to make
a new term with the same function symbol and first arguments as another term, but one
additional argument, the obvious solution might seem to be to write something like the
following:

add_date(OldItem, Date, NewItem) :-
OldItem =.. [item,Type,Ship,Serial],
NewItem =.. [item,Type,Ship,Serial,Date].

However, this could be expressed more clearly and more efficiently as

add_date(OldItem, Date, NewItem) :-
OldItem = item(Type,Ship,Serial),
NewItem = item(Type,Ship,Serial,Date).

or even

add_date(item(Type,Ship,Serial),
Date,
item(Type,Ship,Serial,Date)
).

2.5.8 Conditionals and Disjunction

There is an efficiency advantage in using conditionals whose test part consists only of arith-
metic comparisons or type tests. Consider the following alternative definitions of the predi-
cate type_of_character/2. In the first definition, four clauses are used to group characters
on the basis of arithmetic comparisons.

50 Quintus Prolog

type_of_character(Ch, Type) :-
Ch >= "a", Ch =< "z",
!,
Type = lowercase.

type_of_character(Ch, Type) :-
Ch >= "A", Ch =< "Z",
!,
Type = uppercase.

type_of_character(Ch, Type) :-
Ch >= "0", Ch =< "9",
!,
Type = digit.

type_of_character(_Ch, Type) :-
Type = other.

In the second definition, a single clause with a conditional is used. The compiler generates
optimized code for the conditional; the second version of type_of_character/2 runs faster
than the first and uses less memory.

type_of_character(Ch, Type) :-
(Ch >= "a", Ch =< "z" ->

Type = lowercase
; Ch >= "A", Ch =< "Z" ->

Type = uppercase
; Ch >= "0", Ch =< "9" ->

Type = digit
; otherwise ->

Type = other
).

Following is a list of builtin predicates that are compiled efficiently in conditionals:

• atom/1

• atomic/1

• callable/1

• compound/1

• db_reference/1

• float/1

• integer/1

• nonvar/1

• number/1

• simple/1

• var/1

• </1

• =</1

Chapter 2: User’s Guide 51

• =:=/1

• =\=/1

• >=/1

• >/1

• @</1

• @=</1

• ==/1

• \==/1

• @>=/1

• @>/1

2.5.9 The Quintus Cross-Referencer

2.5.9.1 Introduction

The main purpose of the cross-referencer, qpxref, is to find undefined predicates and un-
reachable code. To this end, it begins by looking for initializations, hooks and public
directives to start tracing the reachable code from. If an entire application is being checked,
it also traces from user:runtime_entry/1. If individual module-files are being checked, it
also traces from their export lists.

A second function of qpxref is to aid in the formation of module statements. qpxref can
list all of the required module/2 and use_module/2 statements by file.

2.5.9.2 Basic Use

The cross-referencer is run from the shell prompt, specifying the names of the Prolog source
files you wish to check. You may omit the ‘.pl’ suffix if you like.

% qpxref [-R] [-v] [-c] [-i ifile] [-w wfile] [-x xfile] [-u ufile
] fspec ...

The qpxref program is placed in the Quintus ‘tools’ directory, and is not built by default
when Prolog is installed, so you may have to build it (by typing make qpxref in the ‘tools’
directory) first. The tool takes a number of options, as follows. File arguments should be
given as atoms or as ‘-’, denoting the standard output stream.

‘-R’ Check an application, i.e. follow user:runtime_entry/1, as opposed to module
declarations.

‘-c’ Generate standard compiler style error messages.

‘-v’ Verbose output. This echoes the names of the files being read.

52 Quintus Prolog

‘-i ifile’ An initialization file, which is loaded before processing begins.

‘-w wfile’ Warning file. Warnings are written to the standard error stream by default.

‘-x xfile’ Generate a cross-reference file. This is not generated by default.

‘-m mfile’ Generate a file indicating which predicates are imported and which are exported
for each file. This is not generated by default.

‘-u ufile’ Generate a file listing all the undefined predicates. This is not generated by
default.

2.5.9.3 Practice and Experience

Your code will probably rely on operator declarations and possibly term expansion. The
cross-referencer handles this in much the same way as qpc(1): you must supply an initial-
ization file, using the ‘-i ifile’ option.

Supply meta-predicate declarations for your meta-predicates. Otherwise, the cross-
referencer will not follow the meta-predicates’ arguments. Be sure the cross-referencer
encounters the meta-predicate declarations before it encounters calls to the declared predi-
cates.

The cross-referencer traces from initializations, hooks, predicates declared public, and
optionally from user:runtime_entry/1 and module declarations. The way it handles meta-
predicates requires that your application load its module-files before its non-module-files.

This cross-referencer was written in order to tear out the copious dead code from the
application that the author became responsible for. If you are doing such a thing, the
cross-referencer is an invaluable tool. Be sure to save the output from the first run that
you get from the cross referencer: this is very useful resource to help you find things that
you’ve accidentally ripped out and that you really needed after all.

There are situations where the cross-referencer does not follow certain predicates. This
can happen if the predicate name is constructed on the fly, or if it is retrieved from the
database. In this case, add public declarations for these. Alternatively, you could create
term expansions that are peculiar to the cross-referencer.

Chapter 3: The Quintus User Interface 53

3 The Quintus User Interface

3.1 Quintus User Interface

The Quintus User Interface (QUI) is a Motif-based window interface to the Quintus Pro-
log development system. It is not available in the Windows distribution. It includes the
following:

• Main Window: Query interpreter window with history menu
• Debug window: See Section 6.2 [dbg-sld], page 121
• Edit windows
• Interface to external editors, such as GNU Emacs
• Error dialogue windows
• Help window

All these windows facilitate rapid program development by making common Prolog com-
mands available using the mouse. For more information about Motif widgets such as the
file browser, see the “OSF/Motif Series” and other references cited in Section 1.1.4 [int-
man-bib], page 3.

3.1.1 Starting Up QUI

Before starting up QUI, you must be running an X-windows server process on the machine
upon which you want QUI windows to be displayed.

To access the QUI facilities, you must invoke a Quintus Prolog Development System ex-
ecutable that has the QUI libraries included in it. See the Quintus Prolog Development
System installation instructions for more details on how to install such an executable.

Assuming a Quintus Prolog Development System executable that includes QUI is installed
under the name qui, you invoke it by typing,

% qui

The QUI main window will be displayed on your screen. See the figure below.

To run QUI across local network on a machine called remote and have QUI displayed on a
machine called host, you should first issue the command

% xhost +remote

on the machine host, and do either of the following commands on the machine remote when
running under csh type,

54 Quintus Prolog

(1) % qui -display host:0.0

(2) % set environment variable DISPLAY to host:0.0
% qui

Apart from those X resources that you can specify in environment variables you can set X
resources in the various X resource database files that are referenced by this Motif applica-
tion. See Section 3.7 [qui-ciq], page 72 for more information.

3.1.2 Exiting QUI

To exit QUI, select the ‘Quit’ option from the ‘File’ menu. Alternatively, type halt.,
^D (^D is the end of file character), ^C (^C is the interrupt key) and exit option, or type
end_of_file. at the Prolog toplevel prompt ‘| ?-’ when you are not inside a break level.
In any of these cases, a dialogue window will pop-up asking for confirmation. Choosing the
Exit button in the dialogue window will exit QUI while choosing the Cancel button will
return to the ‘| ?-’ prompt.

Chapter 3: The Quintus User Interface 55

3.2 QUI Main Window

56 Quintus Prolog

The QUI Main Window

3.2.1 Main Window Menu Bar

3.2.1.1 File Pulldown

Edit. . . Begin editing a file. The editor will allow you to choose the file to edit. By
default, the QUI editor will be used, but you may choose another editor with
the QUINTUS_EDITOR_PATH environment variable, as explained in Section 3.4
[qui-ied], page 65. The QUI editor is described in Section 3.3 [qui-edi], page 59.

Load. . . Load a file using load_files/1. A Motif file selection dialog will be displayed
to allow you to specify the file to load. By default, this button is only enabled
when Prolog is at the toplevel prompt. It can be changed through the resource
file so that this button is disabled only when Prolog code is running enabling
you to reload code while you are debugging (see Section 3.7.2 [qui-ciq-cqr],
page 73).

Log –> Write all or part of the history to a file. Putting your mouse cursor near the
right end of this menu item will display a submenu with two choices: ‘Entire
Session...’ and ‘From Selection...’. ‘Entire Session...’ will log the en-
tire session to a file, while ‘From Selection...’ will only log the current selec-
tion. After selecting either of the options, a dialog will be presented in which
you can enter the name of the file in which to write the log. Note that you
can select a large range conveniently by selecting one end, scrolling to the other
end, and then selecting it while holding down either shift key.

Quit. . . Exit Prolog (and QUI). First, a dialogue is displayed asking if you are sure you
want to exit Prolog. If you indicate that you are sure, execution is halted and
all QUI windows are closed. You will be returned to the operating system shell
that invoked QUI.

3.2.1.2 Debug Pulldown

Trace (Creep Initially)
puts the debugger into trace mode

Debug (Leap Initially)
puts the debugger into leap mode

Zip (Zip Initially)
puts the debugger into zip mode

Nodebug turns off the debugger

Selecting one of the first three choices will open the debugger window (if it’s not already
open). Choosing Nodebug will close it. Note that the diamond to the left of one of these

Chapter 3: The Quintus User Interface 57

menu items will be darkened, indicating your current debugging mode. See Section 6.1.5.1
[dbg-bas-con-tdz], page 118 for an explanation of these modes.

3.2.1.3 Help Pulldown

See Section 3.6.1 [qui-hlp-hlp], page 69 for more information.

3.2.2 QUI Query History Menu

The query history menu contains all previously entered queries. Initially this menu is
empty. Only queries will appear in this menu, and not input submitted to general Prolog
I/O predicates. When you single click on an entry in the query history menu, that entry
will replace any text that has already been typed into the query interpreter sub-window.
When you double click on an entry, that entry will replace any text that has already been
typed into the query interpreter sub-window and the query will be submitted to Prolog. A
history menu entry will be compressed into a single line even if it consisted of multiple lines
when it was submitted.

3.2.3 QUI Query Interpreter Sub-Window

Motif caveat: When the main window originally appears, the insertion point
caret is not visible. To make it visible, click the left mouse button anywhere
after the Prolog prompt.

3.2.3.1 Prolog Output and Input

The output from Prolog (both stdout and stderr) is redirected to this window. As output
is being redirected to this window, the window is scrolled so that the insertion point is
always visible.

Input to Prolog is also received from this window. When Prolog is expecting to receive a
term (which also includes a query), the term will not be transmitted to Prolog until its full-
stop is followed by a newline. This allows you to edit previously typed lines in a multi-line
term before transmitting those lines to Prolog. When Prolog is expecting to receive input
that is not a term, a newline will immediately transmit the line just typed.

The text that appears before the current prompt is not editable. You cannot type characters
into this window while output is also being redirected into it.

58 Quintus Prolog

3.2.3.2 Key Bindings

The following key bindings have been added to the existing Motif text widget key bindings
in the query interpreter sub-window:

〈DEL〉 Deletes the character to the left of the insertion point.

^C Interrupts Prolog execution (see Section 3.2.4 [qui-mai-int], page 58 for more
information).

^D Deletes the next character. If there are no characters on the current line, then
an end of file signal is transmitted to Prolog.

^K Deletes all characters to the right of the insertion point on the current line.

^U Deletes all the characters to the left of the insertion point up to the Prolog
prompt on the current line.

^P Moves the insertion point to the previous line.

^N Moves the insertion point to the next line.

^A Moves the insertion point to the beginning of the current line.

^E Moves the insertion point to the end of the current line.

^B Moves the insertion point one character to the left.

^F Moves the insertion point one character to the right.

3.2.4 QUI Interrupt Button

When you select the Interrupt button, Prolog execution is suspended. A selection dialogue
is then displayed from which you will determine the next action,

Continue Execution is resumed. Execution will continue as if Prolog had never been
interrupted.

Abort Execution is immediately aborted (see Section 8.11.1 [ref-iex-int], page 250 for
more information about abort).

Trace Execution is continued but traps to the debug window when the next debug
port is reached.

Quit Execution is halted and all QUI windows are closed.

Typing ^C in the main window will also display the interrupt dialogue (see Section 3.2.3.2
[qui-mai-top-key], page 58 for more information).

Chapter 3: The Quintus User Interface 59

3.2.5 QUI Next Answer Buttons

When Prolog prints a set of variable bindings for one solution, it waits to find out whether
you want to see the bindings for the next solution, if any. When Prolog is in such a wait
state the next answer buttons at the bottom of the main window are active.

Next Answer
Displays the next set of variable bindings, if any, and waits again. If there
are no more bindings, you will be returned to query input mode and the next
answer buttons will be inactive.

No More Answers
You will be returned to query input mode and the next answer buttons will be
inactive.

Remaining Answers
Displays all remaining sets of variable bindings; you will be returned to query
input mode and the next answer buttons will be inactive. If there is an infi-
nite number of remaining bindings then you must abort execution using the
Interrupt button or its equivalent (default is ^C) key binding (see Section 3.2.4
[qui-mai-int], page 58 for more information).

3.2.6 QUI Error Dialogue Window

Each Prolog error message is printed in its own dialogue window. Both types of dialogue
window give you the option to either continue or abort the execution. Execution is sus-
pended until you select one of these two options,

Continue Execution is continued following the exception handler that printed the error
or warning message (see Section 8.19 [ref-ere], page 310 for more information
about exception handling).

Abort Execution is immediately aborted (see Section 8.11.1 [ref-iex-int], page 250 for
more information about abort).

After you select an option, the error or warning message is placed in the Prolog output
window so that subsequent inspection of the interactive session will show the context of the
message. The Execution aborted error message is not displayed in a dialogue window.

3.3 Edit Windows

The name of the file that is loaded into the edit window is displayed in the title bar of the
window. An indication of whether or not the file is modified also appears in the title bar.
Below the title bar is the menu bar of options that are available in the edit window. Below
the menu bar is the text window that contains the loaded file.

60 Quintus Prolog

3.3.1 Invoking an Edit Window

An edit window is displayed by selecting the Edit. . . option of the File pulldown in the
main window or the Edit option of the File pulldown in the debugger main window. See
Section 3.2.1.1 [qui-mai-mai-fil], page 56 for more information. The following figure shows
an edit window before a file is loaded.

Chapter 3: The Quintus User Interface 61

62 Quintus Prolog

Edit Window with File Browser

3.3.2 File Pulldown

Pulling down your File Pulldown menu will give you the options listed below.

Edit. . . Displays a file browser. The file you select is loaded into the edit window.

Compile The contents of the edit window is saved into the file associated with the edit
window if the file has changed since loaded into the window or since last save
and that file is compiled by the Prolog system. This item is disabled when
compiling file is not permitted (see Section 3.2.1.1 [qui-mai-mai-fil], page 56).

Save The contents of the edit window is saved into the file associated with the edit
window.

Save As. . .
Displays a dialogue that prompts you for the name of a file. The contents of
the edit window is saved into the file you specify.

Insert. . . Displays a file browser. The file you select is copied at the location of the
insertion point.

Quit Quits the edit window. If the edit window has modifications that have not been
saved, then it displays a dialogue that asks you whether you want to save the
modifications.

Once you select Edit and load a file the edit window looks like this:

Chapter 3: The Quintus User Interface 63

64 Quintus Prolog

Edit Window with File Loaded

3.3.3 Misc Pulldown

The following choices may be selected by pulling down the Misc Pulldown menu.

Find and Replace. . .
Displays a dialogue that has the following options,

Find Find the string specified in the box to the right of this button in the
direction indicated by the toggles (i.e. forward or backward). If the
wraparound option is selected then the search wraps from bottom
to top if the direction toggle is forward or from top to bottom is
the direction toggle is backward.

Replace Replace the next occurrence of the string specified in the box to the
right of the Find button with the string specified in the box to the
right of this button in the direction indicated by the toggles (i.e.
forward or backward). If the wraparound option is selected then
the replacement wraps from bottom to top if the direction toggle is
forward or from top to bottom is the direction toggle is backward.

Replace All
Replace all occurrences of the string specified in the box to the
right of the Find button with the string specified in the box to the
right of the Replace button.

Quit Quit the Find and Replace. . . dialogue box.

Go to A Line
Pops up a dialogue allowing you to enter a line number. The insertion point
will move to the line you specify.

3.3.4 Help Pulldown

On This Window
Displays information regarding the edit window.

3.3.5 Key Bindings

The following key bindings have been added to the existing Motif text widget key bindings
in the edit window,

〈DEL〉 Deletes the character to the left of the insertion point.

^D Deletes the character to the right of the insertion point.

Chapter 3: The Quintus User Interface 65

^K Deletes all characters to the right of the insertion point on the current line.

^P Moves the insertion point to the previous line.

^N Moves the insertion point to the next line.

^A Moves the insertion point to the beginning of the current line.

^E Moves the insertion point to the end of the current line.

^B Moves the insertion point one character to the left.

^F Moves the insertion point one character to the right.

^L Redraws the display of the editor window.

^H Deletes the previous character to the left of the insertion point.

^J Inserts a new line to the right of the insertion points and indents the new line
so that it starts from the same column as the current line.

^M Inserts a new line to the right of the insertion point.

^O Inserts a new line to the right of the insertion point without moving the insertion
point.

^T Moves the insertion point to the beginning of the file.

^U Moves the insertion point to the previous page.

^V Moves the insertion point to the next page.

^W Deletes the selected region of text.

^Y Yanks back deleted text.

^X Moves the insertion point to the end of the file.

3.4 Interface to External Editors

While using the Quintus User Interface you can also interact with an external editor. You
might choose to do this if you are more comfortable or familiar with another editor that
QUI supports. Currently QUI only provides an interface to the GNU Emacs editor, in
addition to the default QUI editor.

3.4.1 Interface to GNU Emacs

In order to set up GNU Emacs as the editor for QUI, you need to set the shell environment
variable QUINTUS_EDITOR_PATH to the path of the GNU Emacs executable. You may also
need to set the following shell variables:

QUINTUS_LISP_PATH
When QUI invokes the GNU Emacs editor, it instructs GNU Emacs to load
initial lisp files from ‘quintus-directory/editor3.5/gnu’.

66 Quintus Prolog

DISPLAY If the DISPLAY variable is set GNU Emacs will try to create a window on the
appropriate display, otherwise it will run in the window that invoked QUI.

3.4.1.1 Invoking GNU Emacs to Edit Files From QUI

There are two ways to invoke GNU Emacs from QUI. The first way is by selecting the
Edit. . . item of the File pulldown menu in the QUI window. The second way is by selecting
the Edit Source item of the File pulldown menu in the debugger window. In order to use this
second method of invoking GNU Emacs, you must already have a file loaded in your Prolog
program under QUI and it must be displayed in the debugger source window. Selecting
this menu item will invoke GNU Emacs and place the cursor at the position of the file that
defines the predicate you are currently debugging. If you have invoked GNU Emacs from
the QUI window, a scratch buffer *qui-emacs* is displayed on start up. This scratch buffer
is needed to set up the communication channels with QUI. Although the buffer is in qui
mode, (which is the minor mode in which all files with the extension ‘.pl’ are placed) you
cannot use it as a normal prolog buffer as this buffer is not associated with any file. Note
that the *qui-emacs* buffer is displayed only if you invoke the editor from the QUI main
window. If you invoke the editor from the debugger, the file that defines the predicate you
are debugging is displayed, not the *qui-emacs* buffer, which is hidden.

3.4.1.2 Key Bindings in "qui" mode

The key bindings are exactly the same as in the Prolog/Emacs interface. You can compile
regions, procedures and buffers; you can search for definitions of predicates (find definition)
and you can move around clauses.

To use find-definition in QUI, ensure that a gnuemacs process is running, move the cursor
into that window, and proceed as in a straight emacs interface (see Section 4.2.2 [ema-emi-
key], page 89). It cannot be done directly from the QUI main window, so most likely it will
be necessary to type in the procedure name and arity rather than select it.

The only thing that is different is that there are no bindings to repeat previous queries
to prolog as the QUI window serves that purpose. For a detailed description of the key
bindings see Section 4.2.2 [ema-emi-key], page 89.

3.5 QUI Debug Window

The debug window is displayed either by selecting one of the first three options in the
Debug pulldown in the menu bar of the main window (see Section 3.2.1.1 [qui-mai-mai-fil],
page 56), by selecting the Trace button in the interrupt dialogue (see Section 3.2.4 [qui-mai-
int], page 58), or by turning on the debugger with the trace/0, debug/0, or prolog_flag/3
built-ins (see Section 6.1.5.1 [dbg-bas-con-tdz], page 118).

Chapter 3: The Quintus User Interface 67

The debug window is described in the debugger section of this manual set. See Section 6.2
[dbg-sld], page 121 for its description.

68 Quintus Prolog

3.6 QUI Help Window

Chapter 3: The Quintus User Interface 69

The QUI Help Window

3.6.1 Invoking Help

The help window allows you to navigate through all parts of the on-line version of the
Quintus manual set. This window is displayed using the Help pulldown on the control
panel of the QUI Main Window or by calling help/1 or manual/[0,1] (e.g. by typing
help(compile).) at the top level. Each Prolog help predicate accesses the manual set in a
different way. See Section 3.6.3.3 [qui-hlp-hwm-gto], page 71 for more information.

If any requests for help are invoked while the help window is already displayed, then this
same help window is loaded with the newly requested portion of the manual set that is
requested.

Instead of invoking help through the Prolog help predicates, you can use the Help Pulldown
in the Control Panel of the QUI Main Window. Each button in this pulldown displays a
different part of the manual set:

On Prolog Displays the menu of on-line Quintus manuals.

On QUI Displays the on-line version of this description of the Quintus User Interface.

On This Window
Displays information regarding the main window.

3.6.2 Help Window

The name of the current manual is displayed in the title bar of the window. Below the title
bar is the menu bar of options that are available in the help window. Below the menu bar
is the name of the current section. Below the name is the current section, either a menu of
sub-sections or text.

3.6.2.1 Selecting a Sub-Section from a Menu

When a menu is displayed, you can display one of the sub-sections listed by selecting the
appropriate menu item. When you select a line of the menu, the sub-section indicated by
the line is displayed.

3.6.2.2 Following Cross-References in Text

When a text section is displayed, it may contain cross-references. Cross-references are
underlined. When you double-click on the cross-reference, the section indicated by it is
displayed.

70 Quintus Prolog

3.6.2.3 Selecting a Topic in Text

When a text section is displayed, you can select a new topic by pointing to a word and
clicking the left mouse button. That word will then be highlighted. If you click again on
the highlighted word then it is sent to Prolog via help/1. It is the same as entering the
topic through ‘index...’ dialogue in the Goto pulldown menu.

A recognized topic is a word in the form of [A-Z a-z][A-Z a-z 0-9 -]* possibly followed by
a slash preceding an arity specification such as ‘/1’ and ‘/[1,2]’. Words consisting of
non-alphanumeric characters such as ‘@>’ will not be recognized.

3.6.3 Help Window Menu Bar

3.6.3.1 File Pulldown

Quit Selecting this button quits the help window. Any subsequent help command
will redisplay the window.

3.6.3.2 Goto Pulldown

Each button in this pulldown allows you to directly display various parts of the manual set.

Next Section
Travel to the following adjacent section of the manual. It is like paging through
a paper manual.

Previous Section
Travel to the previous adjacent section of the manual.

Parent When you select this button, the parent (a menu) of the current section is
displayed. This button is not available when the current section does not have
a parent. The only sections that do not have a parent are the top-most menu
of manuals and any menu generated from index entries.

Top When you select this button, the top-most menu of manuals is displayed.

Index. . . When you select this button, a dialogue that prompts you for an index topic is
displayed. When you enter a valid index topic, the help window will generate
and display a menu of index entries that refer to that topic. If you enter an
invalid index topic, the display will remain as it was. The form of the index
topic is the same as the one passed to help/1.

Section. . .
When you select this button, a dialogue that prompts you for a manual section
is displayed. When you enter a valid section, the help window will display that

Chapter 3: The Quintus User Interface 71

section. If you enter an invalid section, an error dialogue will appear. The form
of the section is the same as the one passed to manual/1.

3.6.3.3 Invoking Goto Options from Prolog Predicates

Each Prolog help predicate is mapped to a QUI Goto pulldown button.

manual/0 Same as selecting the Top button from the Goto pulldown.

manual/1 Same as selecting the Section button from the Goto pulldown.

help/1 Same as selecting the Index button from the Goto pulldown.

3.6.3.4 History Pulldown

This pulldown contains a dynamic list of buttons, which represent the menus and text that
have already been displayed in the help window. Initially this history list is empty. As each
new section is displayed, the section that it replaces is placed at the top of this list. If a
section that is already in the history list is redisplayed, it is not added to the list a second
time. The list contains 10 buttons by default. The number of buttons it contains can be
modified through the resource file (see Section 3.7 [qui-ciq], page 72). When more than 10
(or whatever other number of buttons you have specified in the resource file) sections have
been viewed, the oldest section is removed from the history list. Each history entry that
refers to a menu generated from index entry matches is indicated as such so that there is no
ambiguity between it and a section entry with the same name. When you select an element
from the history list, that section is displayed and the history list is not changed. When
you quit the help window, the history list is cleared.

3.6.3.5 Misc Pulldown — Search

Currently the only item in this menu is Search. This button is available when the Help
Window contains text rather than a menu. It brings up a dialog that enables you to search
the text for a selected string.

Selection Type in the search string.

Forward to find the next occurrence of the string. (Or type 〈RET〉.)

Backward to search to the beginning of the file.

Wraparound
activates wraparound search.

Cancel The Search dialog remains on display, preserving its state, until you select
Cancel. While it is on display selecting Search from the Misc pulldown will
bring the dialog to the foreground.

72 Quintus Prolog

When a match is found, the matching text is highlighted. A beep indicates that there are
no (more) occurences of the string to be found by one search — forward or back according
to which type of search you selected — of the frame. If Wraparound is on, a beep will be
sounded only if there are no occurences of the string in the frame.

Where does it start searching?

• If a word or pattern is highlighted then the searching starts from that point.
• Otherwise the search begins from the beginning of the text.

Customization is discussed in Section 3.7.2.7 [qui-ciq-cqr-hsr], page 76.

3.7 Customizing and Interfacing with QUI

The resource file and how it is used in customizing QUI is discussed in Section 3.7.1 [qui-
ciq-qrf], page 72 and Section 3.7.2 [qui-ciq-cqr], page 73.

Restrictions on developing programs under QUI are the topic of Section 3.7.3 [qui-ciq-dpq],
page 76.

3.7.1 The QUI Resource File

By convention, applications developed for the X11 Window System maintain a database of
resources. This database is built at run time from application defaults and user preferences.

A resource, in the context of X11, is any customizable data that controls the behaviour and
appearance of the application. This includes just about everything: colors, fonts, images,
text, titles, sizes, positions, flags, etc.

Quintus ships QUI with a default resource file that defines the “standard” QUI look. This
file is located in the directory ‘quintus-directory/qui3.5’. This file must exist for correct
operation of QUI.

We only document some of the resources that QUI uses. The X resource database provides
no mechanism for distinguishing between those resources that can be customized and those
that can not. Some QUI resources can be customized while modifying others will break
QUI. Therefore, if you modify any QUI resource you run the risk of breaking QUI. We
suggest that you only change QUI resources for minor enhancements. We reserve the right
to change the format and structure of the resource file in future releases.

If you still want to change resources, do not modify the default QUI resource file it-
self. Rather, create the file ‘$HOME/Qui3.5’, and add the QUI resources you want to
modify to it. Alternatively, you can add QUI resources to your existing X defaults file
‘$HOME/.Xdefaults’.

Chapter 3: The Quintus User Interface 73

Adding resources to either of these files will override the resources specified in the default
QUI resource file.

See your Motif, Xt and Xlib documentation for more information on the X resource database
format and use.

3.7.2 Customizing QUI Resources

The easiest way to find the name of the resource you want to change is to look in the default
QUI resource file. Once you know the full name of the resource, you can put a line with the
same name and a new value in your personal QUI defaults file in your home directory. Note
that case is significant in naming a resource and comment lines start with a ‘!’ character.

This section offers a few guidelines on how to identify the QUI resources you may wish to
customize.

3.7.2.1 Global Resources

qui.loadOnlyAtTopLevel: True
If set to False, file loading by QUI menus will be disabled only while Prolog
code is running.

qui*main*dialogTitle: Quintus User Interface
The main title displayed by QUI on its startup window.

qui*background: wheat
The background color used in QUI windows.

qui*foreground: black
The foreground color used in QUI windows.

qui*fontList: fixed
The font used in most QUI windows, except for the help system 1.

qui*qui_window.iconName: Qui
The icon name for QUI

3.7.2.2 Labels and Messages

The text that QUI displays in all of its buttons, menus and dialogs can be customized by
changing the appropriate resources.

To change a button or menu label, look for the labelString resources. For example:

qui*main*commands*interrupt.labelString: Interrupt
Sets the text displayed by the Interrupt button.

1 See Section 3.7.2.7 [qui-ciq-cqr-hsr], page 76 if you want to change the font used by the QUI help system

74 Quintus Prolog

qui*main*menuBar*load.labelString: Load. . .
Sets the text displayed by the Load entry in the File menu of the main QUI
Window 2.

qui*qui_window*yesNoProceed*okLabelString: Yes
Sets the text displayed by the OK button in the Yes/No confirmation popup
dialog.

To change the text of a message, look for the messageString resources. For example:

qui*main*exitWarning*messageString: Do you really want to exit Prolog?
Sets the message displayed by the Exit Warning popup dialog.

3.7.2.3 Menu Entries

To customize a QUI menu entry there are potentially four resources that have to be changed.
These are:

• The labelString resource that defines the text shown.
• The mnemonic resource that defines the single character abbreviation and underlining

for the menu entry.
• The accelerator resource that binds a key combination to the entry.
• The acceleratorText resource that sets the displayed characters to show the acceler-

ator.

For example, the Frame Up entry in the debugger Travel menu is defined by the following
resources

qui*debugger*frame_up.labelString: Frame Up
Sets the text of the Frame Up menu entry in the QUI debugger

qui*debugger*travelmenu*frame_up.mnemonic: U
Sets the single character ‘U’ as the mnemonic for the Frame Up menu entry in
the QUI debugger. This character will be shown underlined in the menu.

qui*debugger*travelmenu*frame_up.accelerator: Ctrl<Key>U
Binds the ^U character to the Frame Up menu entry action in the QUI debugger.
Typing a ^U character will be equivalent to use the mouse to select the Frame
Up menu entry.

qui*debugger*travelmenu*frame_up.acceleratorText: Ctrl + U
Sets the text to be displayed next to the Frame Up menu entry to show the
user the accelerator keys for the command.

2 But see Section 3.7.2.3 [qui-ciq-cqr-men], page 74 before changing QUI menus

Chapter 3: The Quintus User Interface 75

3.7.2.4 Key Bindings

All of the QUI text widgets have a set of default key bindings to perform certain operations.
These are all translations resources.

The value of a translation resource is a set of lines with an escaped new line character at
the end of each line, except the last one. Each line associates a mouse/keyboard event with
an internal action. For example:

qui*prolog*translations: #override\n\
Ctrl<Key>C: qpinterrupt() \n\
Ctrl<Key>D: qpeof() delete-next-character()\n\
Ctrl<Key>U: kill-to-prompt()\n\
<Key>Delete: delete-previous-character()\n\
Ctrl<Key>K: kill-to-end-of-line()\n\
Ctrl<Key>W: kill-previous-word()\n\
Ctrl<Key>P: previous-line()\n\
Ctrl<Key>N: next-line()\n\
Ctrl<Key>A: beginning-of-line()\n\
Ctrl<Key>E: end-of-line()\n\
Ctrl<Key>B: backward-character()\n\
Ctrl<Key>F: forward-character()

The above sets the default key bindings for the QUI prolog query interpreter window.

3.7.2.5 Editor Resources

All the QUI editor resources have names that starts with qui*editor. Resources specific
to the QUI editor include

qui*editor.generateBackup: True
To prevent the QUI editor from generating backup files set the value to False.

qui*editor.backupSuffix: .Bak
Sets the suffix that the QUI editor uses to generate backup files.

Many of the editor text messages have a resource name that ends in ‘Msg’, for example

qui*editor.qofFileMsg: File is a Quintus Object Format file
Sets the message to be displayed when attempting to load a QOF file into the
editor.

76 Quintus Prolog

3.7.2.6 Debugger Resources

All the QUI debugger resources have names that start with qui*debugger. Resources
specific to the QUI debugger include

qui*debugger*debugger_main_window.title: Quintus Debugger
The title at the top of the QUI debugger window.

qui*debugger*debugger_main_window.geometry: 583x600
Sets the default window size for the QUI debugger.

3.7.2.7 Help System Resources

All the QUI help system resources have names that start with qui*help_window. Resources
specific to the QUI help system include

qui*help_window*helpSystem*fontList:-*-courier-bold-r-normal–14-*
Sets the default font for the QUI help system windows.

qui*help_window*helpSystem*maxHistory: 10
Sets the maximum number of items to be kept in the history pulldown menu
of the QUI help window.

qui*help_window*helpSearDialog.wrapAround: False
Sets the default value of Wraparound in the Search dialog to on.

3.7.3 Restrictions on developing programs under QUI

3.7.3.1 Hook Predicates

message_hook/3: If this predicate is defined in your program, it must be defined as a
multifile predicate.

Also, there are restrictions on how you can use message_hook/3 under QUI. In particular,
error messages (terms with severity error) may not be seen by your message_hook/3
clauses. QUI catches these messages and displays an error dialog.

Since it may be unpredictable whether user-supplied clauses for message_hook/3 come
before or after QUI’s message_hook/3 clauses, it is also recommended that any message_
hook/3 clauses you do supply should fail. See Section 8.20.3.3 [ref-msg-umf-ipm], page 331,
as well as the reference page for message_hook/3, for more information.

Chapter 3: The Quintus User Interface 77

3.7.3.2 Embeddable C Function

QU_initio(): QUI has already defined this Prolog embedding I/O initialization function.
Users’ programs linked with QUI cannot redefine the function.

3.7.3.3 UNIX Signal Handling

UNIX SIGIO signal: This signal is used in QUI. No programs developed under QUI should
catch this signal.

UNIX SIGPIPE signal: The signal handler of this signal is set to SIG_IGN in QUI. Resetting
the signal handler to SIG_DEL may cause QUI to exit unexpectedly.

78 Quintus Prolog

Chapter 4: The Emacs Interface 79

4 The Emacs Interface

4.1 Overview

4.1.1 Overview

This section describes the Emacs/Quintus Prolog interface and presupposes some knowledge
of the Emacs editor. The interface supports GNU Emacs and XEmacs. For information on
obtaining these editors, see http://www.gnu.org and http://www.xemacs.org.

There are three different ways to run Prolog interfaced to Emacs:

1. From the command prompt, invoke a Prolog executable file or saved state with the
argument ‘+’. This starts up Emacs and causes it to run Prolog in an Emacs buffer.
See Section 4.1.3.3 [ema-ove-upe-epe], page 80 for details.

2. From QUI start an Emacs session. In this case the Prolog top-level interaction is not
done in an Emacs buffer because the QUI main window is being used for that purpose.
This uses the Emacs Server feature of GNU Emacs and is described in Section 3.4.1
[qui-ied-ige], page 65.

3. From a running Emacs session, cause a Prolog to be started in a buffer. To do this, the
Emacs interface code must first be loaded into Emacs—this could be done in an Emacs
initialization file. This is described in ‘quintus-directory/editor3.5/gnu/README’.

4.1.2 Environment Variables

This section lists the environment variables that can be used to customize your Pro-
log/Emacs environment. There are up to three environment variables that need to be
set before either the Emacs interface can be invoked. They are:

QUINTUS_EDITOR_PATH
the name of the Emacs executable. If this is unset Quintus Prolog will try to
invoke emacs, which then must be in your path.

QUINTUS_LISP_PATH
the full name of the Emacs-Lisp directories. These directories contain the Lisp
code for the GNU Emacs interface, which is supplied with your Quintus Prolog
distribution. If using prolog + or QUI, the QUINTUS_LISP_PATH environment
variable need be set only if you choose to use a different version of the interface
or if the interface has been moved to a different location at your site.

QUINTUS_PROLOG_PATH
the full name of the Quintus Prolog executable. You need to set this variable
only when you want to start Quintus Prolog from within GNU Emacs.

http://www.gnu.org
http://www.xemacs.org

80 Quintus Prolog

It is set automatically if you load qp-setup.el into emacs.

We recommend that you set these environment variables in your shell initialization file
(‘.cshrc’ if you use the C shell csh(1)).

4.1.3 Using Prolog with the Emacs Editor

4.1.3.1 Overview

The Emacs/Prolog interface is designed to enable you to create a Prolog program in a file
outside the Prolog environment and then to move back and forth easily between that file
and the Prolog environment. Both the Prolog program and your interaction with Prolog are
preserved in edit buffers, which can easily be reviewed and modified. The Emacs process is
primary, and Prolog runs as a buffer within it.

In the Prolog window, Prolog programs can be run, and Emacs commands can be used to
edit and resubmit previously-entered Prolog commands. In a text window, single proce-
dures, groups of procedures, and entire programs can be edited and quickly reloaded into
Prolog without suspending the Prolog process. Additionally, any number of Prolog source
files can be loaded into Prolog at once; then, if desired, Emacs can be used to locate a specific
procedure in any one of those files. (For more information, see Section 4.1.9 [ema-ove-loc],
page 87.)

4.1.3.2 Terminal and Operating System Requirements

Under UNIX, if the DISPLAY environment variable is set then GNU emacs will create a
window to run in. Otherwise it will run as if on a terminal, in which case it will need to be
told what type of terminal it is. This is normally done automatically, at login time, but if
it is not you must describe the terminal in a terminal capability database such as terminfo
or TERMCAP. Refer to your UNIX documentation for a description of this facility.

4.1.3.3 Entering Prolog and Emacs

To run Prolog under the Emacs interface, type a command such as

% prolog +

% prolog + command-line-arguments

at the operating system prompt. GNU Emacs processes command line arguments in two
lots, described in two tables in the GNU Emacs Manual. Under the Quintus Prolog GNU
Emacs interface, only switches from the first table can be used, and the most commonly

Chapter 4: The Emacs Interface 81

used one is file-to-be-edited. (See Section 8.3 [ref-pro], page 186 for full details of starting
up Prolog.) Note however that the prolog buffer will not be displayed if the command-line-
arguments includes files to be edited. In this case the last file specified on the command
line is the one displayed. You can however switch to the prolog buffer by invoking the key
binding to switch buffers (usually ^x b) and specifying the prolog buffer name ‘*prolog*’.

Another way to start up the interface is from a QUI menu. See Section 3.4.1 [qui-ied-ige],
page 65 for how to do this.

A third alternative is to start up Quintus Prolog from within GNU Emacs by typing 〈ESC〉
x run-prolog (see Section 4.1.2 [ema-ove-eva], page 79 for a description of how to set the
environment variable QUINTUS_PROLOG_PATH, which should be set to the filename of a Prolog
executable before you invoke this command. In addition you must specify the directories
where the Emacs lisp files in the interface live and load them. Refer to ‘quintus-directory
/editor3.5/gnu/README’ for details.) This should load in a specific set of ‘.el’ or ‘.elc’
files. These ‘.elc’ files are part of the ‘editor’ subdirectory of the Quintus distribution.
(Section 1.3 [int-dir], page 11 explains the structure of the Quintus directory.)

4.1.3.4 Exiting Emacs

You can exit from the editor in either of two ways: you can stop the current editor job and
exit irreversibly, or you can temporarily suspend the current editor job. If you are finished
with your session, you will probably want to exit irreversibly, as described in this section.
If you want to temporarily halt your session, return to the command prompt, and later be
able to resume your session, you should exit as described in the next section.

To exit from the editor irreversibly, type the following:

^x ^c

If you try to exit while you have a Prolog session running, the system displays the following
message at the bottom of the screen:

Active processes exist; kill them and exit anyway? (yes or no)

To end the Prolog session, type y or yes, and press 〈RET〉. If you don’t want to end the
Prolog session, type n or no and press 〈RET〉 to abort the exit. Prolog will continue running.

If you try to exit and you have files that have been modified but not saved, you will receive
a message at the bottom of the screen to prompt you to save each modified file.

If you want to save the files before you exit, type n and press 〈RET〉 to abort the exit. Move
the cursor to the text window (if it’s not already there), and use the ^x ^s command to save
the information from the window into a file. If you want to exit without saving the modified
information, type y and press 〈RET〉, and you will be returned to the main operating system
prompt.

82 Quintus Prolog

4.1.3.5 Suspending an Emacs Session

To exit from the editor by suspending the current editor session, type:

^x ^z

The system displays the message ‘Stopped’ at the bottom of the screen and returns you to
the command prompt. However, the Emacs/Prolog job is only suspended (that is, in the
background) and you can resume it at any time. To resume your Emacs/Prolog session,
type fg (for “foreground”) at the command prompt.

4.1.4 The Source Linked Debugger

The Emacs-based source linked debugger for Quintus Prolog works very much like the QUI
debugger (see Section 6.2 [dbg-sld], page 121), with a few significant differences. This
document describes the differences.

In order to enable the Emacs-based debugger, execute the Emacs command 〈ESC〉 x enable-

prolog-source-debugger; to disable it, type 〈ESC〉 x disable-prolog-source-debugger.
If you would like always to use the source-linked debugger when debugging Quintus Prolog
code under Emacs, put the following in your ‘.emacs’ file:

(add-hook ’comint-prolog-hook ’enable-prolog-source-debugger)

Alternatively, under Prolog you may load library(emacsdebug) and then execute the
Prolog goal emacs_debugger(_,on) to enable source-linked debugging, emacs_debugger(_
,off) to disable it, and emacs_debugger(State,State), to see whether it is enabled or
not (State will be bound to on if enabled and off if disabled).

The first obvious difference when running the Emacs-based debugger compared to the QUI
one is that it doesn’t have any buttons or menu to control it. Therefore all commands are
keyboard-based. Where possible, the commands are the same as those used in the standard
debugger, so most of them should be easy to remember. The most important command in
the Emacs-based debugger, as in the standard debugger is the help command, invoked by
a single h or ? character. This command displays the following summary:

c creep 〈RET〉 creep 〈SPC〉 creep
l leap + spy goal/pred b break
s skip - nospy goal/pred a abort
z zip [frame up ? help
n nonstop] frame down h help
q quasi-skip | frame back = debugging
r retry f fail . edit definition
w open extra window x close extra window

Chapter 4: The Emacs Interface 83

The commands in the first column behave exactly as they do in the QUI debugger. The
spy and nospy commands place a spypoint on the current predicate when at a head port,
and on the current goal when at any other port. The frame up/down/back commands do
exactly what the corresponding QUI debugger commands do, as do break and abort. The
debugging command just invokes the standard debugging/0 built-in predicate, showing the
current debugging and leashing modes, as well as listing the currently active spypoints.

The open/close extra window commands prompt for a single character to select the “extra”
window to display, offering the choices ‘b=bindings; s=standard; and a=ancestors’. The
bindings window is probably the most useful of the three.

Finally, the edit definition command opens puts the file being debugged in an editor buffer,
putting point at the location of the current debugger port (where the arrow is). You may
edit and save the file, and then recompile it. It is recommeded that you recompile the whole
file rather than just the part you have changed, because the debugger keeps track of the
times files are written and compiled, disabling source linking when the file on disk is newer
than the code loaded into Prolog.

The graphical arrows of the QUI debugger are simulated by a two-character sequence in
the Emacs-based debugger. The Call, Done and determinate Head ports are signified by
‘->’. Exit and nondeterminate Head ports are signified by ‘=>’. Redo and Fail are shown
as ‘<-’. The Exception port is indicated by ‘<#’. Finally, where the QUI debugger shows a
“hollow” arrow to signify that the currently shown port is not actually the active port but
an ancestor of it, the Emacs-based debugger shows ‘^>’.

The Emacs-based debugger currently offers no way to change the leashing; you can do that
using the usual Prolog leash/1 built-in predicate. Similarly, it offers no way to set a spyoint
except when debugging a call to the predicate or goal to be spied. Again, the usual spy/1
and add_spypoint/1 built-in predicates can accomplish this. Finally, the Emacs-based
debugger offers no direct way to set the print format. To change this you must use the
window_format/3 command exported from the emacs_debug module:

window_format(+Window, -Oldformat, +Newformat)

where Window is one of: source, bindings, ancestors, or standard, and Newformat is a
list of valid options for the last argument to write_term/[2,3]. The default format for all
windows is

[quoted(true), portrayed(true), max_depth(5)]

4.1.5 Accessing the On-line Manual

The help system is largely based on the Info file format, which GNU Emacs uses for on-line
documentation. If you are running Prolog under Emacs, type manual. at the main Prolog
prompt to gain access to the on-line help system. Emacs should then locate the Quintus
Prolog Info node. If it can’t find that node, it will display the information in a special help
buffer. See Section 8.17.2 [ref-olh-hfi], page 304 for details.

84 Quintus Prolog

4.1.6 Loading Programs

4.1.6.1 Basic Information

To load a program from Emacs into Prolog, start up the Emacs/Prolog interface by typing
prolog + at the main operating system prompt. When the Emacs/Prolog screen appears,
type ^x ^f (for ‘find-file’) followed by the name of the file that contains your program.
(Alternatively, you can type prolog + followed by the name of the file that contains your
program.) After you enter the Emacs/Prolog environment, activate the window containing
your file.

At this point, you have three options: you can load

• the entire buffer containing your file (〈ESC〉 k b)
• a portion of the program that you have marked (〈ESC〉 k r)
• or a single procedure (〈ESC〉 k p)

Being able to load a designated portion of your program is very convenient if you are running
a program and discover that you need to make a few changes to improve the program. You
can make your changes and then reload just the changed portions, without reloading the
entire program. If you are just beginning a Prolog session, however, you will probably want
to load the entire buffer containing your program using 〈ESC〉 k b.

When you type 〈ESC〉 k, Emacs displays the following prompt line at the bottom of the
screen:

compile prolog ... enter p for procedure, r for region or b for buffer

In response, you can type b to load the entire buffer: or you can type r to load a region, or
p to load a procedure, as described below.

After you indicate how much of your program to load, the cursor moves to the Prolog
window, and Prolog displays a message that tells you it is loading the program. As it
proceeds, Prolog displays messages to let you know which procedures are being loaded.
For example, if your program consisted of procedures for parts_of/2, assembly/2, and
inventory/2, Prolog would display the messages:

% compiling procedure parts_of/2 in module user
% compiling procedure assembly/2 in module user
% compiling procedure inventory/2 in module user

After Prolog has finished loading, it displays a message such as:

% compilation completed, 0.083 sec 448 bytes
| ?-

At this point, you can begin to run your program (see Section 2.3 [bas-run], page 27).

Chapter 4: The Emacs Interface 85

Please notes:

1. When you load procedures into Prolog, Prolog first removes any previous versions of
those procedures from its database, excepting those procedures that have been de-
clared multifile. A multifile declaration indicates that a particular procedure is defined
by clauses in more than one file. (For more information on multifile procedures, see
Section 9.2.2 [sap-rge-dspn], page 356.) This is why the entirety of a procedure must
be loaded at once; otherwise, loading the definition of the second part would wipe out
the definition of the first part.

2. The 〈ESC〉 k commands can also be issued from the debugger prompt, as described in
Section 6.1.1 [dbg-bas-bas], page 113 .

4.1.6.2 Loading an Entire Buffer

To load the entire buffer, type 〈ESC〉 k b (for ‘buffer’). Note that both the k and the b

must be lower case.

4.1.6.3 Loading a Region in a Buffer

To load a portion of your program, mark the region you want to load. To do this, move the
cursor to the beginning of the first line you want to load and type ^〈SPC〉 (or ^@ on many
terminals). Emacs displays the message

Mark set

at the bottom of the screen. Move the cursor to the end of the portion of the program you
want to load. Then type 〈ESC〉 k r (for ‘region’).

Please note: When you mark the region to be loaded by the 〈ESC〉 k r command,
be sure to include all the clauses for any procedures you are loading.

4.1.6.4 Loading a Single Procedure

To load a single procedure, move the cursor to any portion of any line of the procedure.
Then type 〈ESC〉 k p (for ‘procedure’).

The 〈ESC〉 k p facility requires that you use certain syntactic and structural conventions,
which are described in Section 4.2.4 [ema-emi-lay], page 91. If you are not sure that your
procedures adhere to these conventions, you should use the 〈ESC〉 k r facility instead, making
sure your marked region surrounds all the clauses of the procedures you want to load.

Please note: 〈ESC〉 i is retained for backward compatibility. Its effect is the
same as 〈ESC〉 k.

86 Quintus Prolog

4.1.7 Repeating a Query

Often during your Prolog sessions you might find it useful to submit a query, edit it slightly,
then resubmit it. For example, if you make a typing error in a query, you generally want
to correct the error and resubmit the query, instead of retyping the entire query.

Everything you type during a Prolog session goes into an Emacs buffer, so it is easy to
retrieve and copy lines you’ve already typed. Prolog then redisplays the query.

4.1.7.1 Repeating Queries under Gnu Emacs

For example, suppose you made a typing error, as shown below. If you typed ^x ^e, Prolog
would duplicate the line. You could then correct the typing error using Emacs editing
commands and resubmit the query.

| ?- parts_of(transmission, X).

no
| ?- ^x^e

When you type ^x ^e, the last input string you typed is displayed in the mini-buffer:

| ?- parts_of(transmission, X).

At this point you have two options. You can edit the query in the mini-buffer and place
it in the prolog window by hitting 〈RET〉; hitting 〈RET〉 again submits the query to prolog.
Alternatively, you can step through the queries submitted to Prolog by typing 〈ESC〉 p (〈ESC〉
n moves you down this list). 1

Under GNU Emacs it is also possible to search through the goal history for a goal matching
a regular expression. To do so, type ^x ^y and you will be prompted for a regular expres-
sion. On entering a regular expression and hitting 〈RET〉, the most recently submitted goal
matching the regular expression will be displayed in the mini-buffer. You can choose to
submit this query to prolog (after editing it in the mini-buffer if you choose to) or locate
the next most recent goal matching the pattern.

Alternatively, you can redisplay an earlier input string by moving the cursor to the line you
want to copy and then type ^x ^e.

4.1.8 Displaying Previous Input

If you are running Prolog under the Emacs interface, you can scroll backward through your
Prolog session to see previous input by using the Emacs scrolling commands. Similarly,
you can use Emacs scrolling commands to scroll forward to the current step in your Prolog
session.

1 You can move around a multi-line query using the ^n and ^p keys.

Chapter 4: The Emacs Interface 87

4.1.9 Locating Procedures

The Emacs/Prolog interface provides a facility that enables you to quickly locate procedures
in source files once the procedures have been loaded. If you have loaded several files into
Prolog at once, it can be helpful to be able to locate a procedure directly without having
to search through several files.

While inspecting the definition of foo/1,

foo(X) :- bar(X).

in some Prolog source window, you may want to see the definition of the predicate bar/1.
To do so put the cursor anywhere on the name ‘bar’ and type 〈ESC〉 . and respond to the
Emacs message line,

Find: (default bar/1)

by pressing 〈RET〉. Prolog will then visit the file that defined bar/1 (this may be the same
file that defined foo/1) and put the cursor on the first clause of bar/1 in that file.

While inspecting a previously submitted Prolog query,

| ?- bar(X).

in the Prolog execution window, you may want to see the definition of the predicate bar/1.
This is done exactly in the same manner as above.

Alternatively, you can type 〈ESC〉 . at the main Prolog prompt. The cursor moves to the
bottom of the screen, and the system displays the message

Find:

Type the name of the predicate whose procedure you want to locate followed by a slash
and the arity of the predicate; then press 〈RET〉. (Recall that the arity is the number of
arguments the predicate has.) For example, to locate the procedure for employee(smith,
harold), you would type employee/2, as shown below.

Find: employee/2 〈RET〉

Please note: You can type the predicate name without typing the arity, and the
system will still locate the predicate. If the predicate is defined for more than
one arity, the system will simply locate one of the definitions of the predicate.
You can then type 〈ESC〉 , to successively locate the other definition(s).

This will also search other files for additional clauses for a multifile predicate,
or will search for a predicate of the same name and arity in a different module.

If Prolog cannot find a procedure of the specified name and arity, it displays a message
telling you the procedure is undefined:

88 Quintus Prolog

foo/2 is undefined

If the specified predicate is a built-in predicate, Prolog displays a message to that effect:

nl/0 is a built-in predicate

4.2 The GNU Emacs Interface

4.2.1 Overview

This section presupposes some knowledge of the GNU Emacs editor. The next two sec-
tions summarize the features that have been added to GNU Emacs specifically to support
Quintus Prolog. It should be noted that these features are not available with the standard
GNU Emacs distribution. The Quintus Prolog distribution contains Emacs-Lisp code that
constitutes the interface. Users are free to modify this interface in any way, provided they
adhere to the copying policies of the Free Software Foundation. Read the file ‘COPYING’ in
the GNU Emacs distribution for further details.

With GNU Emacs, you can talk to Prolog very much as you would without the GNU Emacs
interface. The only difference with GNU Emacs is that control characters issued to Prolog
generally have their GNU Emacs meaning rather than any meaning they might have outside
of GNU Emacs. The reason for this is that the Prolog window is still an edit buffer, and you
are free to move up and down in it and modify its contents using the full range of editing
commands. Thus ^d deletes a character, ^u may be used to specify an argument for the
next command, and so on.

The general philosophy of the Prolog/GNU Emacs interface is that you should not be able to
lose your Prolog prompt(by deleting a line, for example). For this reason, a few commands
have been slightly modified. There are also a number of additional key bindings, which are
described below.

GNU Emacs is a customizable editor. You can use a language called Emacs-Lisp to extend
or alter the way it behaves, and in fact this is the way that the Prolog/GNU Emacs interface
has been built. If you want to make your own extensions, you may need to know something
about the way this interface works; notes to assist you are provided later in this section.

WARNING: The Prolog/GNU Emacs interface uses the control character ‘^]’
for its communication. If this character has been made special by the UNIX
command stty(1), the Prolog/GNU Emacs interface will not work. If there
is a problem with the interface, you can use stty all to see all the special
character settings and see if ‘^]’ is shown. None of this is a problem under
Windows or when using GNU Emacs via X Windows under UNIX.

Chapter 4: The Emacs Interface 89

4.2.2 Key Bindings

This section describes the key bindings associated with the Prolog/GNU Emacs interface.
For a complete listing of all the key bindings applicable in a particular window, type 〈ESC〉
x describe-bindings or ^h b.

The following key bindings apply only in the Prolog window, not in the text window(s):

^c ^d Sends an end-of-file to Prolog. This can be used to exit from a break level or to
exit from Prolog altogether (see Section 8.11.1 [ref-iex-int], page 250 for more
information on break/0). Having exited from Prolog using this command, the
only way of start up a new Prolog is by typing 〈ESC〉 x run-prolog.

^x ^z Suspends Prolog and GNU Emacs.

^x ^e Allows you to edit a query you previously typed to the Prolog prompt and
resubmit it. Effectively, it grabs the last query and brings it down to the mini-
buffer. There you can edit it if necessary, then move your cursor to the last line
of the query and type 〈RET〉. This places the query in the prolog window, where
you can edit it further, if necessary, and type 〈RET〉 to submit the query to
Prolog. You can also grab queries other than the most recent one by specifying
a prefix argument to this command (using 〈ESC〉, or ^u): 2 to get the second
last, 3 to get the third last, and so on. Another way to do this is to move the
cursor back to the query you want to copy and type ^x ^e. This last alternative
does not place the query in the mini-buffer but places it directly in the prolog
window. In the cases where a query is placed in the mini-buffer, you can step
up a list of previously executed queries by typing in 〈ESC〉 p or down the list
by typing in 〈ESC〉 n. Since the mini-buffer is only one line, a multi-line query
can be stepped around by using the conventional ^p, ^n key strokes. To obtain
the set of bindings that are active within the mini-buffer when you execute
the yank-query key sequence type in ^h b. This method of stepping through a
goal history is similar to GNU Emacs method of stepping through a command
history.

^x ^y Allows you to edit the most recent query matching a regular expression. You
are first prompted for a regular expression; on entering a regular expression and
hitting 〈RET〉, the most recently submitted goal matching the regular expression
is displayed in the mini-buffer. You can choose to submit this query to prolog
(after editing it in the minibuffer, if necessary) or locate the next most recent
goal matching the given regular expression.

^c ^c Sends an interrupt to the Prolog process (exactly as if you were not running
under GNU Emacs).

Please note: to send a numeric argument to a GNU Emacs command, type 〈ESC〉 followed
by the desired number (for example, 〈ESC〉 1 or 〈ESC〉 12); then type the command. ^u also
works as an argument prefix, as in “standard” GNU Emacs.

The following key bindings apply in any window:

90 Quintus Prolog

^x ^c Causes an irreversible exit from GNU Emacs and Prolog. You will be prompted
to make sure that (1) the Prolog and all other subprocesses should indeed be
killed, and (2) any unsaved buffers should indeed be discarded.

^x ^z If you are running GNU Emacs from a UNIX terminal window, this suspends
(pauses) the GNU Emacs process and returns you to the operating system
prompt. If a Prolog program is running, it will continue to run, but you will
not see any output from it. You can get your GNU Emacs/Prolog session back
by typing fg. (This pause facility is only available if you are running csh; it
does not work under sh.)

〈ESC〉 . Finds the source code for a particular procedure. If the cursor is positioned
on or before the predicate name part of a goal, you can simply press 〈RET〉 to
find the clauses for its procedure. Otherwise, in response to the prompt ‘Find:
’, you should type the name of the predicate, optionally followed by a ‘/’ and
its arity. The file containing the procedure for the specified predicate is then
visited, and the cursor is positioned at the beginning of the procedure. There
are some layout conventions, which must be followed for this facility to work:
see Section 4.2.4 [ema-emi-lay], page 91. The facility is also available via the .

debugger option (see Chapter 6 [dbg], page 113). In QUI, find-definition must
be invoked within the GNU Emacs process, not the QUI main window.

〈ESC〉 , This command can only be used after 〈ESC〉 .. It successively locates other pro-
cedure definition(s) for a predicate. 〈ESC〉 , will search other files for additional
clauses for a multifile predicate, will search for a predicate of the same name
and arity in a different module, or will search for predicates with the same name
and different arities (in the case where the arity was not specified).

〈ESC〉 x prolog-mode

Changes the current buffer to Prolog mode. See Section 4.2.3 [ema-emi-mod],
page 91.

〈ESC〉 x library

Prompts for a file and locates it in the Quintus Prolog Library directories.

〈ESC〉 x cd Prompts for a directory and changes the directory of the Prolog window and of
the Prolog process.

〈ESC〉 x enable-prolog-source-debugger

Enables the source linked debugger.

〈ESC〉 x disable-prolog-source-debugger

Disables the source linked debugger.

The following key bindings apply in any edit window except the Prolog window:

〈ESC〉 k (for “kompile”) is used to load procedures from the edit buffer. You are then
prompted to choose one of three options; you can compile
1. the procedure in which the cursor is currently positioned (see Section 4.2.4

[ema-emi-lay], page 91, for restrictions on program layout necessary for this
to work);

Chapter 4: The Emacs Interface 91

2. the region between the cursor and the mark; or
3. the whole buffer.

〈ESC〉 i (for interpret) is synonymous to 〈ESC〉 k; and is there for backward compatibility.

4.2.3 Prolog Mode

Prolog mode applies automatically whenever you are editing a file that ends with the char-
acters ‘.pl’. This mode is useful when you are editing Prolog source code. In Prolog
mode:

• Whenever you type a closing parenthesis or bracket, the corresponding opening one is
flashed. This bracket matching attempts to be clever about strings in quotes, because
normally a bracket written within quotes should not count for matching purposes.
Unfortunately, this means that the bracket matching does not work properly when
radix notation (for example, 16’100 is hexadecimal 100, or 256 decimal) is used.

• The definition of 〈LFD〉 is modified. Immediately after a line with no leading space
characters (normally the head of a clause), a 〈LFD〉 is equivalent to a 〈RET〉 followed
by 8 spaces. (This can be overridden by assigning the variable body-predicate-indent
some other value.) Otherwise it is equivalent to a 〈RET〉 followed by enough tabs and
spaces to put the cursor underneath the first non-space character in the previous line.
A different set of rules apply for indentation within if-then-else constructs. Refer to
‘quintus-directory/editor3.5/gnu/README’ for details. Note that the 〈TAB〉 key also
indents the current line as prolog code. It differs from 〈LFD〉 in that a newline is not
generated.

4.2.4 Prolog Source Code Layout Restrictions

There are some restrictions on program layout, which are necessary for 〈ESC〉 k p (compiling
a procedure), 〈ESC〉 . (find-definition) and for indentation in prolog mode to work properly.
In order for these commands to function correctly, you must:

1. Group Prolog clauses of the same name and arity together. That is, do not intersperse
clauses of one procedure with clauses of another. Normally breaching this restriction
will cause a style warning (see Section 2.2.5 [bas-lod-sty], page 24).

2. Start the heads of all Prolog clauses at the beginning of the line; indent any additional
lines for those clauses. Within prolog mode the TAB and the 〈LFD〉 can be used for
indenting the current line as prolog code.

3. If a comment continues onto another line, indent the continuation line(s).
4. Do not write clause definitions that use operators in the heads of the clauses. For

example, if you want to define clauses for +/2, then write the head of the clause in the
form ‘+(A, B)’ and not ‘A + B’.

92 Quintus Prolog

4.2.5 Rebinding Keys in Your Initialization File

You can customize GNU Emacs by defining key bindings and/or Emacs-Lisp functions in
a special GNU Emacs initialization file called ‘.emacs’, which must be kept in your home
directory. To locate it, do ^x ^f and type ‘~/.emacs’ as the filename. (Windows users: the
‘~’ character is a abbreviation, inherited from UNIX, for your home directory.)

When GNU Emacs is started, it loads your GNU Emacs initialization file, if you have
one, before loading the Emacs-Lisp files defining the editor interface. This means that any
key bindings that you make in this file may be overridden by the editor interface package.
However, you can tailor the interface, if you wish, by defining one or both of the following
“hook functions”:

prolog-startup-hook
If a function by this name is defined, it will be called after all the initializations
done on invoking Prolog through the editor interface are completed, and before
the screen is displayed.

prolog-mode-hook
If a function by this name is defined, it will be called every time Prolog mode is
entered. Prolog mode is entered every time you edit a file with a ‘.pl’ extension,
and can also be entered by using the command 〈ESC〉 x prolog-mode.

For example, if you don’t like incremental search, and you prefer to use 〈ESC〉 e for moving
to the end of a sentence, rather than for enlarging the current window, then you should add
the following function definition to your initialization file:

(defun
prolog-startup-hook ()

(global-set-key "\C-s" ’search-forward)
(global-set-key "\C-r" ’search-reverse)
(global-set-key "\ee" ’forward-sentence)
(global-set-key "\e\e"

’enlarge-window))

Note that the command strings could be written as : "\C-s" (Backslash C-s) for example.
This version of prolog-startup-hook also binds the useful enlarge-window command,
which is normally on 〈ESC〉 e in this interface, to 〈ESC〉 〈ESC〉.

If you wish to change key bindings in Prolog mode, you should use local-set-key rather
than global-set-key, because the effect of Prolog mode is local to a particular window.
For example, if you don’t like the way 〈LFD〉 works in Prolog mode, you can define

(defun
prolog-mode-hook ()

(local-set-key "\C-j" ’newline-and-indent))

This restores the default binding of 〈LFD〉.

Chapter 4: The Emacs Interface 93

4.2.6 Programming the Prolog/GNU Emacs Interface

This section describes how the user can program the Quintus Prolog/GNU Emacs interface.
In order to make effective use of the interface, the user must be very familiar with GNU
Emacs’s extension language, Emacs-Lisp. We do not provide support for users’ Emacs-Lisp
code.

Before deciding to use Emacs-Lisp code in your applications, you should be aware of two
potential problems. First, we does not support the GNU Emacs editor interface and as
such reserves the right to change the editor environment at any time. This could render
your non-Prolog code inoperative or irrelevant. Second, Runtime Systems, which is the
usual way of packaging Prolog applications for end users, do not support the GNU Emacs
environment. Thus they will not run your Emacs-Lisp code.

With these cautions in mind, if you decide to use Emacs-Lisp code in your applications,
these notes should have all of the information that you need to proceed. If your application
is very complex, you may also find that you need to understand in some detail how the
GNU Emacs interface is built. We supply with the distribution the Emacs-Lisp source
code for the interface. You are free to go ahead and change any part of the interface
to suit your needs but please be careful to follow the guidelines set by the Free Software
Foundation as to how this should be done. These guidelines may be found in any standard
distribution of the GNU Emacs editor. You will find the files ‘help.el’, ‘commands.el’,
and ‘qprocess.el’ especially useful, although depending upon what you are trying to do
you may need information from any of the Emacs-Lisp source files.

4.2.6.1 Submitting Prolog Queries from GNU Emacs

GNU Emacs talks to Prolog by writing an Emacs-Lisp string in the form of a Prolog query
(of any kind), terminated by a full-stop and prefixed by a special character code, to Prolog’s
standard input stream. When Prolog detects one of these prefixed queries in its term input
stream, it executes the query as if it had been typed by the user at the top level. The query
prefix character is ASCII 29.

As an example, define the function

(defun to-prolog ()
(process-send-string "prolog"

"\035nl,write(hello),nl.\n")
)

Upon invoking this function from GNU Emacs, the results of the query are displayed in
the Prolog execution buffer. Notice that the Prolog process is called prolog, the query
prefix character (ASCII 29) is denoted in an Emacs-Lisp string by the octal escape sequence
‘\035’, and the full-stop at the end of the query must be a period followed by a newline
character (denoted in an Emacs-Lisp string by the escape sequence ‘\n’).

94 Quintus Prolog

To make things simpler, the interface defines a function called send-prolog, which, given
a query string as its one argument, sends that query to the Prolog process, prefixed by
the query prefix character and followed by a full-stop. So the above function can be more
clearly written as

(defun to-prolog ()
(send-prolog "nl,write(hello),nl")

)

WARNING: GNU Emacs should only send a prefixed query to Prolog when
Prolog is waiting for the user to type a term at the terminal. Note that this
occurs not only when the user explicitly calls read/[1,2] but also when Prolog
is at the top-level prompt.

4.2.6.2 Invoking Emacs-Lisp Functions from Prolog

Prolog talks to GNU Emacs by writing a sequence of one or more Emacs-Lisp function calls
(including the parentheses) to the standard output stream, where this sequence is delimited
by two special character codes. When GNU Emacs detects one of these delimited “packets”
(as they are referred to in the Emacs-Lisp code) being written, it executes the function calls
that occur between the delimiters. The packet start character is ASCII 30 and the packet
end character is ASCII 29.

As an example, define and call the predicate

to_emacs :-
put(30),
write(’(message "hello") (sit-for 50)’),
put(29).

WARNING: Attempting to debug or interrupt (with ^c ^c) this predicate, thus
submitting only a partial packet to GNU Emacs, will cause subsequent output
to be considered as a continuation of the current packet and disaster will ensue.
If such a situation occurs, try typing the command

put(29).

to terminate the packet. You may want to consider using a critical region to
prevent this problem, see library(critical).

You will notice that after the message (‘hello’) is printed out in the message buffer (also
called the minibuffer in GNU Emacs literature) and the “sit-for” period expires, it then
disappears. This is a side-effect of the design of the GNU Emacs interface. Any Emacs-Lisp
function that is called by Prolog should display messages using the function

(&qp-message message-string)

Chapter 4: The Emacs Interface 95

where message-string must be a single string (this is unlike message, which can take multiple
strings; use the Emacs-Lisp function concat to make a single string out of multiple strings).
This string will be displayed in the message buffer after GNU Emacs has processed the
current “packet” from Prolog. Therefore, if you redefine the predicate as

to_emacs :-
put(30),
write(’(&qp-message "hello")’),
put(29).

and reinvoke it, you will find that the message remains in the message buffer.

96 Quintus Prolog

Chapter 5: The Visual Basic Interface 97

5 The Visual Basic Interface

Quintus Prolog provides an interface that lets you load and call Quintus Prolog programs
from Visual Basic.

5.1 Overview

Quintus Prolog provides an easy-to-use one-directional Visual Basic interface that lets you
load and call Quintus Prolog programs from Visual Basic but not the other way around.
The idea is that Visual Basic is used for creating the user interface while the Prolog program
works as a knowledge server in the background.

The control structure of this interface is rather similar to that of the foreign language
interface. However, in contrary to that interface, there is currently no way of handling
pointers to Prolog terms or queries. The queries to be passed to Prolog have to be given as
strings on the Visual Basic side and the terms output by Prolog are received as strings or
integers in Visual Basic variables.

The interface provides functions for:

• passing a query to Prolog
• evaluating the Prolog query
• retrieving a value (string or integer) assigned to a variable by the Prolog query
• getting information about the exceptions that have occurred in the Prolog query

5.2 How to Call Prolog from Visual Basic

5.2.1 Opening and Closing a Query

Prolog queries are represented in Visual Basic in textual form, i.e. as a string containing
the query, but not followed by a full stop. For example, the following Visual Basic code
fragments create valid Prolog queries:

98 Quintus Prolog

’Q1 is a query finding the first "good" element of the list [1,2,3]
Q1 = "member(X,[1,2,3]), good(X)"

’create a Q2 query finding the first "good" element of the list
’[1,2,...,N]:
Q2 = "member(X,["
For i = 1 To N-1

Q2 = Q2 & i & ","
Next
Q2 = Q2 & N & "]), good(X)"

Before executing a query, it has to be explicitly opened, via the PrologOpenQuery function,
which will return a query identifier that can be used for successive retrieval of solutions.

The PrologCloseQuery procedure will close the query represented by a query identifier.
The use of an invalid query identifier will result in undefined behavior. For example:

Dim qid As Long

Q1 = "member(X,[1,2,3]), good(X)"
qid = PrologOpenQuery(Q1)

... <execution of the query> ...

PrologCloseQuery(qid)

5.2.2 Finding the Solutions of a Query

Prolog queries can be executed with the help of the PrologNextSolution function: this
retrieves a solution to the open query represented by the query identifier given as the
parameter. Returns 1 on success, 0 on failure, -1 on error.

5.2.3 Retrieving Variable Values

After the successful return of PrologNextSolution, the values assigned to the variables
of the query can be retrieved by specific functions of the interface. There are separate
functions for retrieving the variable values in string, quoted string and integer formats.

The PrologGetLong function retrieves the integer value of a given variable within a query
and assigns it to a variable. That is, the value of the given variable is converted to an
integer. Returns 1 on success.

Example: The following code fragment assigns the value 2 to the variable v:

Chapter 5: The Visual Basic Interface 99

Dim qid As Long

Q = "member(X,[1,2,3]), X > 1"

qid = PrologOpenQuery(Q)
Call PrologNextSolution(qid)
Call PrologGetLong(qid,"X",v)

The PrologGetString function retrieves the value of a given variable in a query as a string.
That is, the value of the variable is written out using the write/2 Prolog predicate, and
the resulting output is stored in a Visual Basic variable. Retuns 1 on success.

Example: suppose we have the following clause in a Prolog program:

capital_of(’Sweden’-’Stockholm’).

The code fragment below assigns the string "Sweden-Stockholm" to the variable capital:

Dim qid As Long

Q = "capital_of(Expr)"

qid = PrologOpenQuery(Q)
If PrologNextSolution(qid) = 1 Then
Call PrologGetString(qid,"Expr",capital)

End if
Call PrologCloseQuery(qid)

The PrologGetStringQuoted function is the same as PrologGetString, but the conversion
uses the writeq/2 Prolog predicate. Returns 1 on success.

Example: if the function PrologGetStringQuoted is used in the code above instead of the
PrologGetString function, then the value assigned to the variable capital is "’Sweden’-
’Stockholm’".

The only way of transferring information from Prolog to Visual Basic is by the above three
PrologGet... functions. This means that, although arbitrary terms can be passed to Visual
Basic, there is no support for the transfer of composite data such as lists or structures. We
will show examples of how to overcome this limitation later in the manual (see Section 5.4
[vb-ex], page 101).

5.2.4 Evaluating a Query with Side-Effects

If you are only interested in the side-effects of a predicate you can execute it with the
PrologQueryCutFail function call, which will find the first solution of the Prolog goal
provided, cut away the rest of the solutions, and finally fail. This will reclaim the storage
used by the call.

100 Quintus Prolog

Example: this is how a Prolog file can be loaded into the Visual Basic program:

ret = PrologQueryCutFail("load_files(myfile)")

This code will return 1 if myfile was loaded successfully, and -1 otherwise (this may indicate,
for example, the existence_error exception if the file does not exist).

5.2.5 Handling Exceptions in Visual Basic

If an exception has been raised during Prolog execution, the functions PrologQueryCutFail
or PrologNextSolution return -1. To access the exception term, the procedure
PrologGetException can be used. This procedure will deposit the exception term in string
format into an output parameter, as if written via the writeq/2 predicate.

Example: when the following code fragment is executed, the message box will display the
domain_error(_1268 is 1+a,2,expression,a) error string.

Dim exc As String

qid = PrologOpenQuery("X is 1+a")
If PrologNextSolution(qid) < 0 Then

PrologGetException(exc)
Msg exc,48,"Error"

End if

5.3 How to Use the Interface

In this section we describe how to create a Visual Basic program that is to execute Prolog
queries.

5.3.1 Setting Up the interface

The Visual Basic - Quintus Prolog interface consists of the following files:

• ‘vbqp.dll’ (The Prolog code and Quintus runtime)
• ‘vbqp.bas’ (The Visual Basic code)

In order to use the interface, perform the following steps:

• Include the file ‘vbqp.bas’ in your Visual Basic project.
• Put ‘vbqp.dll’ in a place where DLLs are searched for (for example the same directory

as your applications EXE file or the Windows-System directory). Alternatively put it in
‘quintus-dir\bin\ix86\’ and ensure that ‘quintus-dir\bin\ix86\’ is in the PATH
environment variable.

Chapter 5: The Visual Basic Interface 101

• Make the Quintus runtime DLL etc. available. Typically by running ‘qpvars.bat’ or
by putting ‘quintus-dir\bin\ix86\’ in the PATH environment variable.

5.3.2 Initializing the Prolog engine

The Visual Basic interface must be explicitly initialized: you must call PrologInit() before
calling any other interface function. The PrologInit() function loads and initializes the
interface. It returns 1 if the initialization was successful, and -1 otherwise.

5.3.3 Deinitializing the Prolog Engine From VB

The Visual Basic interface should be deinitialized: you should call PrologDeInit() before
exiting e.g. from a Form_Unload method.

5.3.4 Loading the Prolog code

Prolog code (source or QOF) can be loaded by submitting normal Prolog load predicates
as queries. Note that Quintus uses slashes ‘/’ in file names where Windows uses backslash
‘\’. Example:

PrologQueryCutFail("load_files(’d:/xxx/myfile’)")

To facilitate the location of Prolog files, two file search paths are predefined:

app identifies the directory path of the Visual Basic project or the applications
executable.
That is, you can load the file myfile located in the same directory as the
project/executable, issuing the query:

PrologQueryCutFail("load_files(app(myfile))")

vbqp identifies the directory path of the ‘vbqp.dll’ file.
That is, you can use the following query to load the file myfile if it is located
in the same directory as ‘vbqp.dll’:

PrologQueryCutFail("load_files(vbqp(myfile))")

5.4 Examples

The code for the following examples are available in the directory ‘examples’ in the ‘VBQP’
directory.

102 Quintus Prolog

5.4.1 Example 1 - Calculator

This example contains a simple program that allows you to enter an arithmetic expression
(conforming to Prolog syntax) as a string and displays the value of the given expression, as
shown in the following figure:

The calculation itself will be done in Prolog.

We now we will go through the steps of developing this program.

1. Start a new project called calculator.
2. Add the ‘vbsp.bas’ file to the project.
3. Create a form window called calculator. Edit it, adding two textboxes txtExpr and

txtValue, and two command buttons, cmdCalc and cmdQuit:

Save the form window to the ‘calculator.frm’ file. Then the project will contain the
following two files:

Chapter 5: The Visual Basic Interface 103

4. Write the Prolog code in the file ‘calc.pl’, evaluating the given expression with the
is/2 predicate, and providing a minimal level of exception handling:

prolog_calculate(Expr, Value) :-
on_exception(Exc, Value is Expr, handler(Exc,Value)).

handler(domain_error(_,_,_,_),’Incorrect expression’).
handler(Exc,Exc).

Note that this example focuses on a minimal implementation of the problem, more
elaborate exception handling will be illustrated in the Train example (see Section 5.4.2
[vb-ex-tr], page 104).
Compile this file, and deposit the file ‘calc’ in the directory where the calculator.vbp
project is contained.

5. Now you have to write the Visual Basic code in which Quintus Prolog will be called at
two points:
• Initialize Prolog in the Form_Load procedure executed when the calc form is

loaded, calling the PrologInit() function and loading the ‘calc’ file with the
help of the PrologQueryCutFail(..)) function:

Private Sub Form_Load()
If PrologInit() <> 1 Then GoTo Err
If PrologQueryCutFail("ensure_loaded(app(calc))") <> 1 Then GoTo Err
Exit Sub

Err:
MsgBox "Prolog initialization failed", 48, "Error"
Unload Me

End Sub

• Do the expression evaluation in the calculate procedure activated by the cmdRun
command button. This procedure will execute the prolog_calculate(X,Y) pro-
cedure defined in the ‘calc.pl’ Prolog file:

104 Quintus Prolog

Public Function calculate(ByVal Expr As String) As String
Dim qid As Long
Dim result As String
Dim ret As Long
Dim Q As String

Q = "prolog_calculate(" & Expr & ",Value)"
qid = PrologOpenQuery(Q)
If qid = -1 Then GoTo Err ’ e.g. syntax error

ret = PrologNextSolution(qid)
If ret <> 1 Then GoTo Err ’ failed or error

ret = PrologGetString(qid, "Value", result)
If ret <> 1 Then GoTo Err
calculate = result
Call PrologCloseQuery(qid)

Exit Function

Err:
MsgBox "Bad expression", 48, "Error!"
calculate = ""

End Function

• Deinitialize Prolog in the Form_Unload procedure executed when the calc form is
unloaded, e.g. when the application exits.

Private Sub Form_Unload(Cancel As Integer)
PrologDeInit

End Sub

5.4.2 Example 2 - Train

This example provides a Visual Basic user interface to the Prolog program finding train
routes between two points.

The Visual Basic program train contains the following form window:

Chapter 5: The Visual Basic Interface 105

Clicking the cmdRun command button will display all the available routes between
Stockholm and Orebro. These are calculated as solutions of the Prolog query
places(’Stockholm’,’Orebro’,Way). For each solution, the value assigned to the variable
Way is retrieved into the Visual Basic variable result and is inserted as a new item into
the listConnection listbox.

The Visual Basic program consists of four parts:

• loading the Prolog code
• opening the query
• a loop generating the solutions, each cycle doing the following

− requesting the next solution
− getting the value of the solution variable
− adding the solution to the listbox

• closing the query

106 Quintus Prolog

Private Sub cmdRun_Click()
Dim qid As Long
Dim result As String
Dim s As String
Dim rc As Integer

qid = -1 ’ make it safe to PrologCloseQuery(qid) in Err:

’load the ‘train.pl’ Prolog file
rc = PrologQueryCutFail("ensure_loaded(app(train))")
If rc < 1 Then

Msg = "ensure_loaded(train)"
GoTo Err

End If
’open the query
qid = PrologOpenQuery("places(’Stockholm’,’Orebro’,Way)")
If qid = -1 Then

rc = 0
Msg = "Open places/3"
GoTo Err

End If
’generate solutions
Do

rc = PrologNextSolution(qid)
If rc = 0 Then Exit Do ’ failed
If rc < 0 Then

Msg = "places/3"
GoTo Err

End If
If PrologGetString(qid, "Way", result) < 1 Then

rc = 0
Msg = "PrologGetString Way"
GoTo Err

End If
listConnections.AddItem result

Loop While True
’after all solutions are found, the query is closed
Call PrologCloseQuery(qid)
Exit Sub

Note that each part does elaborate error checking and passes control to the error display
instructions shown below:

Chapter 5: The Visual Basic Interface 107

Err:
Call PrologCloseQuery(qid) ’ Always close opened queries

’error message is prepared, adding either the - failed - or
’the - raised exception - suffix to the Msg string specific
’to the function called
If rc = 0 Then

Msg = Msg + " failed"
Else

Call PrologGetException(s)
Msg = Msg + " raised exception: " + s

End If
MsgBox Msg, 48, "Error"

End Sub

The Prolog predicate places/3 is defined in the ‘train.pl’ file, as mentioned earlier.

5.4.3 Example 3 - Queens

This example gives a Visual Basic user interface to an N-queens program. The purpose of
this example is to show how to handle Prolog lists through the Visual Basic interface. The
full source of the example is found in the distribution.

The user interface shown in this example will allow the user to specify the number of queens,
and, with the help of the Next Solution command button all the solutions of the N-Queens
problem will be enumerated. A given solution will be represented in a simple graphical way
as a PictureBox, using the basic Circle and Line methods.

108 Quintus Prolog

The problem itself will be solved in Prolog, using a queens(+N,?PositionList) Prolog
predicate, stored in the file ‘queens’.

We now present two solutions, using different techniques for retrieving Prolog lists.

Example 3a - N-Queens, generating a variable list into the Prolog call

The first implementation of the N-Queens problem is based on the technique of generating
a given length list of Prolog variables into the Prolog query.

For example, if the N-Queens problem is to be solved for N = 4, i.e. with the query
"queens(4,L)", then the problem of retrieving a list from Visual Basic will arise. However,
if the query is presented as "queens(4,[X1,X2,X3,X4])", then instead of retrieving the
list it is enough to access the X1,X2,X3,X4 values. Since the number of queens is not fixed
in the program, this query has to be generated, and the retrieval of the Xi values must be
done in a cycle.

This approach can always be applied when the format of the solution is known at the time
of calling the query.

We now go over the complete code of the program.

Global declarations used in the program (‘General/declarations’):

Dim nQueens As Long ’number of queens
Dim nSol As Long ’index of solution
Dim nActqid As Long ’actual query identifier
Dim nQueryOpen As Boolean ’there is an open query

Chapter 5: The Visual Basic Interface 109

The initialization of the program will be done when the form window is loaded:

Private Sub Form_Load()
nQueens = 0
nSol = 1
nQueryOpen = False

’initialize Prolog
If PrologInit() <> 1 Then GoTo Err
’Load ‘queens.pl’
If PrologQueryCutFail("load_files(app(queens))") <> 1 Then GoTo Err
Exit Sub

Err:
MsgBox "Prolog initialization failed", 48, "Error"
Unload Me

End Sub

Deinitialization of the Prolog engine will be done when the form windows is closed, exactly
as for the calculator example.

When the number of queens changes (i.e. the value of the text box textSpecNo changes), a
new query has to be opened, after the previous query, if there has been any, is closed.

Private Sub textSpecNo_Change()
nQueens = Val(textSpecNo)
nSol = 1

If nQueryOpen Then PrologCloseQuery (nActqid)

’create Prolog query in form: queens(4,[X1,X2,X3,X4])

Q = "queens(" & Str(nQueens) & ", ["
For i = 1 To nQueens - 1 Step 1

Q = Q & "X" & i & ","
Next
Q = Q & "X" & nQueens & "])"

nActqid = PrologOpenQuery(Q)
nQueryOpen = True

End Sub

The Next command button executes and shows the next solution of the current query:

110 Quintus Prolog

Private Sub cmdNext_Click()
Dim nPos As Long
Dim aPos(100) As Long

If Not nQueryOpen Then
MsgBox "Specify number of queens first!", 48, ""
Exit Sub

End If
If PrologNextSolution(nActqid) < 1 Then

MsgBox "No more solutions!", 48, ""
Else

For i = 1 To nQueens Step 1
If PrologGetLong(nActqid, "X" & i, nPos) = 1 Then

aPos(i - 1) = nPos
End If

Next i

’display nth solution
txtSolNo = "Solution number: " & Str(nSol)
Call draw_grid(nQueens)

nLine = 1
For Each xElem In aPos

Call draw_circle(nLine, xElem, nQueens)
nLine = nLine + 1

Next

nSol = nSol + 1
End If

End Sub

Drawing itself is performed by the draw_grid and draw_circle procedures.

Example 3b - N-Queens, converting the resulting Prolog list to an atom

The second variant of the N-Queens program uses the technique of converting the resulting
Prolog list into a string via the PrologGetString function, and decomposing it into an
array in Visual Basic. Here we show only those parts of the program which have changed
with respect to the first version.

In the textSpecNo_Change routine the queens/2 predicate is called with a single variable
in its second argument:

Q = "queens(" & Str(nQueens) & ",Queens)"
nActqid = PrologOpenQuery(Q)

Chapter 5: The Visual Basic Interface 111

In the cmdNext_Click routine the solution list is retrieved into a single string which is then
split up along the commas, and deposited into the aPos array by the convert_prolog_list
routine. (aPos is now an array of strings, rather than integers.)

Finally, we include the code of the routine for splitting up a Prolog list:

Private Sub convert_prolog_list(ByVal inList As String,
ByRef inArray() As String)

’drop brackets
xList = Mid(inList, 2, Len(inList) - 2)

i = 0

startPos = 1
xList = Mid(xList, startPos)

Do While xList <> ""
endPos = InStr(xList, ",")
If endPos = 0 Then

xElem = xList
inArray(i) = xElem
Exit Do

End If
xElem = Mid(xList, 1, endPos - 1)
inArray(i) = xElem
i = i + 1
xList = Mid(xList, endPos + 1)
startPos = endPos + 1

Loop
End Sub

5.5 Summary of the Interface Functions

In this section you will find a summary of the functions and procedures of the Visual Basic
interface:

Function PrologOpenQuery (ByVal Goal As String) As Long
This function will return a query identifier that can be used for successive
retrieval of solutions. Returns -1 on error, e.g. a syntax error in the query.

Sub PrologCloseQuery (ByVal qid As Long)
This procedure will close the query represented by a query identifier qid. Please
note: if qid is not the innermost query (i.e. the one opened last), then all more
recently opened queries are closed as well.

112 Quintus Prolog

Function PrologNextSolution(ByVal qid As Long) As Integer
This function retrieves a solution to the open query represented by the query
identifier qid. Returns 1 on success, 0 on failure, -1 on error. In case of
an erroneous execution, the Prolog exception raised can be retrieved with the
PrologGetException procedure. Please note: Several queries may be open
at the same time, however, if qid is not the innermost query, then all more
recently opened queries are implicitly closed.

Function PrologGetLong(ByVal qid As Long, ByVal VarName As String, Value As
Long) As Integer

Retrieves into Value the integer value bound to the variable VarName of the
query identified by qid, as an integer. That is, the value of the given variable
is converted to an integer. Returns 1 on success, i.e. if the given goal assigned
an integer value to the variable, otherwise it returns 0. If an error occurred it
returns -1, e.g. if an invalid qid was used.

Function PrologGetString(ByVal qid As Long, Val VarName As String, Value As
String) As Integer

Retrieves into Value the string value bound to a variable VarName of the query,
as a string. That is, the value assigned to the given variable is written out
into an internal stream by the write/2 Prolog predicate, and the characters
output to this stream will be transferred to Visual Basic as a string. Retuns 1
on success, i.e. if the given goal assigned a value to the variable, otherwise it
returns 0. If an error occurred it returns -1, e.g. if an invalid qid was used.

Function PrologGetStringQuoted(ByVal qid As Long, ByVal VarName As String,
Value As String) As Integer

Same as PrologGetString, but conversion uses Prolog writeq/2. Returns 1
on success, i.e. if the given goal assigned a value to the variable, otherwise it
returns 0. If an error occurred it returns -1, e.g. if an invalid qid was used.

Function PrologQueryCutFail (ByVal Goal As String) As Integer
This function will try to evaluate the Prolog goal, provided in string format,
cut away the rest of the solutions, and finally fail. This will reclaim the storage
used by the call. Returns 1 on success, 0 on failure and -1 on error.

Sub PrologGetException(ByRef Exc As String)
The exception term is returned in string format into the Exc string as if written
by the writeq/2 predicate. If there is no exception available then the empty
string is returned.

Function PrologInit() As Long
The function loads and initiates the interface. It returns 1 on success, and -1
otherwise.

Function PrologDeInit() As Long
The function deinitializes and unloads the interface, and returns any memory
used by the interface to the operating system. It returns 1 on success, and -1
otherwise.

Chapter 6: The Debugger 113

6 The Debugger

6.1 Debugging Basics

6.1.1 Introduction

This section explains the basic concepts and terminology used by the Quintus Prolog debug-
ger. Following sections describe the two debuggers available in the Quintus Prolog system:
the X Windows-based source linked debugger and the standard debugger.

The main features of the debugging package are:

• The “procedure box” control flow model of Prolog execution, which provides a simple
way of visualizing control flow, especially during backtracking.

• Full debugging of compiled code. It is not necessary to reload your program, or load it
in any special way, in order to debug it.

• The ability to exhaustively trace your program or to selectively set spypoints. Spypoints
allow you to specify procedures or goals where the program is to pause so that you can
interact.

• A wide choice of control and information options available during debugging.
• Tools to aid in the understanding of your program’s performance characteristics.

Debugging foreign code is discussed in Section 10.3.11 [fli-p2f-fcr], page 400.

6.1.2 The Procedure Box Control Flow Model

During debugging, the debugger stops at various points in the execution of a goal, allowing
you see what arguments the goal is called with, what arguments it returns with, and whether
it succeeds or fails. As in other programming languages, key points of interest are procedure
entry and return, but in Prolog there is the additional complexity of backtracking. One
of the major confusions that novice Prolog programmers have to face is the question of
what actually happens when a goal fails and the system suddenly begins backtracking. The
procedure box model of Prolog execution views program control flow in terms of movement
from clause to clause in the procedures of the program. This model provides a basis for the
debugging mechanism and enables the user to view program behavior in a consistent way.

Let us look at a representative Prolog procedure:

+--+
Call | | Exit

-------->| descendant(X, Y) :- offspring(X, Y). |------->
| |

114 Quintus Prolog

| descendant(X, Z) :- |
<--------| offspring(X, Y), descendant(Y, Z). |<-------

Fail | | Redo
+--+

The first clause states that Y is a descendant of X if Y is an offspring of X, and the second
clause states that Z is a descendant of X if Y is an offspring of X and if Z is a descendant
of Y. In the diagram a box has been drawn around the whole procedure; labeled arrows
indicate the control flow into and out of this box. There are four such arrows, which we
shall describe in turn.

Call This arrow represents an initial invocation of the procedure. When a goal of
the form descendant(X,Y) must be satisfied, control passes through the Call
port of the descendant/2 box with the intention of matching the head of a
component clause and then satisfying any subgoals in the body of that clause.
Notice that this is independent of whether such a match is possible; first the box
is called, and then the attempt to match takes place. Textually we can imagine
moving to the code for descendant/2 when meeting a call to descendant/2 in
some other part of the code.

Exit This arrow represents a successful return from the procedure. This occurs when
the initial goal has been unified with the head of one of the component clauses
and all subgoals have been satisfied. Control now passes out of the Exit port of
the descendant/2 box. Textually we stop following the code for descendant/2
and go back to the code we came from.

Redo This arrow indicates that a subsequent goal has failed and that the system is
backtracking in an attempt to find alternatives to previous solutions. Control
passes into the descendant/2 box through the Redo port. An attempt will now
be made to resatisfy one of the component subgoals in the body of the clause
that last succeeded; or, if that fails, to completely rematch the original goal
with an alternative clause and then try to satisfy any subgoals in the body of
this new clause. Textually we follow the code backwards up the way we came
looking for new ways of succeeding, possibly dropping down onto another clause
and following that if necessary.

Fail This arrow represents a failure of the initial goal, which might occur if no clause
is matched, or if subgoals are never satisfied, or if all solutions produced are
always rejected by later processing. Control now passes out of the Fail port of
the descendant/2 box and the system continues to backtrack. Textually we
move back to the code that called this procedure and keep moving backwards
up the code looking for new ways of succeeding.

Note that the box we have drawn around the procedure should really be seen as an invocation
box, rather than a procedure box. Often, there are many different Calls and Exits to
a particular procedure in the control flow, but these are for different invocations. Each
invocation box is given a unique integer identifier to prevent confusion.

Chapter 6: The Debugger 115

6.1.3 Understanding Prolog Execution Using The Debugger

The Quintus Prolog debugger extends the procedure box control flow model to add extra
information about the details of the execution of a goal, allowing you to better understand
how your code behaves, and its efficiency.

Prolog incorporates a backtracking mechanism as a basic feature, which allows Prolog pro-
grams to efficiently search for multiple solutions to a problem. A goal is determinate

if it has only one solution (or none). Often, this is what is desired. When a goal is not
determinate, Prolog must keep around information to allow it to backtrack to look for
alternate solutions. This extra information is called a choice point .

When a goal is intended to be nondeterminate, it may be expected to leave a choice point.
However, when a goal that is expected to be determinate leaves a choice point, this may
indicate an error in the program. In this case, the goal might succeed with the correct
answer, but on backtracking produce wrong answers or not terminate. At the very least, an
unnecessary choice point means that memory is being wasted. Quintus Prolog detects many
kinds of determinate goals, and either does not allocate a choice point at all, or deallocates it
as soon as possible, saving time and memory (see Section 2.5.2.1 [bas-eff-cut-ove], page 33).
Sometimes, however, you must help Prolog out by putting a cut

(see Section 2.5.2.2 [bas-eff-cut-mpd], page 34) in your program, or by using an if-then-else
(see Section 8.2.7 [ref-sem-con], page 186) construct. The Quintus Prolog debugger helps
you find such cases.

Quintus Prolog indexes on the first argument of a predicate. This means that if the first
arguments in the clauses of a predicate are not variables, and the first argument in a call
to that predicate is non-variable, then Prolog will go directly to the clause that matches,
without even considering those that don’t. Note that in order for this indexing to be very
efficient, it only looks at the principal functor of a compound term. This means that if
the first argument of one clause is a(a) and the first argument of the next clause is a(b),
indexing will not be able to distinguish these clauses, so both will need to be tried.

Actually, indexing is more complicated than this. Any clause whose head has a variable as
first argument will match any call, so indexing cannot be applied to this clause. Therefore,
a predicate can be divided into alternating groups of adjacent indexable and nonindexable
clauses. When the first argument of a call is non-variable, Quintus Prolog will skip over
any clauses that don’t match that argument, within a group of adjacent indexable clauses.
Quintus Prolog will then try every clause in a group of adjacent nonindexable clauses, and
then again skip nonmatching clause in an indexable group, and so on.

Even more important than time saved by indexing is its effect on determinacy. In effect,
indexing makes it possible to ignore clauses following the clause being tried, as well as
clauses preceding it. If it is possible to ignore all the clauses following the clause being
tried, then Prolog will not create a choice point, or if a choice point has already been

116 Quintus Prolog

allocated for the call, Prolog will de-allocate it. Careful use of indexing can save a great
deal time and memory running your program.

The Quintus Prolog debugger helps you understand these efficiency concerns, and also
Quintus Prolog’s exception handling, by extending the box model with three extra ports.
These ports are described below.

Done This is just like the Exit port, but signifies a determinate exit. This will help
you to find goals that are nondeterminate and shouldn’t be.

Head This port shows the clauses’ heads that will be tried for unification. At the
Head port, you will see which clause is about to be tried, and which clause
will be tried next if this clause fails. Note that the Head port is shown after
indexing is done, so it helps you understand how indexing is working for you.
And since it shows what clause will be tried next, it also helps you understand
how unexpected nondeterminacy may be creeping into your program.

Exception The Exception port signifies an exception being raised while executing a goal.

Here’s a more complete picture of the invocation box, including the extended ports.

+---------+------------------------------+
Call | | | Exit

-------->| ------>| descendant(X, Y) :- |------->
| Head | offspring(X, Y). |
| | | Done

<--------| | |------->
Fail | ------>| descendant(X, Z) :- |

| Head | offspring(X, Y), |
<--------| | descendant(Y, Z). |<-------
Exception| | | Redo

+---------+------------------------------+

6.1.4 Traveling Between Ports

The Quintus Prolog debugger provides a rich set of commands to move between ports (that
is, execute your program in a controlled way).

6.1.4.1 Basic Traveling Commands

creep Causes the debugger to single-step to the very next port.

skip Causes the debugger to skip, or ignore, the internal details of a procedure’s
execution. The debugger starts showing goals again when execution returns
to the invocation’s Done, Exit, Fail, or Exception port. If the debugger is
already at the invocation’s Done, Exit, Fail, or Exception port, then skipping is

Chapter 6: The Debugger 117

meaningless, and the debugger will just creep. Note that skipping is very fast,
running at nearly full compiled speed.
One important point about skipping: if the goal you skip over is not determi-
nate, and you later redo (backtrack) into the goal, you will not be able to see
the redos into goals that were skipped over. This is because the debugger does
not keep any information about the goals that have been skipped over, in order
to achieve much greater speed. You will, however, be able to see any new calls
that are executed in the process of trying to redo the goal.

nonstop Turns off the debugger for the rest of the execution of the top-level goal. When
the execution of this goal is completed, the debugger returns to its current
mode. This option does not turn the debugger off; to turn the debugger off,
you must type “nodebug.” at the main Prolog prompt. Like skip, nonstop
causes the debugger to run at nearly full compiled speed.

6.1.4.2 Spypoints

Spypoints allow you to indicate where to stop on a per-predicate or even per-goal basis.
For example, you might find that you want to run until some particular predicate is called.
In this case, you would set a spypoint on that predicate, using spy/1. Such spypoints are
turned off with nospy/1.

It may be desirable to stop when you get to a particular call from one predicate to another.
This can be done with the built-in predicate add_spypoint/1. These spypoints can be
removed with remove_spypoint/1.

To examine spypoints, use current_spypoint/1. Spypoints are also included in the output
of debugging/0. Finally, spypoints can be removed all at once with nospyall/0.

The debuggers also have commands for setting spypoints, which are easier to use than these
predicates.

6.1.4.3 Traveling Commands Sensitive to Spypoints

The basic traveling commands listed above all ignore spypoints; the following commands
take advantage of spypoints.

leap Causes the debugger to resume running your program, stopping only when
the next spypoint is reached, or when the program terminates. Leaping can
be used to follow the program’s execution at a higher level than exhaustive
tracing through creeping. This is done by setting spypoints on a set of pertinent
procedures or calls, then following the control flow through these by leaping
from one to the next.

quasi-skip Causes the debugger to resume running your program, stopping when the next
spypoint is reached. It also ensures that the debugger will stop at the current

118 Quintus Prolog

invocation’s Done, Exit, Fail, or Exception port, when one is reached. Thus
quasi-skip is a combination of leaping and skipping. You may use it to travel
to the next spypoint while also marking a place to stop when execution returns
there.

zip Is just like leap, except that the debugger does not keep any debugging infor-
mation while looking for a spypoint, so it runs at nearly full compiled speed. It
does mean that the debugger will be unable to show you the ancestors between
the invocation you zipped from and the invocation you stopped at.
Zipping gives up some information in exchange for greatly increased speed. This
is not always desirable, but sometimes is very helpful. A good use for zipping
might be to run through a time-consuming initial part of a computation that
is known to work properly, and stop at the beginning of a part that has a bug.
From that point, you might use leaping, creeping, and skipping to locate the
bug.

6.1.4.4 Commands That Change The Flow Of Control

The debugger also has these commands that alter the flow of control of your program.

retry This can be used at any of the seven ports (although at the Call port it has
no effect). Control is transferred back to the Call port of the box. It allows
you to restart an invocation when, for example, you find yourself leaving with
some incorrect result. The state of execution is exactly the same as when you
originally called the procedure, except that clauses that have been changed by
the database modification predicates will not be changed back to their original
state.

fail This is similar to Retry except that it transfers control to the Fail port of the
current box. It places your execution in a situation in which it is about to
backtrack out of the current invocation, having failed the goal.

6.1.5 Debugger Concepts

6.1.5.1 Trace Mode, Debug Mode, And Zip Mode

The debugger has three modes of operation: trace mode, debug mode, and zip mode. While
trace mode is in force, every time you type a goal at the top level, the debugger starts single-
stepping (creeping) immediately. In contrast, while debug mode is in force, the debugger
does nothing until a call is made to a procedure or goal on which you have placed a spypoint.
That is, it starts by leaping. Similarly, when in zip mode, the debugger begins by zipping.

The debugger mode (trace, debug, or zip) determines the first procedure call that will be
traced after a goal is typed at top level. There is no other difference among the three

Chapter 6: The Debugger 119

modes. Whenever the debugger prompts you for input, you have a number of options,
including those of creeping (single-stepping) leaping (jumping to the next spypoint), and
zipping (jumping to the next spypoint without keeping debugging information).

The debugger mode can be set by using

• prolog_flag/3 (see Section 8.10.1 [ref-lps-ove], page 245)
• trace/0

• debug/0

• spy/1 also starts the debug mode if the debugger was off.
• ^c interrupts: d for debug mode, and t for trace mode.
• the Debug menu of the QUI main window (see Section 3.2.1.2 [qui-mai-mai-deb],

page 56)

6.1.5.2 Leashing

The purpose of leashing is to allow you to speed up single-stepping (creeping) through a
program by telling the debugger that it does not always need to wait for user interaction
at every port.

The leashing mode only applies to procedures that do not have spypoints on them, and it
determines which ports of such procedures are leashed. By default, all ports are leashed.
On arrival at a leashed port, the debugger will stop to allow you to look at the execution
state and decide what to do next. At unleashed ports, the goal is displayed but program
execution does not stop to allow user interaction.

At any time, there is a leashing mode in force, which determines at which of the seven
ports of a procedure box (Call, Exit, Redo, Fail, Done, Head, and Exception) the debugger
will stop and wait for a command. By default, the debugger will stop at every port, but
sometimes you may wish to reduce the number of times you have to issue commands. For
example, it is often convenient only to have to interact at the Call, Redo, and Exception
ports.

To set the leashing mode, that is, to specify ports for leashing, call leash/1. The leashing
mode can also be set from the options menu of the source linked debugger (see Section 6.2
[dbg-sld], page 121).

Please note: Spypoints are not affected by leashing; the debugger will always
stop at every port for a procedure or call on which there is a spypoint.

6.1.5.3 Locked Predicates

To allow users to produce code that cannot be debugged by others (for security reasons),
Quintus Prolog 3.0 supports the concept of a locked predicate. A locked predicate will be

120 Quintus Prolog

treated by the debugger as opaque: users will not be able to creep into it. The debugger
will behave in much the same way for locked predicates as it does for built-ins.

Predicates may be locked by specifying the ‘-h’ switch to qpc when compiling a file. See
the documentation for qpc, Section 9.1.2 [sap-srs-qpc], page 341.

6.1.5.4 Unknown Procedures

The built-in predicate prolog_flag/3 or unknown/2 can be used to determine or set Pro-
log’s behavior when it comes across an undefined predicate. By default, unknown procedures
raise an exception.

Procedures that are known to be dynamic fail when there are no clauses for them.

When an undefined predicate is called and the undefined predicate behavior is set to error
rather than fail, unknown_predicate_handler/3 is called in module user. By defining
this predicate, you can (selectively) trap calls to undefined predicates in a program.

6.1.5.5 Current Debugging State

Information about the current debugging state includes the following:

• the top-level state of the debugger
• the type of leashing in force
• the action to be taken on undefined predicates
• all the current spypoints

This information can be displayed by calling debugging/0.

6.1.6 Summary of Predicates

• add_spypoint/1

• current_spypoint/1

• debug/0

• debugging/0

• leash/1

• nodebug/0

• nospy/1

• nospyall/0

• notrace/0

• remove_spypoint/1

• spy/1

Chapter 6: The Debugger 121

• trace/0

• unknown/2

• unknown_predicate_handler/3

6.2 The Source Linked Debugger

6.2.1 Introduction

Quintus Prolog’s source linked debugger allows you to see the source for the code you are
running as you step through the debugging. It also provides convenient, window-based ways
of debugging your code, and provides several optional continuously-updated views of your
program’s execution state as debugging proceeds.

+--+---+
| - | Quintus Debugger: family.pl | o |
+--+---+
| File Options Debug Window Travel Help |
+-----+----+----+---+----------+-----+----+--------+----------+----------+
|Creep|Skip|Leap|Zip|Quasi-skip|Retry|Fail|Frame Up|Frame Down|Frame Back|
+-----+----+----+---+----------+-----+----+--------+----------+----------+
| Depth: Predicate: |
+--+-+
% Family Relationships example	
% parent(?Parent, ?Child)	
parent(henry, peter).	
parent(marie, peter).	
parent(henry, judy).	
parent(marie, judy).	
parent(henry, henry2).	
parent(marie, henry2).	
parent(henry, susan).	
parent(marie, susan).	
parent(peter, peter2).	
+--+-+
+--+-+

This picture shows what the source-linked debugger looks like. At the top of the picture is
the debugger window’s title bar, which shows the name of the file currently being shown in
the source code window. Below this is a menu bar showing names of the available menus.
Next is a row of buttons that are used to travel between ports while debugging. Below
this is a status panel that shows you useful information about the current debugging state.

122 Quintus Prolog

Finally, a scrolling window shows you where in your source code your current execution
state is. All of these parts of the debugger are explained below.

The source-linked debugger is displayed either by selecting one of the first three options in
the Debug pulldown in the menu bar of the QUI main window (see Section 3.2.1.1 [qui-mai-
mai-fil], page 56), by selecting the Trace button in the interrupt dialogue (see Section 3.2.4
[qui-mai-int], page 58), or by turning on the debugger with the trace/0, debug/0, or
prolog_flag/3 built-ins (see Section 6.1.5.1 [dbg-bas-con-tdz], page 118).

An alternative way of accessing the source-linked debugger is via the Emacs interface (see
Section 4.1.4 [ema-ove-sld], page 82).

6.2.2 Showing Your Place In The Source Code

The source linked debugger shows your place in your source code by positioning an arrow
near the goal being executed or clause to be tried. The position of the arrow and the
direction in which it points reflect which debugger port you are at (see Section 6.1.2 [dbg-
bas-pbx], page 113).

To help you visualize how this works, we repeat the picture of the procedure box from
Section 6.1.3 [dbg-bas-upe], page 115:

+---------+------------------------------+
Call | | | Exit

-------->| ------>| descendant(X, Y) :- |------->
| Head | offspring(X, Y). |
| | | Done

<--------| | |------->
Fail | ------>| descendant(X, Z) :- |

| Head | offspring(X, Y), |
<--------| | descendant(Y, Z). |<-------
Exception| | | Redo

+---------+------------------------------+

6.2.2.1 The Call Port

The call port is shown by an arrow to the left of a goal, pointing toward it. This indicates
the arrival at a goal.

descendant(X, Y) :-
---> parent(X, Y).

descendant(X, Z) :-
parent(X, Y),
descendant(Y, Z).

The Call Port

Chapter 6: The Debugger 123

6.2.2.2 The Exit And Done Ports

The exit and done ports are shown by an arrow to the right of a goal, pointing away from
it. This indicates the successful completion of a goal. The exit port is distinguished from
the done port by having a forked tail; this is meant to reflect the fact that this is only one
of possibly many solutions to this goal. The done port signifies a determinate exit. This
will help you find goals that are nondeterminate and shouldn’t be.

descendant(X, Y) :-
parent(X, Y). ===>

descendant(X, Z) :-
parent(X, Y),
descendant(Y, Z).

The Exit Port

descendant(X, Y) :-
parent(X, Y). --->

descendant(X, Z) :-
parent(X, Y),
descendant(Y, Z).

The Done Port

6.2.2.3 The Redo Port

The redo port is shown by an arrow to the right of the goal, pointing toward it. This
indicates that an alternate solution to a completed goal is being sought.

descendant(X, Y) :-
parent(X, Y). <---

descendant(X, Z) :-
parent(X, Y),
descendant(Y, Z).

The Redo Port

6.2.2.4 The Fail Port

The fail port is shown by an arrow to the left of the goal, pointing away from it. This
indicates that no (more) solutions to this goal can be found.

descendant(X, Y) :-
<--- parent(X, Y).

descendant(X, Z) :-
parent(X, Y),
descendant(Y, Z).

124 Quintus Prolog

The Fail Port

6.2.2.5 The Head Port

The head port is shown as an arrow to the left of the clause, pointing toward it. This
indicates which clause is about to be tried. If there are other clauses to be tried after this
one, The tail of the arrow will be forked (suggesting that this is only one of possibly many
clauses to be tried) and a smaller arrow will indicate the next clause to be tried. Note that
indexing may mean that this is not the textually following clause.

parent(henry, peter).
parent(marie, peter).

===> parent(henry, judy).
parent(marie, judy).

-> parent(henry, henry2).
parent(marie, henry2).
parent(henry, susan).
parent(marie, susan).

Nondeterminate Head Port

parent(henry, peter).
parent(marie, peter).
parent(henry, judy).
parent(marie, judy).
parent(henry, henry2).
parent(marie, henry2).

---> parent(henry, susan).
parent(marie, susan).

Determinate Head Port

6.2.2.6 The Exception Port

The exception port is shown as an arrow to the left of the goal, pointing away from it. The
tail of this arrow is broken, suggesting that something may be wrong with the program or
data.

descendant(X, Y, 1) :-
parent(X, Y).

descendant(X, Z, N) :-
parent(X, Y),

<- - descendant(Y, Z, N1),
N1 is N+1.

The Exception Port

Chapter 6: The Debugger 125

6.2.3 When Source Linking Is Not Possible

Sometimes the debugger cannot find the source code for a predicate. This will happen
when there is no source code, or when the correspondence between the compiled code and
source code cannot be determined. For example, a dynamic predicate does not necessarily
have source code, and so the debugger currently cannot show source. Similarly, a meta-call
(executing a term with call/1) does not have any source code. The debugger also often
cannot find the source code of clauses produced by term_expansion/2. Predicates that are
compiled from user do not have source either!

When source linking is not possible, the debugger will show as much of the clause as it
knows in place of the source file, with the appropriate arrows. At a head port, it will show
the goal being called, followed by ‘:- ...’ indicating that this goal will be matched with
the head of a clause. For the head of a predicate descendent/2, it might look like this:

===> dynamic_pred(_743) :- ...

At a call port whose source code cannot be shown, the debugger will show ‘... :-’ followed
by the goal, indicating that this goal is in some unknown clause. The arrow will be as
appropriate for that port. The call port for a call to descendant/2 might look like this:

... :- ---> descendant(peter, _749).

6.2.4 Traveling Between Ports

The source linked debugger provides a set of buttons to allow you to move from port to port
while debugging. The debugger’s travel commands are described in Section 6.1.4 [dbg-bas-
tra], page 116; these buttons are labeled with the names of the commands, so using them
should be straightforward.

+-----+----+----+---+----------+-----+----+- +----------+
|Creep|Skip|Leap|Zip|Quasi-skip|Retry|Fail| ... |Frame Back|
+-----+----+----+---+----------+-----+----+- +----------+

The Traveling Buttons

When framed up, the skip, retry, and fail buttons operate relative to the invocation shown.
Framing up is explained in Section 6.2.5 [dbg-sld-anc], page 125.

6.2.5 Seeing Ancestor Frames

The source linked debugger also provides a set of buttons to allow you to view ancestor
invocation frames.

-+--------+----------+----------+
|Frame Up|Frame Down|Frame Back|

126 Quintus Prolog

-+--------+----------+----------+
The Framing Buttons

The Frame Up button will show you the invocation before the one you are viewing. That
means that the arrow will point to the place the invocation you are currently viewing was
called from. Repeatedly hitting the Frame Up button will cause you to continue to traverse
up through parent invocations, eventually stopping at the goal you typed at the top level
prompt.

The Frame Down button may be used after you have framed up to take you back down
toward the current invocation frame.

The Frame Back button will immediately take you back to the current invocation frame.
This may also be used when you have framed up or scrolled the source window, and want
to instantly scroll back to show the current invocation frame, or even if you are viewing
another source file in the source window and want to get back.

In order to remind you when the goal you are viewing is not the current invocation frame,
the arrow shown in the source window is hollow, or “ghosted”, rather than the usual solid
arrow.

|\
+-------+ \
| >
+-------+ /

|/
Ghost Arrow Shows Ancestor Frame

When you have framed up, certain travel buttons are interpreted relative to the frame you
are currently viewing. Skip will skip over the invocation you are viewing (this is very handy
if you have accidentally crept into a procedure you don’t want to debug). Redo and Fail will
take you to the call and fail ports of the selected invocation, respectively. All other travel
buttons are disabled when you have framed up. You must either frame down or frame back
in order to travel from the current invocation.

6.2.6 Debugger Menus

The source linked debugger has many options and commands that are invoked by menus.
These are the menus available in the debugger window:

+---+
| File Options Spypoints Window Travel Help |
+---+

Debugger Menus

Below is a description of each menu and what it is used for.

Chapter 6: The Debugger 127

6.2.6.1 The File Menu

The File menu contains commands that affect the file that is being debugged, and the
debugger as a whole. The file menu is selected by clicking its button in the dubber window.
The commands in the File menu are:

+---------------+
| Open... |
+---------------+
| Edit Source |
+---------------+
|===============|
+---------------+
| Nonstop |
+---------------+
| Break |
+---------------+
| Abort |
+---------------+
|===============|
+---------------+
| Quit Debugger |
+---------------+

Selecting The File Menu

The Open command allows you to view another file in the source debugger window. This
gives you a convenient way to set spypoints. When you select Open, the debugger pops up
a dialogue, which allows you to select the file to view. Note that only files that have been
loaded into Prolog can be viewed. The Frame Back button, described above, provides a
convenient way to return to the current debugging invocation frame.

The Edit Source command provides a quick and convenient way to begin editing the file in
the debugger window. A QUI editor window is opened on the file currently shown in the
debugger window.

The Nonstop command turns off the debugger for the rest of the execution of the top-level
goal. When the execution of this goal is completed, the debugger returns to its current mode
(trace, debug, or zip). This option does not turn the debugger off; to turn the debugger off,
you must use the Quit Debugger option, or type nodebug. at the main Prolog prompt.

The Break command calls the built-in predicate break/0, thus suspending the execution
so far and putting you at the equivalent of a new Prolog top level. (See the description of
break/0 in Section 8.11.1 [ref-iex-int], page 250.) The new execution is separate from the
suspended one, and invocation numbers will start again from 1. The debugger is turned off,
and the debugger window is closed, when the break level is entered, although the spypoints
and leashing of the suspended level are retained. When you end the break (by typing the
end-of-file character), execution will resume and you will be prompted once again at the

128 Quintus Prolog

port that you left. Changes to leashing or to spypoints will remain in effect after the break
has finished.

The Abort command aborts (abandons) the current execution. All the execution states
built so far are destroyed, and execution restarts at the top level (or current break level).

The Quit Debugger command turns off the debugger altogether, just like the nodebug/0
command (see Section 18.3.111 [mpg-ref-nodebug], page 1195). The debugger window is
also closed at this time, since it is only open when debugging is on.

6.2.6.2 The Options Menu

The Options menu allows you to change various aspects of the behavior of the source linked
debugger. The Options menu is selected by clicking its button in the debugger window as
shown.

+---------------------------+
| Print Format... |
+---------------------------+
| Leashing... |
+---------------------------+
|===========================|
+---------------------------+
| * Creep Initially (Trace) |
+---------------------------+
| o Leap Initially (Debug) |
+---------------------------+
| o Zip Initially |
+---------------------------+

Selecting The Options Menu

Beginning with the bottom part of the menu, the Creep, Leap, and Zip Initially toggles allow
you to set the current debugging mode (see Section 6.1.5.1 [dbg-bas-con-tdz], page 118).

The Print Format button brings up a dialogue that will allow you to change the way
goals will be printed when source linkage is impossible (see Section 6.2.3 [dbg-sld-whe],
page 125). This dialogue has a toggle button for each true/false write_term/[2,3] option
(see Reference page), and a place to enter a print depth limit. Leaving the print depth
empty (or setting it to 0) will mean that there is no depth limit; the goal will be printed in
full.

+---+
| * quoted * portrayed |
| |
| * character_escapes o number_vars |
| +------+ |
| o ignore_ops | 5 | max_depth |

Chapter 6: The Debugger 129

| +------+ |
| +----+ +--------+ |
| | Ok | | Cancel | |
| +----+ +--------+ |
+---+

The Print Format Dialogue

The Leashing button brings up a dialogue that lets you set your leashing mode (see Sec-
tion 6.1.5.2 [dbg-bas-con-lea], page 119).

+-----------------------------------+
| * Call * Redo |
| |
| * Head * Fail |
| |
| * Exit * Exception |
| |
| * Done |
| |
| +----+ +--------+ |
| | Ok | | Cancel | |
| +----+ +--------+ |
+-----------------------------------+

The Leashing Dialogue

6.2.6.3 The Spypoint Menu

The Spypoint menu allows you to set spypoints in your code by selecting the goal to be
spied with the mouse, thereby highlighting the goal, and then selecting a spy command (see
Section 6.1.4.2 [dbg-bas-tra-spy], page 117 for an explanation of spypoints). You may add
or remove spypoints from goals or predicates this way.

+-----------------+
| Spy Goal |
+-----------------+
| Nospy Goal |
+-----------------+
| Spy Predicate |
+-----------------+
| Nospy Predicate |
+-----------------+

Selecting The Spypoints Menu

Selecting the Spy Goal command will place a spypoint on the currently selected goal, and
selecting Nospy Goal will remove the spypoint. Selecting the Spy Predicate command will
place a spypoint on the predicate for which a goal (or clause head) is currently selected,

130 Quintus Prolog

and Nospy Predicate will remove the spypoint. The difference between goal and predicate
spypoints is that a spypoint on a predicate will stop the debugger regardless of how that
predicate is called, while a goal spypoint will only stop when the predicate is called from
that particular goal.

When a spypoint is placed on a goal, a small stop-sign is placed before that goal in the
debugger window, indicating that it is spied. Similarly, when a predicate is spied, a stop-sign
is placed before the first clause for that predicate.

6.2.6.4 The Window Menu

The Window menu allows you to pop up various windows, which provide useful information
not present in the debugger window. Selecting a window from this menu will open the
specified window, or, if it is already open, cause it to pop to the front of any windows that
might be covering it. This menu is available in all debugger windows.

+--------------------------+
| Debugger Window |
+--------------------------+
| Bindings Window |
+--------------------------+
| Standard Debugger Window |
+--------------------------+
| Ancestors Window |
+--------------------------+

The Windows Menu

Debugger Window refers to the main debugger window, and may be used when the debugger
window is covered by other windows to bring it to the front. The other windows, the Variable
Bindings Window, Standard Debugger Window, and Ancestors Window are discussed in
depth below. (see Section 6.2.8 [dbg-sld-oth], page 132)

6.2.6.5 The Travel Menu

The Travel Menu provides all the same commands as in the travel and framing panels, as
described in Section 6.2.4 [dbg-sld-tra], page 125. They are provided in a menu for those
who are more comfortable using menus, and also to document the keyboard shortcuts for
the traveling and framing commands.

+----------------------+
| Creep C |
| Skip S |
| Leap L |
| Zip Z |
| Quasi-skip Q |

Chapter 6: The Debugger 131

| Retry R |
| Fail F |
+----------------------+
| Frame Up Ctrl + U |
| Frame Down Ctrl + D |
| Frame Back Ctrl + B |
+----------------------+

The Travel Menu

6.2.6.6 The Help Menu

The On This Window item opens up the help window viewing the documentation on this
window. This menu is available in all debugger windows.

+----------------+
| On This Window |
+----------------+

The Help Menu

6.2.7 The Status Panel

The status panel is located just below the buttons in the debugger window, and shows the
invocation depth of the current arrow, as well as information about the called predicate.

+---+
| Depth: 1 Predicate: descendant/2 |
+---+

The Status Panel

Note that the depth shown is the depth of the frame currently being shown, so if you use the
Frame Up button to show ancestors (see Section 6.2.5 [dbg-sld-anc], page 125), the depth
will reflect the frame being shown.

The Predicate field first shows the module (if other than user), name, and arity of the
predicate being called. Second is shown information about the predicate and the port,
which is only shown when the there is something unusual or interesting to be noted about
the predicate or port. The information about the predicate is one of the following:

built_in for built-in predicates; or

locked for locked predicates; or

undefined
for undefined predicates; or

foreign for foreign predicates (defined in another programming language); or

dynamic for dynamic predicates; or

132 Quintus Prolog

multifile
for multifile predicates

Nothing is shown for ordinary user-defined static (compiled) procedures defined all in a
single file. The debugger also gives information that may help you understand why it has
stopped where it has. This information may be one of the following:

skipped if you previously skipped (or quasi-skipped) from this invocation; or

spied if there is a spypoint on this goal or predicate

6.2.8 Other Windows

Of course, you will want to know more than just which predicate is being called or which
clause is about to be tried. Other useful information includes the bindings of the variables
in the goal being executed, the history of your debugging session, and the ancestors (the
call stack) of the current goal. This information is available in separate windows, which you
may bring up using the window menu, as described in Section 6.2.6.4 [dbg-sld-men-wme],
page 130.

6.2.8.1 The Variable Bindings Window

The variable binding window shows the current bindings of the variables that appear in
source code for the goal being called. This information is displayed in a format similar to
that used when Prolog returns to the top level and shows the results of a user-typed goal.

For example, the variable bindings window might show the following:

+---+--+
| - | Quintus Debugger Variable Bindings |
+---+--+
| File Options Window Help |
+--+
X = henry	
Y = _749	
+--+-+
+--+-+

The Variable Bindings Window

Unlike the other windows provided by the debugger, the variable bindings window changes
its display depending on which frame is being shown in the main debugger window. This
allows you to examine the current bindings for the arguments to any ancestor goal. See
Section 6.2.5 [dbg-sld-anc], page 125 for more information on the debugger’s framing com-
mands.

Chapter 6: The Debugger 133

6.2.8.2 The Standard Debugger Window

The standard debugger window shows what would be shown by the standard debugger (see
Section 6.3 [dbg-sdb], page 134). This gives you a history of the debugging session from the
time you opened the Standard Debugger window that you may scroll back through later to
review what has happened. The standard debugger window might look like this:

+---+--+
| - | Quintus Standard Debugger |
+---+--+
| File Options Window Help |
+--+
(2) 1 Exit: parent(henry,peter)	
(1) 0 Exit: descendant(henry,peter)	
(1) 0 Redo: descendant(henry,peter)	
(2) 1 Redo: parent(henry,peter)	
+--+-+
+--+-+

The Standard Debugger Window

6.2.8.3 The Ancestors Window

The ancestors window shows the current invocation and all its ancestors, and is continuously
updated. It can be a very powerful tool in debugging, as it lets you quickly see how variable
bindings propagate to ancestor goals. The ancestors window might look like this:

+---+--+
| - | Quintus Debugger Ancestor List |
+---+--+
| File Options Window Help |
+--+
(8) 3 : parent(peter2,_749)	
(7) 2 : descendant(peter2,_749)	
(4) 1 : descendant(peter,_749)	
(1) 0 : descendant(henry,_749)	
+--+-+
+--+-+

The Ancestors Window

Since the ancestors window is updated every time the debugger stops, when there are very
many ancestors, you may notice some slowdown in the debugger. In this case, you may
wish to close the ancestors window, and only open it when you really need to examine the

134 Quintus Prolog

ancestors. Usually, though, the slowdown caused by having the ancestors window open is
small.

6.2.8.4 Menus For These Windows

All of these extra windows have the same menus, with the same options. These menus are
as follows:

+--+
| File Options Window Help |
+--+

Extra Window Menus

The File menu contains only a close command, which simply closes that window:

+-------+
| Close |
+-------+

The Extra Window File Menu

The Options menu contains only a Print Format command:

+-----------------+
| Print Format... |
+-----------------+

The Extra Window Options Menu

Selecting Print Format will pop up a dialogue, which allows you to control the printout of the
information in that window. The operation of this dialogue is explained in Section 6.2.6.2
[dbg-sld-men-opt], page 128.

Note that changing the print format of the variable bindings window or the ancestors
window will cause that window to be updated immediately, to reflect the new print format.
However, changing the print format of the standard debugger window will only change the
format of subsequent entries in the window; lines already written will not be changed.

6.3 The Standard Debugger

The standard debugger is a traditional terminal-based (as opposed to window-based) de-
bugger. Section 6.1.1 [dbg-bas-bas], page 113 describes the basic debugger facilities; this
section only describes the features of the standard debugger.

Chapter 6: The Debugger 135

6.3.1 Format of Debugging Messages

After you turn on the debugger and type the goal you want to debug, the system begins to
show the steps of the procedure’s execution. As the system passes through each port of a
procedure, it displays a debugging message on your terminal.

A sample debugging message and an explanation of its symbols are shown below.

** (23) 0 Call (dynamic): mymodule:foo(hello,there,_123) ?

‘**’ The first two characters indicate whether this is a spypoint and whether this
port is being entered after a ‘skip’. The possible combinations are:

‘**’ This is a spypoint. (foo/3 has been spied.)

‘*>’ This is a spypoint; you are returning from a ‘skip’.

‘ >’ This is not a spypoint; you are returning from a ‘skip’.

‘ ’ This is not a spypoint. (For this condition, two blank spaces are
displayed at the left of the message.)

‘(23)’ The number in parentheses is the unique invocation identifier. This identifies
a particular call to the procedure. This number can be used to correlate the
trace messages for the various ports, since it is unique for every invocation. It
will also give an indication of the number of procedure calls made since the
start of the execution. The invocation counter is reset to 1 whenever a new
goal is typed at the top level, and is also reset when retries (see Section 6.1.4.4
[dbg-bas-tra-ccf], page 118) are performed.

‘0’ The next number is the current depth — that is, the number of direct ancestors
this goal has. The ancestors can be printed using the g debugging option. The
depth increases as procedures are called and decreases as procedures return.
There may be many goals at the same depth, which is why the unique invocation
identifier is also provided. If the depth is shown as 0, this spypoint is on a
compiled procedure and no depth or ancestor information is available. The
depth is reset to 0 when a compiled procedure is executed, and begins growing
again from there afterward.

‘Call’ The next word shows the particular port: Head, Call, Exit, Done, Redo, Fail,
or Exception.

‘(dynamic)’
The next parenthesized item, if present, indicates when there is something
unusual about the predicate. The possibilities are:

built_in for built-in predicates; or

locked for locked predicates; or

undefined
for undefined predicates; or

136 Quintus Prolog

foreign for foreign predicates (defined in another programming language);
or

dynamic for dynamic predicates; or

multifile
for multifile predicates.

‘mymodule’
If the procedure currently being debugged was loaded into a module other than
user, the module name will be displayed here, followed by a colon.

‘foo(hello,there,_123)’
The goal is then printed so that its current instantiation state can be seen. (At
Redo ports, the instantiation state shown is the same as at the previous Exit.)
This is done using print/1 so that all goals displayed by the debugger can be
“pretty printed”, if the user wishes, using portray/1 clauses. The debugger
also maintains a print depth limit and will only show terms nested down to this
depth. The system initially uses a limit of 10, but this can be changed using
the < debugging option.

‘?’ The final ‘?’ is the prompt indicating that you should type in one of the option
codes (see next section). If this particular port is unleashed, there will be no
prompt and the debugger will continue to the next port.

Please note: Since the system does not allow the placing of spypoints on built-in predicates,
the only way to show the execution of built-in predicates typed at the main Prolog prompt
is to select trace mode. For example, if you typed write(foo). at the main Prolog prompt
with the debugger in debug mode, the system would simply display the word ‘foo’ without
tracing the execution of the predicate write/1. However, if a built-in predicate such as
write/1 were called from within a program, the execution of the predicate would be shown
in any case that the execution of the procedure containing it would be shown. There are
a few basic built-in predicates for which information is not displayed because it is more
convenient not to trace them. These are: true/0, otherwise/0, false/0, fail/0, =/2,
!/0 (cut), ;/2 (or), ,/2 (and), and ->/2 (local cut).

6.3.1.1 Format of Head Port Messages

The message shown at a Head port is slightly different than the messages at other ports.
Rather than optionally showing something unusual about the predicate (dynamic in the
above example), the Head port shows you which clause of the predicate is being, and
which, if any, will be tried next. For example, a Head port might be printed as follows:

(23) 0 Head [2->4]: mymodule:foo(hello,there,_123) ?

Here the ‘[2->4]’ means that clause 2 for predicate mymodule:foo/3 is about to be tried.
If this clause’s head should fail to unify, or if a goal in the body of the clause fails, clause 4
will be tried next. Clause 3 will be skipped, due to indexing (see Section 2.5.3 [bas-eff-ind],
page 36). If clause 2 were the last clause to be tried, it would be shown as ‘[2]’. And in

Chapter 6: The Debugger 137

the case where clause 2 is being tried, and all the following clauses are indexable, but none
can match the goal, the debugger will show ‘[2->fail]’, suggesting that a choice point is
being left, even though no more solutions will be possible (see Section 2.5.3 [bas-eff-ind],
page 36 for an explanation of indexable clauses, and how indexing works).

6.3.1.2 Format of Exception Port Messages

The Exception port shows the exception term describing the exception that has been raised.
This is printed on a separate line before the line printed for the port itself. For example:

! type_error(_2069 is a,2,’arithmetic expression’,a)
(2) 1 Exception (built_in): _2050 is a ?

For exception term formats or more information about the exception handling system of
Quintus Prolog, see Section 8.19 [ref-ere], page 310.

6.3.2 Options Available during Debugging

6.3.2.1 Introduction

This section describes the options that you can select in response to the ‘? ’ prompt, which
is displayed after the debugger prints out a goal. The options are one-letter mnemonics,
some of which optionally can be followed by a decimal integer. Any layout characters are
ignored up to the next newline.

The most important option to remember is h (for help). When you type h, the following
list of available options is displayed:

Debugging options:

<cr> creep p print r [i] retry i @ command
c creep w write f [i] fail i b break
l leap d display a abort
s [i] skip i h help
z zip g [n] n ancestors + spy pred ? help
n nonstop < [n] set depth - nospy pred = debugging
q quasi-skip . find defn e raise_exception

These options provide a number of different functions, which fall into the following classes:

Basic control
he basic ways of continuing with the execution

Printing howing the goal, or its ancestors, in various ways

138 Quintus Prolog

Advanced control
ffecting control flow

Environment
hanging spypoints, executing commands, breaking and aborting, access to
source code

Help howing the debugger state and listing options

Each of the options is described below.

6.3.2.2 Basic Control Options

These commands are described in depth in Section 6.1.4 [dbg-bas-tra], page 116 and Sec-
tion 6.1.4.2 [dbg-bas-tra-spy], page 117.

〈RET〉 (the Return key) — This is the same as the c (creep) option but is reduced to
a single keystroke for convenience.

c creep — This causes the debugger to single-step to the next port and display
its goal.

l leap — This causes the debugger to resume running your program, stopping
only when the next spypoint is reached, or when the program terminates.

s skip — At a Call, Redo, or Head port, this skips over the entire execution of
the procedure. At any other port, this is equivalent to the c (creep) option.

s i skip over ancestor invocation — If you specify an invocation identifier (see
Section 6.3.1 [dbg-sdb-dme], page 135) of an ancestor invocation after the skip
command, it will skip over that invocation. This means that that ancestor goal
will be completed without stopping.

z zip — This causes the debugger to run until the next spypoint is reached, just
like leaping, except that no debugging information is kept, so execution is much
faster. See Section 6.1.4.3 [dbg-bas-tra-tss], page 117 for more information on
the trade-offs between speed and information when using this option.

q quasi-skip — This causes the debugger to run until the next spypoint is reached,
or until this invocation is completed. This option combines the behavior of
leaping and skipping. It also ensures that the debugger will stop at the Exit,
Done, or Fail port of the current invocation, as soon as it is reached.

6.3.2.3 Printing Options

p print — This option prints the current goal using print/1 and the current
debugger print depth limit. The depth limit prevents very large structures
from being shown in their entirety; it can be changed with the < (set depth)
option (see below).

Chapter 6: The Debugger 139

w write — This option writes the current goal on the terminal using write/1.
This may be useful if your “pretty print” routine (portray/1) is not doing
what you want. The write option has no depth limit.

d display — This option displays the current goal on the terminal using
display/1. This shows the goal in prefix notation. The display option has
no depth limit.

g ancestors — This option prints the list of ancestors of the current goal (that
is, all goals that are between the current goal and the top-level goal in the
calling sequence). Each ancestor goal is printed using print/1 with the current
debugger depth limit. Goals shown in the ancestor list are always accessible to
invocations for the r (retry) option.

g n ancestors —
This is a version of the g option, which prints only n ancestors. That is, the
last n ancestors will be printed counting back from the current goal.

< n set depth — This option sets the debugger print depth limit to n. This limit
determines the depth to which goals are printed when they are shown by the
debugger. The depth limit is also used when showing the ancestor list. If n is
0, or is omitted, the debugger will then use no limit when printing goals. The
default limit is 10.

6.3.2.4 Advanced Control Options

These options are described in greater depth in Section 6.1.4.4 [dbg-bas-tra-ccf], page 118.

r retry — This option restarts the current invocation. This may be useful when,
for example, you find yourself leaving with some incorrect result. When a retry
is performed, the invocation counter is reset so that counting will continue from
the current invocation number regardless of what happened before the retry.
This is in accord with the fact that execution has returned to the state it was
in at the time of the original call. The message

% Retrying goal

is displayed to indicate where this occurred, in case you wish to follow these
numbers later.

r i retry previous invocation — If you supply an integer after the retry command,
then this is taken as specifying an invocation number and the system tries to
get you to the Call port, not of the current box, but of the invocation box you
have specified. This must be an ancestor invocation.

f fail — This is similar to Retry except that it transfers control to the Fail port of
the current box. This places your execution in a situation in which it is about
to backtrack out of the current invocation, having failed the goal.

f i fail previous invocation — This is similar to r i except that it transfers control
to the Fail port of the invocation specified (which must be an ancestor).

140 Quintus Prolog

6.3.2.5 Environment Options

n nonstop — This option turns off the debugger for the rest of the execution of
the top-level goal. When the execution of this goal is completed, the debugger
returns to its current mode (trace, debug, or zip). This option does not turn
the debugger off; to turn the debugger off, you must type:

| ?- call nodebug

+ spy this — This option places a spypoint on the procedure currently being
shown.

- nospy this — This option removes any spypoint on the procedure currently
being shown.

@ command — This option prompts for a single Prolog goal, which is executed
as a command without any variable results being shown. The command is run
as a new execution, with the current execution suspended, but without any de-
bugging. This is particularly useful for quickly changing debugging parameters
without entering a break level.

b break — This option calls the built-in predicate break/0, thus suspending
the execution so far and putting you at the top level of the interpreter. (See
the description of break/0 in Section 8.11.1 [ref-iex-int], page 250.) The new
execution is separate from the suspended one, and invocation numbers will
start again from 1. The debugger is turned off when the break level is entered,
although the spypoints and leashing of the suspended level are retained. When
you end the break (by typing the end-of-file character), execution will resume
and you will be prompted once again at the port that you left. Changes to
leashing or to spypoints will remain in effect after the break has finished.

a abort — This option aborts (abandons) the current execution. All the execution
states built so far are destroyed, and execution restarts at the top level of the
interpreter.

. find-definition — This works only under the editor interface. The source code
corresponding to the current procedure call is found and displayed in the text
window.

, find-more-definition — This works only under the Emacs interfaces, and can
be used after doing a find-definition, in the case where there is more than one
possible definition. This is useful in several cases:
1. where a predicate is multifile — you can find all the files that have clauses

for that predicate;
2. where you specify a name but no arity — you can find all the definitions

of predicates with that name and with different arities;
3. where you have the same name/arity defining predicates in different mod-

ules.

Chapter 6: The Debugger 141

6.3.2.6 Help Options

h help — This option displays the table of options given above.

? help — This is equivalent to the h option.

= debugging — This option shows the current state of the debugger, the spypoints
that have been set, the leashed ports, and the behavior on undefined procedures.

6.4 The Advice Facility

The “advice” facility for program debugging and maintenance makes it possible to associate
user-specified goals with any of the ports of a predicate (see Section 6.1.2 [dbg-bas-pbx],
page 113). Advice may not change the relation computed by the advised predicate, but it
may switch on or off debugging facilities, or can check that calls are well-formed and that
results make sense. Any user-defined predicate may be advised; however, it is not currently
possible to put advice on built-ins.

6.4.1 Use of Advice Predicates

Whether a predicate has advice associated with it is independent of whether advice on that
predicate is being “checked”. Advice may be thought of as a generalized spypoint, where the
user specifies the action to be performed at each debugger port. Distinct built-in predicates
are provided for modifying advice and influencing whether advice is being checked. Advice
is associated with a predicate using add_advice/3 and deleted using remove_advice/3.
You can determine what advice is outstanding by using current_advice/3. Advice on a
predicate is retained if that predicate is abolished, as is likely to happen during program
development. It also survives that predicate being saved to a QOF file, and is reinstated
when that QOF file is loaded.

Advice checking can be enabled one predicate at a time using check_advice/1 and dis-
abled one predicate at a time with nocheck_advice/1. These are analogous to spy/1 and
nospy/1, and are similarly defined as prefix operators of precedence 900. As a convenience,
check_advice/0 is provided to enable checking for all predicates that currently have advice
associated with them. nocheck_advice/0 can also be used to turn off all advice checking
easily. It is possible to use check_advice/1 to turn advice checking on for a predicate
that does not currently have any advice, although doing so will have no effect until advice
is added to the predicate. As check_advice/0 only affects predicates that currently have
advice, it cannot be used for this purpose. Like the advice itself, advice checking survives
a checked predicate being abolished and redefined.

Note that whether a particular call to an advised predicate is checked is determined once
the call is made. If advice checking is enabled after a predicate has been entered but before
it reaches a subsequent advised port of the predicate, advice checking will not be done.

142 Quintus Prolog

Advice on any given port is checked before any debugger interaction for that port. Taking
advice checking as well as debugger interaction into account in the procedure box model of
Prolog execution (see Section 6.1.2 [dbg-bas-pbx], page 113), we have

+-----------+
Call -> Advice -> Spy -> | | Advice -> Spy -> Exit ->

| procedure |
| box |

Fail <- Spy <- Advice <- | | <- Spy <- Advice <- Redo
+-----------+

This is necessary so that advice actions can control the debugger.

It is possible (and often advisable) to write an application where advice is always present on
appropriate predicates, but that advice is not checked by default. When required, advice
checking can be turned on and the application monitored or debugged using the advice.
This makes it unnecessary to add advice each time you want it only having to remove
it when you don’t want it any longer. Instead, the application’s advice can persist, with
modifications as desired, through development. It can also be retained once development is
completed, providing diagnostics that can be turned on in case of problems.

Predicate properties (see predicate_property/2) have been added to allow you to deter-
mine what predicates have outstanding advice, or have advice checking enabled. When a
predicate currently has advice associated with it, it has the property has_advice. If advice
is being checked for that predicate, it has the property checking_advice. These properties
are independent of each other, and are independent of whether the advised predicate is
currently defined or not. For example:

Chapter 6: The Debugger 143

| ?- check_advice(foo/0).

* You have no clauses for user:foo/0
% Advice checking enabled on user:foo/0

yes
| ?- predicate_property(foo, P).

P = checking_advice ;

no
| ?- add_advice(foo, call, (write(hi),nl)).

% Advice placed on user:foo/0

yes
| ?- predicate_property(foo, P).

P = has_advice ;

P = checking_advice ;

no

6.4.2 Performance

There is no performance penalty associated with advice that is not being checked. When
checking advice, there is no loss of performance for predicates that do not have advice
associated with them or whose advice is not currently being checked. The cost in space of
advice is roughly equivalent to the cost of an asserted fact the size of the add_advice/3
call. The memory cost for checking advice on a predicate is the same as that of putting a
spypoint on it.

For details see the reference pages for the predicates listed below.

6.4.3 Summary of Predicates

• add_advice/3

• check_advice/0

• check_advice/1

• current_advice/3

• nocheck_advice/0

• nocheck_advice/1

• remove_advice/3

144 Quintus Prolog

6.5 The Profiler

The profiling facility makes it possible to analyse the execution of a program and determine
where most time was spent, possibly revealing sources of inefficiently. As well as time
spent, the profiler maintains information on number of calls, choice points and redos for
each predicate. It also records the callers of each predicate, thus building an extensive
execution profile.

Note that the profiler shares some low level internal resources with the debugger in the
development system and therefore debugging is disallowed when profiling and vice versa.

The profiler is not available under Windows.

6.5.1 Use of the Profiler

The execution of a goal can be profiled using profile/1, which takes the goal as its ar-
gument. This will turn on the profiler, recording for each invoked predicate the number
of calls, choice points created, redos tried and the predicate’s callers. Counts accumulated
from any previous executions of the profiler will be reset. The goal is then executed with
timing information additionally monitored.

Once the goal has completed execution, the results of the execution profile can be seen
by calling the show_profile_results/2 builtin predicate. The first argument to show_
profile_results/2 is the display mode and is one of the atoms: by_time, by_calls,
by_choice_points or by_redos. This determines how the output is sorted and what the
percent figure that is printed relates to. For example, if the argument is by_time then
the results are sorted according to the time spent in the predicates (in descending order)
and the percentage figure is the proporation of total execution time spent executing that
predicate.

The second argument gives the number of procedures to show information about, thus a
value of 10 means that the top ten predicates are printed. The predicate show_profile_
results/1 is equivalent to show_profile_results/2 with second argument given a value
of 10 and similarly show_profile_results/0 is equivalent to show_profile_results/1
with the argument by_time.

The following example illustrates the output of show_profile_results/2:

Chapter 6: The Debugger 145

| ?- [chat].

% loading file /opt/quintus/generic/q3.5/demo/chat/chat.qof
% chat.qof loaded in module user, 0.620 sec 1,520 bytes

yes
| ?- profile(hi(questions)).

% The profiler is switched on

...

yes
[profile]
| ?- show_profile_results(by_time, 3).

Proc Calls ChPts Redos Time % Caller(proc,cl#,cll#,%)
user:setof/3 227 0 0 2.04 34.0

user:satisfy/1,6,1 152 61.0
user:seto/3,1,1 48 20.0
user:satisfy/1,7,1 27 17.0

user:satisfy/1 35738 36782 14112 0.32 5.3
user:satisfy/1,1,2 13857 43.0
user:satisfy/1,2,1 12137 31.0
user:satisfy/1,1,1 7315 18.0
user:satisfy/1,3,1 1155 6.0

user:inv_map_l/5 4732 4732 3115 0.20 3.3
user:inv_map_l/5,2,1 3115 60.0
user:inv_map/4,5,1 1617 40.0

yes
[profile]
| ?- show_profile_results(by_calls, 3).

Proc Calls ChPts Redos Time % Caller(proc,cl#,cll#,%)
user:satisfy/1 35738 36782 14112 0.32 15.3

user:satisfy/1,1,2 13857 43.0
user:satisfy/1,2,1 12137 31.0
user:satisfy/1,1,1 7315 18.0
user:satisfy/1,3,1 1155 6.0
user:satisfy/1,4,1 1044 0.0
user:holds/2,1,1 3 0.0

user:database/1 13616 0 0 0.06 5.8
user:satisfy/1,14,1 13616 100.0

The output lists the predicate name, the number of calls to that predicate, number of times a
choice point was created, the number of the times the predicate was retried on backtracking
and the time (in seconds) spent executing that predicate. The percentage figure depends
on the display mode. In the example above 15.3% of the goal calls were to satisfy/1, but
only 5.3% of the execution time was spent in satisfy/1.

146 Quintus Prolog

Then follows the list of callers, showing for each caller the predicate name and arity, the
clause number and the call number within that clause of the call (see Section 18.3.18 [mpg-
ref-add spypoint], page 1038), followed by the number of calls made by this caller and the
percentage of execution time attributed to this caller.

Notice in the example that more callers are shown for satisfy/1 when the profile results
are listed by_calls than by_time. Callers that do not register any time are not listed in
the output when displayed by_time. Callers are omitted in a similar way for other display
modes when the relevant count is zero.

The profiler can be turned off with the noprofile/0 predicate.

6.5.2 Customized Output

The predicate get_profile_results/4 returns the profiling information as a list of terms,
to enable the customized display of profiling results. The first two arguments of get_
profile_results/4 are the same as for show_profile_results/2, the third argument
returns a list of proc/6 terms described below and the final argument returns a total that
depends on the display mode given by the first argument — for example, if the display
mode is by_time then this is the total execution time.

The proc/6 term proc(Name,Ncalls,Nchpts,Nredos,Time,Callers) gives profiling in-
formation about one profiled predicate, where Name gives the module, name and arity of
the predicate; Ncalls, Nchpts, Nredos, Time give call, choice point and redo counts and the
execution time in milliseconds. The Callers argument is a list of calledby/5 terms of
the form calledby(Time,Calls,Name,ClauseNo,CallNo) where Time is the percentage of
time attributed to this caller, Calls is the number of calls made by this caller and Name,
ClauseNo, CallNo identify the actual caller. For example:

Chapter 6: The Debugger 147

| ?- get_profile_results(by_time,3,List,Total).

List = [proc(user:setof/3,227,0,0,1980,
[calledby(61,152,user:satisfy/1,6,1),
calledby(20,27,user:satisfy/1,7,1),
calledby(18,48,user:seto/3,1,1)]),

proc(user:satisfy/1,35738,36782,14112,260,
[calledby(69,13857,user:satisfy/1,1,2),
calledby(15,12137,user:satisfy/1,2,1)]),

proc(user:write/1,2814,0,0,240,
[calledby(33,481,user:reply/1,3,1),
calledby(25,608,user:replies/1,3,1),
calledby(16,562,user:out/1,2,1),
calledby(8,203,user:reply/1,2,5),
calledby(8,34,user:replies/1,2,3)])],

Total = 6040

[profile]
| ?-

6.5.3 Performance

There is a performance penalty of about 20% associated with running a program in profile
mode. Data structures needed to maintain profiling information are created on demand the
first time a profiled goal is called, so this may affect first-run statistics if the run is relatively
short. In this case you may wish to profile the same goal at least a second time to verify
the results.

6.5.4 Summary of Predicates

• profile/0

• profile/1

• noprofile/0

• show_profile_results/0

• show_profile_results/1

• show_profile_results/2

• get_profile_results/4

148 Quintus Prolog

Chapter 7: Glossary 149

7 Glossary

Glossary

abolish To abolish a predicate is to retract all the predicate’s clauses and to remove all
information about it from the Prolog system, to make it as if that predicate had
never existed. Built-in predicates cannot be abolished, but user-defined ones
always can be, even when static.

absolute filename
A name of a file giving the absolute location of that file. Under UNIX and
Windows, Quintus Prolog considers filenames beginning with ‘/’ or ‘~’ abso-
lute. Under Windows, filenames beginning with a letter followed by ‘:’ are also
considered absolute. All other filenames are considered relative.

alphanumeric
An alphanumeric character is any of the lowercase characters from ‘a’ to ‘z’,
the uppercase characters from ‘A’ to ‘Z’, or the numerals from ‘0’ to ‘9’.

ancestor An ancestor of a goal is any goal that the system is trying to solve when it calls
that goal. The most distant ancestor is the goal that was typed at the top-level
prompt.

anonymous
An anonymous variable is one that has no unique name, and whose value is
therefore inaccessible. An anonymous variable is denoted by an underscore ().

archive file
A file containing an object code library that can be statically linked into pro-
grams. Sometimes called static library. Archive files have an operating system
dependent extension, which is:

Windows: ‘.lib’ By convention, Quintus Prolog uses the suffix ‘s.lib’ (e.g.,
‘libqps.lib’) since a ‘.lib’ is also used for Windows DLL import
libraries.

UNIX: samp{.a}

argument See predicate, structure, and arity.

arity The arity of a structure is its number of arguments. For example, the structure
customer(jones, 85) has an arity of 2.

atom A character sequence used to uniquely denote some entity in the problem do-
main. A number is not an atom. Examples of legal atoms are:

hello * ’#$%’ ’New York’ ’don’’t’

Please note: An atom may not start with a capital letter or underscore unless
that atom is enclosed in single quotes. Character sequences that include spaces
must also be enclosed in single quotes. To include a single quote in an atom,
print it twice in succession for each single quote that is to appear. See the
Section 8.1.2.4 [ref-syn-trm-ato], page 160 for a complete definition of an atom.

150 Quintus Prolog

atomic term
Synonym for simple term or constant.

backtracking
The process of reviewing the goals that have been satisfied and attempting to
resatisfy these goals by finding alternative solutions.

binding The process of assigning a value to a variable; used in unification.

body The body of a clause consists of the part of a Prolog clause following the ‘:- ’
symbol.

buffer A temporary workspace in Emacs that contains a file being edited.

built-in predicate
A predicate that comes with the system and that does not have to be explicitly
consulted or compiled before it is used.

clause A fact or a rule. A rule comprises a head and a body. A fact consists of a head
only, and is equivalent to a rule with the body true.

command An instruction for the Prolog system to perform an action involving side-effects.
If the command is written preceded by a ‘ :- ’, it will be executed as a directive.

compile Load a program (or a portion thereof) into Prolog through the compiler. Com-
piled code runs more quickly than interpreted code, but you cannot debug
compiled code in as much detail as interpreted code.

compound term
See structure.

connective a logical term, or a symbol thereof, that relates components in such a way that
the truth or falsity of the resulting statement is determined by the truth or
falsity of the components. For example,

:- ; ,

stand for the connectives ‘if’, ‘or’, and ‘and’.

constant An integer (for example: 1, 20, -10), a floating-point number (for example:
12.35), or an atom (for example: ’New York’). Constants are also known as
simple terms, and are recognized by the Prolog predicate atomic/1.

consult Load a program (or a portion thereof) into Prolog through the interpreter.
Interpreted code runs more slowly than compiled code, but you can debug
interpreted code in more detail than compiled code.

creep What the debugger does in trace mode, also known as single-stepping. It goes
to the next port of a procedure box and prints the goal, then prompts you for
input. See Section 6.1.1 [dbg-bas-bas], page 113.

cross-reference
A notation in the text of the manual, pointing to another section of the manual
containing related information. In the on-line manual, these are of the form
{manual(Tag)}, as in “see {manual(int-man-ove)}.” Typing the text between
the braces into the Prolog system will cause the text of the referenced section
to be displayed.

Chapter 7: Glossary 151

cursor The point on the screen at which typed characters appear. This is usually
highlighted by a line or rectangle the size of one space, which may or may not
blink.

cut Written as ‘!’. A built-in predicate that succeeds when encountered; if back-
tracking should later return to the cut, the goal that matched the head of the
clause containing the cut fails immediately.

database The Prolog database comprises all of the clauses that have been loaded into the
Prolog system via compile/1, consult/1, or that have been asserted, excepting
those clauses that have been removed by retract/1 or abolish/[1,2]

debug A mode of program execution in which the debugger stops to print the current
goal only at procedures that have spypoints set on them (see trace).

determinate
A procedure is determinate if it can supply only one answer.

directive A directive is a command preceded by the prefix operator ‘:- ’, whose intuitive
meaning is “execute this as a command, but do not print out any variable
bindings.”

disjunction
A series of goals connected by the connective “or” (that is, a series of goals
whose principal operator is ‘|’ or ‘;’).

dynamic predicate
A predicate that can be modified while a program is running. A predicate must
explicitly be declared to be dynamic or it must be added to the database via
one of the assertion predicates.

environment variable
A variable known to the command interpreter environment. Most programs can
be controlled to some extent by environment variables. The syntax for setting
environment variables in command interpreter dependent. For example, (A)
would be appropriate for csh(1) and tcsh(1); (B) for sh(1), bash(1), and
ksh(1); (C) for Windows cmd.exe. Under Windows, it is often preferable to
set environment variables globally in the System control panel.

% setenv PROLOGINITSIZE 2M (A)
% export PROLOGINITSIZE=2M (B)
% SET PROLOGINITSIZE=2M (C)

export A module exports a procedure by making that procedure public, so that other
modules can import it.

fact (Also called a unit clause.) A clause with no conditions—that is, with an empty
body. A fact is a statement that a relationship exists between its arguments.
Some examples, with possible interpretations, are:

king(louis, france). % Louis was king of France.
have_beaks(birds). % Birds have beaks.
employee(nancy, data_processing, 55000).

% Nancy is an employee in the
% data processing department.

152 Quintus Prolog

An integer number assigned to a file when it is opened, and then used as a
unique identifier in I/O operations.

first-order logic
A system of logic in which the values of variables may range over the data
items in the domain. In Prolog these data items are terms. For comparison, in
zero-order logic (also known as propositional logic) there are no variables, and
in second-order logic the values of variables are allowed to range both over data
items and over functions and relations.

functor The name and arity of a structure. For example, the structure foo(a, b) is
said to have “the functor foo of arity two”, which is generally written foo/2.

garbage collection
The freeing up of space for computation by making the space occupied by terms
that are no longer available for use by the Prolog system.

goal A procedure call. When called, it will either succeed or fail. A goal typed at
the top level is called a query.

head The head of a clause is the single goal that will be satisfied if the conditions in
the body (if any) are true; the part of a rule before the ‘:- ’ symbol. The head
of a list is the first element of the list.

home directory
Your default directory upon login. Under UNIX, this is the value of the HOME
environment variable. Under Windows, it is the directory specified by the
environment variables HOMEDRIVE and HOMEPATH. You can ask Quintus Prolog
what it considers to be you home directory by typing

| ?- absolute_file_name(~, HomeDir).

Horn clause
See clause.

import Public procedures in a module can be imported by other modules. Once a
procedure has been imported by a module, it can be called as if it were defined
in that module.
There are two kinds of importation: procedure-importation, in which only spec-
ified procedures are imported from a module; and module-importation, in which
all the predicates made public by a module are imported.

instantiation
A variable is instantiated if it is bound to a non-variable term; that is, to an
atomic term (see constant) or a compound term.

interpret Load a program or set of clauses into Prolog through the interpreter (also known
as consulting). Interpreted code runs much more slowly than compiled code,
but more extensive facilities are available for debugging interpreted code.

leap What the debugger does in debug mode. The debugger shows only the ports
of procedures that have spypoints on them. It then prompts you for input,
at which time you may leap again to the next spypoint. See Section 6.1.4.2
[dbg-bas-tra-spy], page 117.

Chapter 7: Glossary 153

leashing Determines how frequently the debugger will stop and prompt you for input
when you are tracing. A port at which the debugger stops is called a “leashed
port.”

list A list is written as a set of zero or more terms between square brackets. If there
are no terms in a list, it is said to be empty, and is written as []. In this first
set of examples, all members of each list are explicitly stated.

[aa, bb,cc] [X, Y] [Name] [[x, y], z]

In the second set of examples, only the first several members of each list are
explicitly stated, while the rest of the list is represented by a variable on the
right-hand side of the “rest of” operator, ‘|’:

[X | Y] [a, b, c | Y] [[x, y] | Rest]

‘|’ is also known as the “list constructor.” The first element of the list to the
left of ‘|’ is called the head of the list. The rest of the list, including the variable
following ‘|’ (which represents a list of any length), is called the tail of the list.
For example,

list head tail
[X | Y] X Y
[a, b, c | y] a [b, c | y]
[[X, Y] | Rest] [X, Y] Rest

load To compile or consult a Prolog clause or set of clauses.

meta-predicate
A meta-predicate is one that calls one or more of its arguments; more generally,
any predicate that needs to assume some module in order to operate is called
a meta-predicate.
A meta-predicate declaration is a term in a module-file that is associated with
a given functor, sharing its name and arity, but having each of its arguments
replaced either by one of the mode annotations ‘+’, ‘-’, ‘*’, ‘+-’, ‘+*’, or by
‘:’ or a non-negative integer. ‘:’ or a non-negative integer signifies that the
corresponding argument requires module name expansion.

mode line The information line at the bottom of each Emacs window that is one line long
and the width of the screen; often shown in reverse video. The mode line at
the bottom of the Prolog window says “Quintus Prolog” plus other information
such as the state of the debugger if it is activated. The mode line of the text
window(s) states the buffername, the filename, the editor mode ("Prolog" for
a file ending in ‘.pl’), and the percentage of the file that precedes the cursor.

module A module is a set of procedures in a module-file. Some procedures in a module
are public. The default module is user.

module-file
A module-file is a file that is headed with a module declaration of the form

:- module(ModuleName, PublicPredList).

which must appear as the first term in the file.

154 Quintus Prolog

multifile predicate
A predicate whose definition is to be spread over more than one file. Such a
predicate must be preceded by an explicit multifile declaration in the first file
containing clauses for it.

name clash
A name clash occurs when a module attempts to define or import a procedure
that it has already defined or imported.

object code
The machine-executable, as opposed to the human-readable, representation of
a program.

object file A file containing object code. Object files have an operating system dependent
extension, which is:

Windows: ‘.obj’

UNIX: samp{.o}

operator A notational convenience that allows you to express any compound term in a
different format. For example, if “likes” in

| ?- likes(sue, cider).

is declared an infix operator, the query above could be written:
| ?- sue likes cider.

An operator does not have to be associated with a predicate. However, certain
built-in predicates are declared as operators. For example,

| ?- =..(X, Y).

can be written as
| ?- X =.. Y.

because =.. has been declared an infix operator.
Those predicates that correspond to built-in operators are written using infix
notation in the list of built-in predicates at the beginning of the part that
contains the reference pages.
Some built-in operators do not correspond to built-in predicates; for example,
arithmetic operators. Section 8.1.5.4 [ref-syn-ops-bop], page 169 contains a list
of built-in operators.

parent The parent of the current goal is a goal that, in its attempt to obtain a successful
solution to itself, is calling the current goal.

port One of the four key points of interest in the execution of a Prolog procedure.
There are four ports: the Call port, representing the initial invocation of the
procedure; the Exit Port, representing a successful return from the procedure;
the Redo port, representing reinvocation of the procedure through backtracking
; and the Fail port, representing an unsuccessful return due to the failure of the
initial goal of the procedure.

Chapter 7: Glossary 155

precedence
A number associated with each Prolog operator, which is used to disambiguate
the structure of the term represented by an expression containing a number
of operators. Operators of lower precedence are applied before those of higher
precedence; the operator with the highest precedence is considered the principal
functor of the expression. To disambiguate operators of the same precedence,
the associativity type is also necessary. See the syntax chapter (Section 8.1
[ref-syn], page 159).

predicate A functor that specifies some relationship existing in the problem domain. For
example, </2 is a built-in predicate specifying the relationship of one number
being less than another. In contrast, the functor +/2 is not (normally used as)
a predicate.
A predicate is either built-in or is implemented by a procedure.

procedure A set of clauses in which the head of each clause has the same predicate. For
instance, a group of clauses of the following form:

connects(san_francisco, oakland, bart_train).
connects(san_francisco, fremont, bart_train).
connects(concord, daly_city, bart_train).

is identified as belonging to the procedure connects/3.

program A set of procedures designed to perform a given task.

public A procedure in a module is public if it can be imported by other modules.
The public predicates of a module are listed in the module declaration (see
module-file).

QOF file a fully general way of storing arbitrary Prolog facts and rules in a form that
can be quickly and easily used. QOF files contain a machine independent rep-
resentation of both compiled and dynamic Prolog predicates. This means they
are completely portable between different platforms running Quintus Prolog.

query

− simple query: A query is a question put by the user to the Prolog system.
A simple query is written as a goal followed by a full-stop in response to
the Prolog system prompt. For example,

| ?- father(edward, ralph).

refers to the predicate father/2. If a query has no variables in it, the
system will respond either ‘yes’ or ‘no.’ If a query contains variables, the
system will try to find values of those variables for which the query is true.
For example,

| ?- father(edward, X).

X = ralph

After the system has found one answer, the user can direct the system to
look for additional answers to the query by typing ; 〈RET〉.

− compound query: A compound query consists of two or more simple queries
connected by commas. For a compound query to be true, all of its goals

156 Quintus Prolog

must be true simultaneously. For example, the following compound query
will find Ralph’s grandfather (G):

| ?- father(G, F), father(F, ralph).

F is a shared variable that is constrained by unification to have the same
value in each of the two subgoals.

quintus-directory
The root directory of the entire Quintus Prolog file hierarchy. Used by Prolog
executables to relocate certain relative file names. Is the value of the quintus_
directory Prolog flag. See Section 1.3 [int-dir], page 11.

recursion The process in which a running procedure calls itself, presumably with different
arguments and for the purpose of solving some subset of the original problem.

region The text between the cursor and a previously-set mark in an Emacs buffer.

relative filename
A name of a file giving the location of that file relative to the working di-
rectory. See absolute filename about differentiating absolute filenames from
relative ones.

rule A clause with one or more conditions. For a rule to be true, all of its conditions
must also be true. For example,

has_stiff_neck(ralph) :-
hacker(ralph).

This rule states that if the individual ralph is a hacker, then he must also have
a stiff neck. The constant ralph is replaced in

has_stiff_neck(X) :-
hacker(X).

by the variable X. X unifies with anything, so this rule can be used to prove
that any hacker has a stiff neck.

runtime-directory
A platform-specific directory containing Quintus Prolog executables, object files
and the like. Is the value of the runtime_directory Prolog flag. See Section 1.3
[int-dir], page 11.

saved-state
A snapshot of the state of Prolog saved in a file by save_program/1, save_
modules/2, or save_predicates/2. save_program/1 saves the whole Prolog
data base, save_modules/2 and save_predicates/2 save a list of modules and
predicates respectively.

semantics The relation between the set of Prolog symbols and their combinations (as
Prolog terms and clauses), and their meanings. Compare syntax.

static library
See shared object file.

shared object file
A file containing object code that can be dynamically loaded into programs.
Sometimes called shared library. Shared object files have an operating system
dependent extension, which is:

Chapter 7: Glossary 157

Windows: ‘.dll’

HPUX: samp{.sl}

other UNIX:
samp{.so}

side-effect A predicate that produces a side-effect is one that has any effect on the “outside
world” (the user’s terminal, a file, etc.), or that changes the Prolog database.

simple term
see constant.

source code
The human-readable, as opposed to the machine-executable, representation of
a program.

spypoint A flag placed on a predicate by the command spy/1 and removed by nospy/1
that tells the debugger to stop execution and allow user interaction at goals for
that predicate. Any number of predicates can have spypoints set on them.

static library
See archive file.

static predicate
A predicate that can be modified only by being reloaded via the consult or
compile facility or by being abolished. (See dynamic predicate.)

stream An input/output channel.

structure (Also called a compound term.) A structure is a functor together with zero or
more arguments. For example, in the structure

father(X)

father/1 is the functor, and X is the first and only argument. The argument
to a structure can be another structure, as in

father(father(X))

syntax The part of Prolog grammar dealing with the way in which symbols are put
together to form legal Prolog terms. Compare semantics.

term A basic data object in Prolog. A term can be a constant, a variable, or a
structure.

trace A mode of program execution in which the debugger single-steps to the next
port and prints the goal.

unbound A variable is unbound if it has not yet been instantiated.

unification The process of matching a goal with the head of a clause during the evaluation
of a query, or of matching arbitrary terms with one another during program
execution. A goal unifies with the head of a clause if 1) they have the same
functor, and 2) all of the argument terms can be unified. The rules governing
the unification of terms are:
• Two constants unify with one another if they are identical.

158 Quintus Prolog

• A variable unifies with a constant or a structure. As a result of the unifi-
cation, the variable is instantiated to the constant or structure.

• A variable unifies with another variable. As a result of the unification, they
become the same variable.

• A structure unifies with another structure if they have the same functor
and if all of the arguments can be unified.

unit clause
See fact.

variable Logical variable. A logical variable is a name that stands for objects that may
or may not be determined at a specific point in a Prolog program. When
the object for which the variable stands is determined in the Prolog program,
the variable becomes instantiated (see instantiation). A logical variable may
be unified (see unification) with a constant, a structure, or another variable.
Variables become uninstantiated when the procedure they occur in backtracks
(see backtracking) past the point at which they were instantiated.
A variable is written as a single word (with no intervening spaces) beginning
either with a capital letter without quotes, or with the character ‘_’. Examples:

X Y Z Name Position _c _305 One_stop

volatile Predicate property. The clauses of a volatile predicate are not saved by in QOF
files by the Prolog save predicates. However, they are saved by qpc.

window Under the Emacs interface, a region of the terminal screen. There are two types
of window: the Prolog window, of which there is exactly one, and the the text
window, of which there are one or more. Each window has a mode line at the
bottom, and each text window displays the contents of one file.

Chapter 8: The Prolog Language 159

8 The Prolog Language

8.1 Syntax

8.1.1 Overview

This section describes the syntax of Quintus Prolog.

8.1.2 Terms

8.1.2.1 Overview

The data objects of the language are called terms. A term is either a constant, a variable,
or a compound term.

A constant is either a number (integer or floating-point) or an atom. Constants are definite
elementary objects, and correspond to proper nouns in natural language.

Variables and compound terms are described in Section 8.1.2.5 [ref-syn-trm-var], page 161,
and Section 8.1.3 [ref-syn-cpt], page 161, respectively.

Foreign data types are discussed in Chapter 13 [str], page 655, on the Structs library package.

8.1.2.2 Integers

The printed form of an integer consists of a sequence of digits optionally preceded by a
minus sign (‘-’). These are normally interpreted as base 10 integers. It is also possible
to enter integers in other bases (1 through 36); this is done by preceding the digit string
by the base (in decimal) followed by an apostrophe. If a base greater than 10 is used, the
characters A-Z or a-z are used to stand for digits greater than 9.

Examples of valid integer representations are:

1 -2345 85923 8’777 16’3F4A -12’2A9

Note that

+525

is not a valid integer.

160 Quintus Prolog

A base of zero will return the ASCII code of the (single) character after the quote; for
example,

0’a = 97

8.1.2.3 Floating-point Numbers

A floating-point number (float) consists of a sequence of digits with an embedded decimal
point, optionally preceded by a minus sign (-), and optionally followed by an exponent
consisting of upper- or lowercase ‘E’ and a signed base 10 integer. Examples of floats are:

1.0 -23.45 187.6E12 -0.0234e15 12.0E-2

Note that there must be at least one digit before, and one digit after, the decimal point.

8.1.2.4 Atoms

An atom is identified by its name, which is a sequence of up to 65532 characters (other than
the null character). An atom can be written in any of the following forms:

• Any sequence of alphanumeric characters (including ‘_’), starting with a lowercase
letter. Note that an atom may not begin with an underscore.

• Any sequence from the following set of characters (except ‘/*’, which begins a com-
ment):

+ - * / \ ^ < > = ‘ ~ : . ? @ # $ &

•
Any sequence of characters delimited by single quotes, such as:

’yes’ ’%’

If the single quote character is included in the sequence it must be written twice, for
example:

’can’’t’ ’’’’

For further details see Section 8.1.8.6 [ref-syn-syn-nte], page 178.
• Any of:

! ; [] {}

Note that the bracket pairs are special: ‘[]’ and ‘{}’ are atoms but ‘[’, ‘]’, ‘{’, and ‘}’
are not. The form [X] is a special notation for lists (see Section 8.1.3.1 [ref-syn-cpt-lis],
page 162), and the form {X} is allowed as an alternative to {}(X).

Examples of atoms are:

a void = := ’Anything in quotes’ []

Chapter 8: The Prolog Language 161

WARNING: It is recommended that you do not invent atoms beginning with
the character ‘$’, since it is possible that such names may conflict with the
names of atoms having special significance for certain built-in predicates.

8.1.2.5 Variables

Variables may be written as any sequence of alphanumeric characters (including ‘_’) begin-
ning with either a capital letter or ‘_’. For example:

X Value A A1 _3 _RESULT

If a variable is referred to only once in a clause, it does not need to be named and may be
written as an anonymous variable, represented by the underline character ‘_’ by itself. Any
number of anonymous variables may appear in a clause; they are read as distinct variables.
Anonymous variables are not special at runtime.

8.1.2.6 Foreign Terms

Pointers to C data structures can be handled using the Structs package, described in Chap-
ter 13 [str], page 655.

8.1.3 Compound Terms

The structured data objects of Prolog are compound terms. A compound term comprises
a name (called the principal functor of the term) and a sequence of one or more terms
called arguments. A functor is characterized by its name, which is an atom, and its arity or
number of arguments. For example, the compound term whose principal functor is ‘point’
of arity 3, and which has arguments X, Y, and Z, is written

point(X, Y, Z)

When we need to refer explicitly to a functor we will normally denote it by the form Name
/Arity. Thus, the functor ‘point’ of arity 3 is denoted

point/3

Note that a functor of arity 0 is represented as an atom.

Functors are generally analogous to common nouns in natural language. One may think of
a functor as a record type and the arguments of a compound term as the fields of a record.
Compound terms are usefully pictured as trees. For example, the (compound) term

s(np(john), vp(v(likes), np(mary)))

would be pictured as the following tree:

162 Quintus Prolog

s
/ \

np vp
| / \

john v np
| |

likes mary

The principal functor of this term is s/2. Its arguments are also compound terms. In
illustration, the principal functor of the first argument is np/1.

Sometimes it is convenient to write certain functors as operators; binary functors (that is,
functors of two arguments) may be declared as infix operators, and unary functors (that is,
functors of one argument) may be declared as either prefix or postfix operators. Thus it is
possible to write

X+Y P;Q X<Y +X P;

as optional alternatives to

+(X,Y) ;(P,Q) <(X,Y) +(X) ;(P)

The use of operators is described fully in Section 8.1.5 [ref-syn-ops], page 165.

8.1.3.1 Lists

Lists form an important class of data structures in Prolog. They are essentially the same as
the lists of Lisp: a list is either the atom [], representing the empty list, or else a compound
term with functor . and two arguments, which are the head and tail of the list respectively,
where the tail of a list is another list. Thus a list of the first three natural numbers is the
structure

.
/ \
1 .

/ \
2 .

/ \
3 []

which could be written using the standard syntax, as (A) but which is normally written in
a special list notation, as (B). Two examples of this list notation, as used when the tail of
a list is a variable, are (C), which represent the structure in (D).

.(1,.(2,.(3,[]))) (A)

[1,2,3] (B)

Chapter 8: The Prolog Language 163

[X|L] [a,b|L] (C)

. .
/ \ / \

X L a .
/ \

b L (D)

Note that the notation [X|L] does not add any new power to the language; it simply
improves readability. These examples could be written equally well as (E).

.(X,L) .(a,.(b,L)) (E)

8.1.3.2 Strings As Lists

For convenience, a further notational variant is allowed for lists of integers that correspond
to ASCII character codes. Lists written in this notation are called strings. For example,

"Humpty-Dumpty"

represents exactly the same list as

[72,117,109,112,116,121,45,68,117,109,112,116,121]

8.1.4 Character Escaping

The character escaping facility allows escape sequences to occur within strings and quoted
atoms, so that programmers can put non-printable characters in atoms and strings and
still be able to see what they are doing. This facility can be switched on and off by the
commands:

| ?- prolog_flag(character_escapes, _, on).

| ?- prolog_flag(character_escapes, _, off).

See Section 8.10.1 [ref-lps-ove], page 245, for a description of prolog_flag/3. Character
escaping is off by default.

Strings or quoted atoms containing the following escape sequences can occur in terms ob-
tained by read/[1,2], compile/1, and so on.

The 0’ notation for the integer code of a character is also affected by character escaping.

With character escaping turned on, the only things that can occur in a string or quoted
atom are the characters with ASCII codes 9 (horizontal tab), 32 (space), 33 through 126
(non-layout characters), or one of the following escape sequences:

164 Quintus Prolog

The escape sequence:
Is converted to:

‘\b’ backspace (ASCII 8)

‘\t’ horizontal tab (ASCII 9)

‘\n’ new line (ASCII 10)

‘\v’ vertical tab (ASCII 11)

‘\f’ form feed (ASCII 12)

‘\r’ carriage return (ASCII 13)

‘\e’ escape (ASCII 27)

‘\d’ delete (ASCII 127)

‘\a’ alarm = BEL (ASCII 7)

‘\xCD’ the ASCII character with code ‘CD’ (hexadecimal number)

‘\octal string’
the ASCII character with code octal string base 8, where <octal string> is either
1, 2, or 3 octal digits

‘\^<control char>’
the ASCII character whose code is the ASCII code of control char mod 32.
‘\^?’ is another name for ‘\d’.

‘\layout char’
no character, where layout char is a character with ASCII code =< 32 or ASCII
code >= 127 (thus a newline or form-feed in a string or quoted atom can be
ignored by immediately preceding it with a backslash)

‘\c’ no character; also, all characters up to, but not including, the next non-layout
character are ignored

‘\other’ the character other, where other is any character not predefined here; thus ‘\\’
should be used to insert one backslash

It is an error if an escape sequence or ASCII character that is not defined above occurs in a
string or quoted atom. For instance, an ordinary newline in an atom or string is regarded
as an error when character escapes are on. This allows the syntax error of a missing closing
quote to be caught much earlier, but it has the problem that some old programs will break
(which is why character escapses are off by default).

With character escaping turned on, the escape sequence ‘\’’ represents the same character as
the sequence ‘’’’ within a quoted atom, namely one single quote. Similarly, with character
escaping turned on, the escape sequence ‘\"’ represents the same character as the sequence
‘""’ within a string, namely one double quote.

The escape sequence ‘\c’ (c for continue) is useful when formatting a string for readability.
For example, the atom (A), is equivalent to (B):

Chapter 8: The Prolog Language 165

’!Ruth \c (A)
Gehrig \c
Cobb \c
Williams!’

’!Ruth Gehrig Cobb Williams!’ (B)

The following sequence denotes the integer 9:

0’\t

8.1.5 Operators and their Built-in Predicates

8.1.5.1 Overview

Operators in Prolog are simply a notational convenience. For example, ‘+’ is an infix
operator, so

2 + 1

is an alternative way of writing the term +(2, 1). That is, 2 + 1 represents the data
structure

+
/ \
2 1

and not the number 3. (The addition would only be performed if the structure were passed
as an argument to an appropriate procedure, such as is/2; see Section 8.8.2 [ref-ari-eae],
page 234.)

Prolog syntax allows operators of three kinds: infix, prefix, and postfix. An infix operator
appears between its two arguments, while a prefix operator precedes its single argument
and a postfix operator follows its single argument.

Each operator has a precedence, which is a number from 1 to 1200. The precedence is used
to disambiguate expressions in which the structure of the term denoted is not made explicit
through the use of parentheses. The general rule is that the operator with the highest
precedence is the principal functor. Thus if ‘+’ has a higher precedence than ‘/’, then

a+b/c a+(b/c)

are equivalent, and denote the term +(a,/(b,c)). Note that the infix form of the term
/(+(a,b),c) must be written with explicit parentheses:

(a+b)/c

166 Quintus Prolog

If there are two operators in the expression having the same highest precedence, the am-
biguity must be resolved from the types of the operators. The possible types for an infix
operator are

• xfx

• xfy

• yfx

Operators of type ‘xfx’ are not associative: it is required that both of the arguments of the
operator be subexpressions of lower precedence than the operator itself; that is, the principal
functor of each subexpression must be of lower precedence, unless the subexpression is
written in parentheses (which gives it zero precedence).

Operators of type ‘xfy’ are right-associative: only the first (left-hand) subexpression must
be of lower precedence; the right-hand subexpression can be of the same precedence as the
main operator. Left-associative operators (type ‘yfx’) are the other way around.

An atom named Name is declared as an operator of type Type and precedence Precedence
by the command

:-op(Precedence, Type, Name).

An operator declaration can be cancelled by redeclaring the Name with the same Type, but
Precedence 0.

The argument Name can also be a list of names of operators of the same type and precedence.

It is possible to have more than one operator of the same name, so long as they are of
different kinds: infix, prefix, or postfix. An operator of any kind may be redefined by a new
declaration of the same kind. Declarations for all these built-in operators can be found in
Section 8.1.5.4 [ref-syn-ops-bop], page 169.

For example, the built-in operators ‘+’ and ‘-’ are as if they had been declared by (A) so
that (B) is valid syntax, and means (C) or pictorially (D).

:-op(500, yfx, [+,-]). (A)

a-b+c (B)

(a-b)+c (C)

+
/ \
- c

/ \
a b (D)

The list functor ./2 is not a standard operator, but we could declare it to be (E) then (F)
would represent the structure (G).

Chapter 8: The Prolog Language 167

:-op(600, xfy, .). (E)

a.b.c (F)

.
/ \

a .
/ \
b c (G)

Contrasting this with the diagram above for a-b+c shows the difference between ‘yfx’ oper-
ators where the tree grows to the left, and ‘xfy’ operators where it grows to the right. The
tree cannot grow at all for ‘xfx’ operators; it is simply illegal to combine ‘xfx’ operators
having equal precedences in this way.

The possible types for a prefix operator are:

• fx

• fy

and for a postfix operator they are:

xf

yf

If these precedence and associativity rules seem rather complex, remember that you can
always use parentheses when in any doubt.

8.1.5.2 Manipulating and Inspecting Operators

To add or remove an operator, use op(+Precedence, +Type, +Name). op/3 declares the
atom Name to be an operator of the stated Type and Precedence. If Precedence is 0, then
the operator properties of Name (if any) are cancelled.

To examine the set of operators currently in force, use current_op(*Precedence, *Type,
*Name).

8.1.5.3 Syntax Restrictions

Note carefully the following syntax restrictions, which serve to remove potential ambiguities
associated with prefix operators.

1. The arguments of a compound term written in standard syntax must be expressions
of precedence less than 1000. Thus it is necessary to write the expression P:-Q in
parentheses

168 Quintus Prolog

assert((P:-Q))

because the precedence of the infix operator ‘:-’, and hence of the expression P:-Q, is
1200. Enclosing the expression in parentheses reduces its precedence to 0.

2. Similarly, the elements of a list written in standard syntax must be expressions of prece-
dence less than 1000. Thus it is necessary to write the expression P->Q in parentheses

[(P->Q)]

because the precedence of the infix operator ‘->’, and hence of the expression P->Q, is
1050. Enclosing the expression in parentheses reduces its precedence to 0.

3. In a term written in standard syntax, the principal functor and its following ‘(’ must
not be separated by any intervening spaces, newlines, or other characters. Thus

point (X,Y,Z)

is invalid syntax.
4. If the argument of a prefix operator starts with a ‘(’, this ‘(’ must be separated from

the operator by at least one space or other layout character. Thus
:-(p;q),r.

(where ‘:-’ is the prefix operator) is invalid syntax. The system would try to interpret
it as the structure:

,
/ \

:- r
|
;
/ \

p q

That is, it would take ‘:-’ to be a functor of arity 1. However, since the arguments of a
functor are required to be expressions of precedence less than 1000, this interpretation
would fail as soon as the ‘;’ (precedence 1100) were encountered.
In contrast, the term:

:- (p;q),r.

is valid syntax and represents the following structure:
:-
|
,
/ \
; r
/ \
p q

5. If a prefix operator is written without an argument (as an ordinary atom), the atom
is treated as an expression of the same precedence as the prefix operator, and must
therefore be written in parentheses where necessary. Thus the parentheses are necessary
in

X = (?-)

since the precedence of ‘?-’ is 1200.

Chapter 8: The Prolog Language 169

8.1.5.4 Built-in Operators

:-op(1200, xfx, [:-, -->])
:-op(1200, fx, [:-, ?-])
:-op(1150, fx, [dynamic, multifile,

meta_predicate, initialization, volatile])
:-op(1100, xfy, [;])
:-op(1050, xfy, [->])
:-op(1000, xfy, [’,’])
:-op(900, fy, [\+, spy, nospy])
:-op(700, xfx, [=, is, =.., ==, \==, @<, @>, @=<, @>=,

=:=, =\=, <, >, =<, >=])
:-op(600, xfy, [:])
:-op(500, yfx, [+, -, \/, /\])
:-op(500, fx, [+, -])
:-op(400, yfx, [/, //, *, <<, >> div])
:-op(300, xfx, [mod])
:-op(200, xfy, [^])

Two additional operators are provided solely for compatibility with other Prologs:

:- op(1150, fx, [mode, public])

8.1.6 Commenting

Comments have no effect on the execution of a program, but they are very useful for making
programs more comprehensible. Two forms of comments are allowed:

1. The character ‘%’ followed by any sequence of characters up to the end of the line.
2. The symbol ‘/*’ followed by any sequence of characters (including newlines) up to the

symbol ‘*/’.

8.1.7 Predicate Specifications

A predicate is uniquely identified by its module (not always specified), name and arity
(number of arguments). In Quintus Prolog these are the ways of specifying a predicate as
an argument of a predicate:

1. The form Module:Name(Term1,Term2, . . . ,TermN) is called the skeletal predicate
specification. It identifies the predicate Name of arity N in module Module. It is
required by predicates when the specification was likely to have been obtained from
predicates such as clause/[2,3]. This is the case when one is manipulating Prolog
programs themselves.
Module is optional; if omitted, the predicate is assumed to be in the source module.

170 Quintus Prolog

When the skeletal specification is used as an input argument, the values of
Term1,Term2, . . . ,TermN are not significant; they only serve as place-holders for de-
termining the arity of Name. For example,

| ?- predicate_property(put(97), P1),

predicate_property(put(98), P2).

P1 = P2 = built_in ;

no

When the skeletal specification is used as an output argument, Module:Name
(Term1,Term2, . . . ,TermN) is made to be the most general term with name Name
and arity N (that is, Term1, Term2, . . . , TermN are each made to be variables, dis-
tinct from each other and any others in the system). For example,

| ?- compile(user).

| foo(1, 2, 3).

| ^D
% user compiled, 0.100 sec 196 bytes

yes
| ?- source_file(X, user).

X = foo(_224,_225,_226) ;

no
| ?- source_file(foo(7,8,9), user).

yes

2.
The Module:Name/Arity form is an alternative representation to the skeletal form.
Arity can be a single arity, or a list of arities and/or arity ranges.
Module is optional; if omitted, the predicate is assumed to be in the current module.
For example,

prog1:foo/1 specifies predicate foo, arity 1 in module prog1. foo/1 spec-
ifies predicate foo of arity 1 in the current module.

Notes:

a. The form Name/[Arity] is used only by some library packages and for demonstra-
tive purposes in this manual. Currently, it is not used by any supported built-in
predicates.

b. The Module:Name/[Arities] form is required by declarations that take a predi-
cate specification (or a list of predicate specifications) as an argument. For most
predicates, this form requires fewer characters, which is desirable because these
specifications will likely be typed by the user.

Chapter 8: The Prolog Language 171

abolish/2 is the only predicate that does not use either of the above specifications. Its
first argument is the Name of the predicate and the second argument is the Arity. For
consistency, it is recommended that abolish/1 be used instead.

The following predicate can be used to convert between the Name/Arity specification and
the skeletal specification, or to verify that two specifications identify the same predicate.

predicate_specification(NameAritySpec, SkeletalSpec) :-
(nonvar(NameAritySpec) ; nonvar(SkeletalSpec)),
!,
NameAritySpec = Name/Arity,
functor(SkeletalSpec, Name, Arity),
atom(Name).

8.1.8 Formal Syntax

8.1.8.1 Overview

A Prolog program consists of a sequence of sentences. Each sentence is a Prolog term. How
sentences are interpreted as terms is defined in Section 8.1.8.3 [ref-syn-syn-sen], page 172,
below. Note that a term representing a sentence may be written in any of its equivalent
syntactic forms. For example, the functor :-/2 could be written in standard prefix notation
instead of as the usual infix operator.

Terms are written as sequences of tokens. Tokens are sequences of characters, which are
treated as separate symbols. Tokens include the symbols for variables, constants, and
functors, as well as punctuation characters such as parentheses and commas.

The interpretation of sequences of tokens as terms is defined in Section 8.1.8.4 [ref-syn-syn-
trm], page 173. Each list of tokens that is read in (for interpretation as a term or sentence)
must be terminated by a

full-stop (a period followed by a layout character such as newline or space) token. Two
tokens must be separated by a space if they could otherwise be interpreted as a single
token. Both spaces and comments are ignored when interpreting the token list as a term.
A comment may appear at any point in a token list (separated from other tokens by spaces
where necessary).

The interpretation of tokens as sequences of characters is defined on Section 8.1.8.5 [ref-syn-
syn-tok], page 175. The next section describes the notation used in the formal definition of
Prolog syntax.

8.1.8.2 Notation

• Syntactic categories (or nonterminals) are printed in italics, for example query. De-

172 Quintus Prolog

pending on the section, a category may represent a class of either terms, token lists, or
character strings.

• A syntactic rule takes the general form
C --> F1

| F2

| F3

.

.

.

which states that an entity of category C may take any of the alternative forms F1,
F2, or F3.

• Certain definitions and restrictions are given in ordinary English, enclosed in braces
(‘{}’).

• A category written as ‘C...’ denotes a sequence of one or more Cs.
• A category written as ‘?C’ denotes an optional C. Therefore ‘?C...’ denotes a sequence

of zero or more Cs.
• A few syntactic categories have names with arguments, and rules in which they appear

may contain meta-variables in the form of italicized capital letters. The meaning of
such rules should be clear from analogy with the definite clause grammars described in
Section 8.16 [ref-gru], page 298.

• In Section 8.1.8.4 [ref-syn-syn-trm], page 173, particular tokens of the category Name
(a name beginning with a capital letter) are written as quoted atoms, while tokens that
are individual punctuation characters are written literally.

8.1.8.3 Syntax of Sentences as Terms

sentence --> clause
| directive
| grammar-rule

clause --> non-unit-clause
| unit-clause

directive --> command
| query

non-unit-clause --> head :- goals

unit-clause --> head {where head is not otherwise a
sentence}

command --> :- goals

Chapter 8: The Prolog Language 173

query --> ?- goals

head --> term {where term is not a number or a
variable}

goals --> goals , goals
| goals -> goals ; goals
| goals -> goals
| goals ; goals
| goal

goal --> term {where term is not a number and
is not otherwise a goals}

grammar-rule --> gr-head --> gr-body

gr-head --> nonterminal
| nonterminal , terminals

gr-body --> gr-body , gr-body
| gr-body ; gr-body
| gr-body -> gr-body ; gr-body
| gr-body -> gr-body
| nonterminal
| terminals
| gr-condition

nonterminal --> term {where term is not a number or
variable and is not otherwise a gr-
body}

terminals --> list | string

gr-condition --> { goals }

8.1.8.4 Syntax of Terms as Tokens

term-read-in --> subterm(1200) full-stop

subterm(N) --> term(M) {where M is less than or equal to
N}

174 Quintus Prolog

term(N) --> op(N,fx)
| op(N,fy)
| op(N,fx) subterm(N-1) {except the case ‘-’ number}

{if subterm starts with a ‘(’, op
must be followed by a space}

| op(N,fy) subterm(N) {if subterm starts with a ‘(’, op
must be followed by a space}

| subterm(N-1) op(N,xfx)
subterm(N-1)
| subterm(N-1) op(N,xfy) sub-
term(N)
| subterm(N) op(N,yfx)
subterm(N-1)
| subterm(N-1) op(N,xf)
| subterm(N) op(N,yf)

term(1000) --> subterm(999) , sub-
term(1000)

term(0) --> functor (arguments)
{provided there is no space be-
tween functor and the ‘(’}

| (subterm(1200))
| { subterm(1200) }
| list
| string
| constant
| variable

op(N,T) --> name {where name has been declared as
an operator of type T and prece-
dence N}

arguments --> subterm(999)
| subterm(999) , arguments

list --> []
| [listexpr]

listexpr --> subterm(999)
| subterm(999) , listexpr
| subterm(999) | subterm(999)

constant --> atom | number

number --> integer | float

Chapter 8: The Prolog Language 175

atom --> name {where name is not a prefix
operator}

integer --> natural-number
| - natural-number

float --> unsigned-float
| - unsigned-float

functor --> name

8.1.8.5 Syntax of Tokens as Character Strings

token --> name
| natural-number
| unsigned-float
| variable
| string
| punctuation-char
| space
| comment
| full-stop

name --> quoted-name
| word
| symbol
| solo-char
| [?layout-char. . .]
| { ?layout-char. . . }

quoted-name --> ’ ?quoted-item. . . ’

quoted-item --> char {other than ‘’’ or ‘\’}
| ’’
| \ escape-sequence {unless character escapes have

been switched off}

word --> small-letter ?alpha. . .

symbol --> symbol-char. . . {except in the case of a full-stop
or where the first 2 chars are ‘/*’
}

natural-number --> digit. . .

176 Quintus Prolog

| base ’ alphanumeric. . . {where each alphanumeric must
be less than base; count ‘a’ as 10,
‘b’ as 11, etc.}

| zero ’ quoted-item {This yields the ASCII equivalent
of quoted-item}

base --> digit. . . {must be in the range 0..36}

zero --> 0
unsigned-float --> simple-float

| simple-float E exponent

simple-float -->
digit. . . decimal-point digit. . .

decimal-point --> .

E --> E | e

exponent --> digit. . .
| - digit. . .
| + digit. . .

variable --> underline ?alpha. . .

variable --> capital-letter ?alpha..

string --> " ?string-item. . . "

string-item --> char {other than ‘"’ or ‘\’}
| ""
| \ escape-sequence {unless character escapes have

been switched off}

escape-sequence -->b {backspace, character code 8}
| t {horizontal tab, character code 9}
| n {newline, character code 10}
| v {vertical tab, character code 11}
| f {form feed, character code 12}
| r {carriage return, character code

13}
| e {escape, character code 27}
| d {delete, character code 127}
| ^? {delete, character code 127}
| a {alarm, character code 7}
| xCD {character code hex CD, 2 digits}
| Oct {character code octal Oct, up to 3

digits}

Chapter 8: The Prolog Language 177

| ^letter {the control character letter mod
32}

| c?layout-char. . . {ignored}
| layout-char {ignored}
| char {other than the above, represents

itself}

space --> layout-char. . .

comment --> /* ?char. . . */ {where ?char. . . must not contain
‘*/’ }

| % rest-of-line

rest-of-line --> newline
| ?not-end-of-line. . . newline

not-end-of-line --> {any character except newline
}

newline --> {ASCII code 10}

full-stop --> . layout-char

char --> layout-char
| alpha
| symbol-char
| solo-char
| punctuation-char
| quote-char

layout-char --> {ASCII codes 1..32 and 127
— includes space, tab, newline,
and del}

alpha --> alphanumeric | underline

alphanumeric --> letter | digit

letter --> capital-letter | small-letter

capital-letter --> A | B | C | D | E | F | G | H
| I | J | K | L | M | N | O | P | Q
| R | S | T | U | V | W | X | Y | Z

small-letter --> a | b | c | d | e | f | g | h
| i | j | k | l | m | n | o | p | q
| r | s | t | u | v | w | x | y | z

178 Quintus Prolog

digit --> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
| 8 | 9

symbol-char --> + | - | * | / | \ | ^ | < | >
| = | ‘ | ~ | : | . | ? | @ | # | $
| &

solo-char --> ; | !

punctuation-char --> (|) | [|] | { | } | , | |
| %

quote-char --> ’ | "

underline --> _

8.1.8.6 Notes

1. The expression of precedence 1000 (that is, belonging to syntactic category term(1000)
) that is written

X, Y

denotes the term
’,’(X, Y)

in standard syntax.
2. The parenthesized expression (belonging to syntactic category term(0))

(X)

denotes simply the term X.
3. The curly-bracketed expression (belonging to syntactic category term(0))

{X}

denotes the term
’{}’(X)

in standard syntax.
4. Note that, for example, -3 denotes an integer, whereas -(3) denotes a compound term

of which the principal functor is -/1.
5.

The double quote character ‘"’ within a string must be written twice for every time it
is to appear in the string. That is,

""""

represents a string of one double quote character only. Similarly, for the single quote
character within a quoted atom,

’’’’

represents an atom whose printed representation is one single quote character.

Chapter 8: The Prolog Language 179

8.1.9 Summary of Predicates

Detailed information is found in the reference pages for the following:

• current_op/3

• op/3

8.2 Semantics

This section gives an informal description of the semantics of Quintus Prolog.

8.2.1 Programs

A fundamental unit of a logic program is the goal or procedure call for example:

gives(tom, apple, teacher)

reverse([1,2,3], L)

X < Y

A goal is merely a special kind of term, distinguished only by the context in which it appears
in the program. The principal functor of a goal is called a predicate. It corresponds roughly
to a verb in natural language, or to a procedure name in a conventional programming
language.

A logic program consists simply of a sequence of statements called sentences, which are
analogous to sentences in natural language.

A sentence comprises a head and a body. The head either consists of a single goal or is
empty. The body consists of a sequence of zero or more goals (it may be empty). If the
head is not empty, the sentence is called a clause.

If the body of a clause is empty, the clause is called a unit clause, and is written in the
form (A) where P is the head goal. We interpret this declaratively as (B) and procedurally
as (C).

P. (A)

“P is true.” (B)

“Goal P is satisfied.” (C)

180 Quintus Prolog

If the body of a clause is non-empty, the clause is called a non-unit clause, and is written
in the form (D) where P is the head goal and Q, R, and S are the goals that make up the
body. We can read such a clause either declaratively as (E) or procedurally as (F).

P :- Q, R, S. (D)

“P is true if Q and R and S are true.” (E)

“To satisfy goal P, satisfy goals Q, R, and S.” (F)

A sentence with an empty head is called a directive, of which the most important kind is
called a query and is written in the form (G) Such a query is read declaratively as (H), and
procedurally as (I).

?- P, Q. (G)

“Are P and Q true?” (H)

“Satisfy goals P and Q.” (I)

Sentences generally contain variables. A variable should be thought of as standing for
some definite but unidentified object. This is analogous to the use of a pronoun in nat-
ural language. Note that a variable is not simply a writable storage location as in most
programming languages; rather it is a local name for some data object, like the variable of
pure Lisp. Note that variables in different sentences are completely independent, even if
they have the same name — the lexical scope of a variable is limited to a single sentence.
To illustrate this, here are some examples of sentences containing variables, with possible
declarative and procedural readings:

employed(X) :- employs(Y, X).
“Any X is employed if any Y employs X.”
“To find whether a person X is employed, find whether any Y employs X.”

derivative(X, X, 1).
“For any X, the derivative of X with respect to X is 1.”
“The goal of finding a derivative for the expression X with respect to X itself
is satisfied by the result 1.”

?- ungulate(X), aquatic(X).
“Is it true, for any X, that X is an ungulate and X is aquatic?”
“Find an X that is both an ungulate and aquatic.”

In any program, the procedure for a particular predicate is the sequence of clauses in the
program whose head goals have that predicate as principal functor. For example, the

Chapter 8: The Prolog Language 181

procedure for a predicate concatenate of three arguments might well consist of the two
clauses shown in (J) where concatenate(L1, L2, L3) means “the list L1 concatenated with
the list L2 is the list L3”.

concatenate([], L, L). (J)
concatenate([X|L1], L2, [X|L3]) :-

concatenate(L1, L2, L3). (K)

In Prolog, several predicates may have the same name but different arities. Therefore,
when it is important to specify a predicate unambiguously, the form Name/Arity is used,
for example concatenate/3.

8.2.2 Types of Predicates Supplied with Quintus Prolog

Certain predicates are predefined by the Prolog system. Most of these cannot be changed
or retracted. Such predicates are called built-in predicates.

Certain ones, however, can be modified or totally redefined. These are the hook predicates
and the redefined predicates used in embedding.

8.2.2.1 Hook Predicates

Hook predicates are called by the system. They enable you to modify Quintus Prolog’s
behavior. They are either undefined by default (like portray/1 and message_hook/3)
or else they have a simple default definition that is dynamic and/or multifile (like file_
search_path/1 and library_directory/1, which are multifile by default).

If they do have a default definition, a definition provided by the user overrides it within the
module where it is redefined. The idea of a hook predicate is that its clauses are independent
of each other, and it makes sense to spread their definitions over several files (which may
be written by different people).

8.2.2.2 Redefinable Predicates

Redefinable predicates exist to enable you to embed Prolog code within a program in another
language. They have default definitions that are fairly complex. Source is provided for
them. They are all in modules beginning with ‘QU’. Sophisticated users may wish to
provide alternative definitions of these modules. You can redefine embeddable predicates
at run-time too, by simply compiling new versions of the QU module-file (see Section 10.2
[fli-emb], page 365).

The key distinction is that it only makes sense to redefine embeddable predicates totally
and globally. Hook predicates, on the other hand, can be extended piecemeal, and need not
have any definition at all.

182 Quintus Prolog

8.2.3 Disjunction

As we have seen, the goals in the body of a sentence are linked by the operator ‘,’, which
can be interpreted as conjunction (and). It is sometimes convenient to use an additional
operator ‘|’, standing for disjunction (or). (The precedence of ‘|’ is such that it dominates
‘,’ but is dominated by ‘:-’.) An example is the clause (A), which can be read as (B).

grandfather(X, Z) :-
(mother(X, Y)
| father(X, Y)
),
father(Y, Z). (A)

“For any X, Y, and Z,
X has Z as a grandfather if
either the mother of X is Y

or the father of X is Y,
and the father of Y is Z.” (B)

Such uses of disjunction can usually be eliminated by defining an extra predicate. For
instance, (A) is equivalent to (C)

grandfather(X, Z) :- parent(X, Y), father(Y, Z).
parent(X, Y) :- mother(X, Y).
parent(X, Y) :- father(X, Y). (C)

Therefore, disjunction will not be mentioned further in the following more formal description
of the semantics of clauses.

For historical reasons, the token ‘|’, when used outside a list, is actually an alias for ‘;’.
The aliasing is performed when terms are read in, so that (D) is read as if it were (E) thus
you can use ‘;’ instead of ‘|’ for disjunction if you like.

a :- b | c. (D)

a :- b ; c. (E)

Note the double use of the ‘.’ character. Here it is used as a sentence terminator, while in
other instances it may be used in a string of symbols that make up an atom (for example,
the list functor ‘.’). The rule used to disambiguate terms is that a ‘.’ followed by a layout-
character is regarded as the sentence terminator full-stop, where a layout-character is
defined to be any character less than or equal to ASCII 32 (this includes space, tab, newline,
and all control characters).

Chapter 8: The Prolog Language 183

8.2.4 Declarative and Procedural Semantics

The semantics of definite clauses should be fairly clear from the informal interpretations
already given. However, it is useful to have a precise definition. The declarative semantics
of definite clauses tells us which goals can be considered true according to a given program,
and is defined recursively as follows:

A goal is true if it is the head of some clause instance and each of the goals (if
any) in the body of that clause instance is true, where an instance of a clause
(or term) is obtained by substituting, for each of zero or more of its variables,
a new term for all occurrences of the variable.

For example, if a program contains the procedure for concatenate/3, declared in Sec-
tion 8.2.1 [ref-sem-pro], page 179, then the declarative semantics tells us that (A) is true, be-
cause this goal is the head of a certain instance of the second clause (K) for concatenate/3,
namely (B), and we know that the only goal in the body of this clause instance is true,
because it is an instance of the unit clause that is the first clause for concatenate/3.

concatenate([a], [b], [a,b])

concatenate([a], [b], [a,b]):-
concatenate([], [b], [b]).

Note that the declarative semantics makes no reference to the sequencing of goals within
the body of a clause, nor to the sequencing of clauses within a program. This sequencing
information is, however, very relevant for the procedural semantics that Prolog gives to defi-
nite clauses. The procedural semantics defines exactly how the Prolog system will execute a
goal, and the sequencing information is the means by which the Prolog programmer directs
the system to execute his program in a sensible way. The effect of executing a goal is to
enumerate, one by one, its true instances. Here is an informal definition of the procedural
semantics.

To execute a goal, the system searches forwards from the beginning of the
program for the first clause whose head matches or unifies with the goal. The
unification process (see “A Machine-Oriented Logic Based on the Resolution
Principle” by J.A. Robinson, Journal of the ACM 12:23-44, January 1965) finds
the most general common instance of the two terms, which is unique if it exists.
If a match is found, the matching clause instance is then activated by executing
in turn, from left to right, each of the goals (if any) in its body. If at any time
the system fails to find a match for a goal, it backtracks; that is, it rejects the
most recently activated clause, undoing any substitutions made by the match
with the head of the clause. Next it reconsiders the original goal that activated
the rejected clause, and tries to find a subsequent clause that also matches the
goal.

For example, if we execute the goal expressed by the query (A) we find that it matches
the head of the second clause for concatenate/3, with X instantiated to [a|X1]. The new

184 Quintus Prolog

variable X1 is constrained by the new goal produced, which is the recursive procedure call
(B) and this goal matches the second clause, instantiating X1 to [b|X2], and yielding the
new goal (C).

| ?- concatenate(X, Y, [a,b]). (A)

concatenate(X1, Y, [b]) (B)

concatenate(X2, Y, []) (C)

Now this goal will only match the first clause, instantiating both X2 and Y to []. Since
there are no further goals to be executed, we have a solution

X = [a,b]
Y = []

That is, the following is a true instance of the original goal:

concatenate([a,b], [], [a,b])

If this solution is rejected, backtracking will generate the further solutions

X = [a]
Y = [b]

X = []
Y = [a,b]

in that order, by re-matching goals already solved once using the first clause of
concatenate/3, against the second clause.

8.2.5 The Cut

Besides the sequencing of goals and clauses, Prolog provides one other very important
facility for specifying control information. This is the cut, written ‘!’. It is inserted in the
program just like a goal, but is not to be regarded as part of the logic of the program and
should be ignored as far as the declarative semantics is concerned.

The effect of the cut is as follows. When first encountered as a goal, cut succeeds imme-
diately. If backtracking should later return to the cut, the effect is to fail the parent goal,
that goal that matched the head of the clause containing the cut, and caused the clause
to be activated. In other words, the cut operation commits the system to all choices made
since the parent goal was invoked, and causes other alternatives to be discarded. The goals
thus rendered determinate are the parent goal itself, any goals occurring before the cut in
the clause containing the cut, and any subgoals that were executed during the execution of
those preceding goals.

For example, the procedure

Chapter 8: The Prolog Language 185

member(X, [X|L]).
member(X, [Y|L]) :-

member(X, L).

can be used to test whether a given term is in a list:

| ?- member(b, [a,b,c]).

returns the answer ‘yes’. The procedure can also be used to extract elements from a list,
as in

| ?- member(X, [d,e,f]).

With backtracking this will successively return each element of the list. Now suppose that
the first clause had been written instead:

member(X, [X|L]) :- !.

In this case, the second call above would extract only the first element of the list (‘d’). On
backtracking, the cut would immediately fail the entire procedure.

Another example:

x :- p, !, q.
x :- r.

This is analogous to “if p then q else r” in an Algol-like language.

Note that a cut discards all the alternatives subsequent to the parent goal, even when the
cut appears within a disjunction. This means that the normal method for eliminating a dis-
junction — by defining an extra predicate — cannot be applied to a disjunction containing
a cut.

8.2.6 Occur Check

Prolog’s unification does not have an occur check; that is, when unifying a variable against
a term, the system does not check to see if the variable occurs in the term. When the
variable occurs in the term, unification should fail, but the absence of the check means that
the unification succeeds, producing a circular term. Trying to print a circular term, or
trying to unify circular terms, will cause a loop. (You can always get out of a loop by typing
^c followed by an a for abort.)

The absence of the occur check is not a bug or a design oversight, but a conscious design
decision. The reason for this decision is that unification with the occur check is at best linear
on the sum of the sizes of the terms being unified, whereas unification without the occur
check is linear on the size of the smallest of the terms being unified. For any programming
language to be practical, basic operations should take constant time. Unification against a
variable may be thought of as the basic operation of Prolog, and this can take constant time

186 Quintus Prolog

only if the occur check is omitted. Thus the absence of an occur check is essential to Prolog’s
practicality as a programming language. The inconvenience caused by this restriction is, in
practice, very slight. Furthermore, the functionality is available as library(occurs).

8.2.7 Control

P,Q prove P and Q

P;Q prove P or Q

! cut any choices taken in the current procedure

call(P) prove (execute) P

\+ P goal P is not provable

P->Q;R if P succeeds, prove Q; if not, prove R

P->Q if P succeeds, prove Q; if not, fail

true succeed

otherwise
same as true

fail fail (start backtracking)

false same as fail

repeat succeed repeatedly on backtracking

8.3 Invoking Prolog

8.3.1 Prolog Command Line Argument Handling

There are three ways a Prolog system can be invoked:

% program Prolog’s arguments

% program Prolog’s arguments + emacs’ arguments

% program Prolog’s arguments +z user’s arguments

where program, generally prolog, but can be an executable QOF file (see Section 8.5.4
[ref-sls-sst], page 196) or a stand-alone program (see Section 9.1 [sap-srs], page 337).

Prolog’s arguments consists of:
user’s arguments

these arguments can be retrieved in a program by calling
unix(argv(ArgList)).

Chapter 8: The Prolog Language 187

system arguments
The current valid system arguments are:

‘+’ invoke Emacs; subsequent arguments passed to Emacs;

‘+f’ fast startup; do not load user’s ‘prolog.ini’ file;

‘+l file’ load the specified file on startup; file may be a Pro-
log file or a QOF file, and it may be specified either
as a string (e.g. ‘file’, ‘~/prolog/file.pl’) or as
a file search path specification (e.g. ‘library(file)’,
‘home(language(file))’); note, however, that the lat-
ter needs to be quoted to escape the shell interpretation
of the parentheses; giving the extension is not neces-
sary; if both source (‘.pl’) and QOF (‘.qof’) files exist,
the more recent of the two will be loaded;

‘+L file’ like ‘+l’, but search for file in the directories given by
the shell environment variable PATH; and

‘+p [path-name]’
prints the Prolog file search path definitions that be-
gin with the string path-name (e.g. library if ‘+p lib’
is specified); path-name is optional, and if not given,
causes prolog to print all file search path definitions;
prolog exits after producing the required output to
stdout;

‘+P [path-name]’
same as ‘+p’, but the absolutized versions of the file
search path definitions are printed;

‘+tty’ force the three standard streams associated with a Pro-
log process to act as tty streams; a tty stream is usually
line buffered and handles the prompt automatically;

‘+z’ all subsequent arguments are user’s arguments.

Only one of ‘+’ or ‘+z’ is possible on one command line.

emacs’ arguments
arguments to the Emacs interface. This may include file names to edit and may
also include GNU Emacs arguments (see Section 4.2 [ema-emi], page 88).

All command line arguments beginning with a ‘+’ are reserved for system arguments. If
user arguments need to begin with a ‘+’, they should be given as ‘++’ instead. The ‘++’ is
converted into a single ‘+’ by the argument handling routines, and thus, to the user’s code,
only the single ‘+’ argument is visible. An exception to this is when an argument is given
following a ‘+z’ option in which case no conversion is done.

Runtime systems do not interpret system arguments; they treat all arguments as user’s
arguments.

188 Quintus Prolog

There can be any number of ‘+l’ and ‘+L’ arguments. In Release 3, invoking a saved-state,
an executable QOF-file, as a command causes the corresponding Prolog executable, the one
from which the saved-state was created, to be invoked with the arguments ‘+L saved-state

’.

The user’s arguments are accessible in Prolog via unix(argv(ArgList)), which returns a
list of all the user’s arguments. For example, if Prolog is invoked by the command (A),
then the Prolog goal (B) returns (C):

% prolog ++file1 -file2 (A)

| ?- unix(argv(ArgList)). (B)

ArgList = [’+file1’,’-file2’] (C)

8.3.1.1 The Initialization File

Once invoked, the default prolog looks in your home directory for a file named
‘prolog.ini’, and if it finds one, loads it. Stand-alone programs also look for and load
‘prolog.ini’. Runtime systems do not.

Typically, ‘prolog.ini’ files are used to define file search paths, library directories, and
term expansions.

If the ‘+f’ option is specified, the initialization file ‘prolog.ini’ is not loaded.

8.3.2 Exiting Prolog

To exit from the Prolog system, either type

| ?- halt.

or your end-of-file character. The end-of-file character is ^d by default. You will use a
different command set to exit Prolog running under Emacs; see Section 4.2.2 [ema-emi-
key], page 89. The commands for exiting are as follows:

without Emacs:

type ^d (or ^C e). You may also execute the goal halt/0.

with GNU Emacs:

type ^c ^d (or 〈ESC〉 X exit-emacs).

with QUI: Use Interrupt button in main window. Select Exit.

If you would like to pause Prolog while keeping the job in the background:

without Emacs:

type ^Z.

Chapter 8: The Prolog Language 189

with GNU Emacs:

type ^X^Z.

with QUI: iconify the main window

8.4 Loading Programs

8.4.1 Overview

There are two ways of loading programs into Prolog — compiling source files and loading
pre-compiled QOF files. Earlier releases of Prolog distinguished between compiling and
consulting source files. Consulting a file caused the code to be loaded in an interpreted
mode so that it could be debugged. Now compiled code is fully debuggable, so there is no
longer any need to distinguish between compiling and consulting, and the built-in predicate
consult/1 is now just a synonym for compile/1. Interpretation is now only used for the
execution of dynamic code.

This section contains references to the use of the module system. These can be ignored if
the module system is not being used (see Section 8.13 [ref-mod], page 271 for information
on the module system).

8.4.2 The Load Predicates

Loading a program is accomplished by one of these predicates

load_files(File)
compiles source file or loads QOF file, whichever is the more recent. load_
files(File) can also be written as [File].

compile(File)
compiles source file.

consult(File)
Same as compile

ensure_loaded(File)
loads more recent of source and QOF files, unless the file has already been
loaded and it has not been modified since it was loaded.

load_files(File, Options)
loads file according to the specified options. All the above predicates can be
regarded as special cases of this one.

reconsult(Files)
same as consult

190 Quintus Prolog

The following notes apply to all the Load Predicates:

1. The File argument must be one of:
• an atom that is the name of a file containing Prolog code; a ‘.pl’ or a ‘.qof’ suffix

to a filename may be omitted (see Section 8.6.1.3 [ref-fdi-fsp-fde], page 209;)
• a list of any atom listed above;
• the atom user

Please note: If the filename is not a valid atom, it must be enclosed in
single quotes. For example,

load_files(expert)
load_files(’Expert’)
compile(’/usr/joe/expert’)
ensure_loaded(’expert.pl’)

2. These predicates resolve relative file names in the same way as absolute_file_name/2.
For information on file names refer to Section 8.6 [ref-fdi], page 205.

3. The above predicates raise an exception if any of the files named in File does not exist,
unless the fileerrors flag is set to off using nofileerrors/0.
Errors detected during compilation, such as an attempt to redefine a built-in predi-
cate, also cause exceptions to be raised. However, these exceptions are caught by the
compiler, and an appropriate error message is printed.

4. There are a number of style warnings that may appear when a file is compiled. These
are designed to aid in catching simple errors in your programs, but some or all of them
can be turned off if desired using no_style_check/1. The possible style warnings are:
a. A named variable occurs only once in a clause. Variables beginning with a ‘_’ are

considered not named.
b. All the clauses for a predicate are not adjacent to one another in the file.
c. A predicate is being redefined in a file different from the one in which it was

previously defined.
5. By default, all clauses for a predicate are required to come from just one file. A

predicate must be declared multifile if its clauses are to be spread across several
different files. See the reference page for multifile/1.

6. If a file being loaded is not a module-file, all the predicates defined in the file are
loaded into the source module. The form load_files(Module:File) can be used to
load the file into the specified module. See Section 8.13.3 [ref-mod-def], page 272, for
information about module-files. If a file being loaded is a module-file, it is first loaded
in the normal way, then the source module imports all the public predicates of the
module-file except for use_module and load_file if you specify an import list.

7. If there are any directives in the file being loaded, that is, any terms with principal
functor :-/1 or ?-/1, then these are executed as they are encountered. A common
type of directive to have in a file is one that loads another file, such as

:- [otherfile].

In this case, if otherfile is a relative filename it is resolved with respect to the directory
containing the file that is being loaded, not the current working directory of the Prolog
system.

Chapter 8: The Prolog Language 191

Any legal Prolog goal may be included as a directive. Note, however, that if the file is
compiled by qpc, the goal will be executed by qpc, not when the ‘.qof’ file is loaded or
when application begins execution. The initialization/1 declaration provides this
functionality. There is no difference between a ‘:-/1’ and a ‘?-/1’ goal in a file being
compiled.

8. If File is the atom user, or File is a list, and during loading of the list user is encoun-
tered, procedures are to be typed directly into Prolog from the terminal. A special
prompt, ‘| ’, is displayed at the beginning of every new clause entered from the ter-
minal. Continuation lines of clauses typed at the terminal are preceded by a prompt
of five spaces. When all clauses have been typed in, the last should be followed by an
end-of-file character.

9. Terms that are notational variants of Prolog terms, notably grammar terms, are ex-
panded into Prolog code during compilation. By defining the hook predicate term_
expansion/2 (in module user), you can specify any desired transformation to be done
as clauses are loaded.

10. Any predicates that need to be called during the compilation of a file, including term_
expansion/2 and all the predicates it calls, must be treated specially if you wish to
be able to compile that file with qpc. See Section 9.1.6.1 [sap-srs-eci-crt], page 349 for
information on this.

11. The current load context (module, file, stream, directory) can be queried using prolog_
load_context/2.

8.4.3 Redefining Procedures during Program Execution

You can redefine procedures during the execution of the program, which can be very useful
while debugging. The normal way to do this is to use the ‘break’ option of the debugger
to enter a break state (see break/0, Section 8.11.1 [ref-iex-int], page 250), and then load
an altered version of some procedures. If you do this, it is advisable, after redefining the
procedures and exiting from the break state, to wind the computation back to the first call
to any of the procedures you are changing: you can do this by using the ‘retry’ option with
an argument that is the invocation number of that call. If you do not wind the computation
back like this, then:

• if you are in the middle of executing a procedure that you redefine, you will find that
the old definition of the procedure continues to be used until it exits or fails;

• if you should fail back into a procedure you have just redefined, then alternative clauses
in the old definition will still be used.

8.4.4 Predicate List

Detailed information is found in the reference pages for the following:

• compile/1

• consult/1

192 Quintus Prolog

• ensure_loaded/1

• load_files/[1,2]

• multifile/1

• no_style_check/1

• style_check/1

• prolog_load_context/2

• term_expansion/2

• use_module/[1,2,3]

8.5 Saving and Loading the Prolog Database

8.5.1 Overview of QOF Files

Quintus Prolog release 3 provides a much more powerful alternative to the traditional
save/restore facilities of Prolog. It is now possible to save, and subsequently load, individual
predicates, or sets of predicates, or entire modules of predicates, or indeed the complete
Prolog database. Such sets of predicates are saved into Quintus’ standard Quintus Object
Format (“QOF” files). This significantly extends the utility of QOF files, which were
previously only used to produce runtime systems and stand-alone programs. QOF files are
now a fully general way of storing arbitrary Prolog facts and rules in a form that can be
quickly and easily used. QOF files contain a machine independent representation of both
compiled and dynamic Prolog predicates. This means they are completely portable between
different platforms running Quintus Prolog.

QOF files can be generated by:

• saving a selected set of predicates from a running Prolog application (see Section 8.5
[ref-sls], page 192);

• using the stand-alone qpc Prolog compiler to compile individual Prolog source files (see
Section 9.1.2 [sap-srs-qpc], page 341).

QOF files can be used by:

• loading them into a running Prolog application (see Section 8.5 [ref-sls], page 192);
• linking them together, using the stand-alone qld linker, into an object file for linking

into an executable with static Prolog code made shareable (see Section 9.1.3 [sap-srs-
qld], page 343). This executable can either:
− be a full Quintus Prolog Development System allowing continued development;
− or can be a runtime system for deployment of the application.

QOF saving and loading is available in both Quintus Prolog development systems and
runtime systems built for distribution. In a development system, code can be incrementally

Chapter 8: The Prolog Language 193

compiled using the built-in compiler and then saved into a QOF file. In a runtime system,
which does not include the built-in compiler, dynamic code can be asserted and then saved.
Runtime systems can load QOF files containing previously compiled code.

This combination of the capabilities of the Quintus Prolog Runtime Generator, with the
saving and loading facilities of Quintus Prolog release 3, and the cross-platform portability
of QOF files, provides tremendous flexibility that can be used for many purposes. For
example:

• precompiling Prolog libraries for fast loading;
• packaging Prolog code for distribution;
• generating precompiled databases of application data;
• selectively loading particular application databases (and rule bases);
• saving Prolog data across application runs;
• building and saving new application databases from within applications;
• linking selected application databases into the application executable for ease of distri-

bution, or to get code sharing and better memory and paging performance.

The facilities for saving and loading QOF files are more than just a convenience when
developing programs; they are also a powerful tool that can be used as part of the application
itself.

8.5.2 Compatibility with save/restore in previous releases

Unfortunately, it has not been possible to retain the semantics of save/[1,2] available in
previous releases of Quintus Prolog. This is regrettable because it means that programs that
incorporate code for building saved-states will need to be changed. This section explains
why it was necessary to remove these predicates. Note, however, that save_program/1 is
available and has the same semantics as previous releases (except for foreign code), although
it is based on a new implementation using QOF files. A new predicate save_program/2,
described in Section 8.5.4 [ref-sls-sst], page 196, has been provided, which supports the most
common usage of save/[1,2], which was to specify an initial goal for a saved-state to call
when run.

The difference between save_program/1 and save/[1,2] in previous releases of Quintus
Prolog was that save_program/1 saved only the Prolog database, whereas save/[1,2]
saved both the Prolog database and the Prolog execution stacks. It has not been possible
to retain the saving of the Prolog execution stacks in a way consistent with the release 3
support of embeddability and the general portability of QOF files. This is why save/[1,2]
have been removed. The reasoning goes as follows:

1. QOF files are a completely portable machine-independent representation of Prolog
data.

2. It is difficult, if not impossible, to make the Prolog execution state portable in the same
way as facts and rules in QOF files (see further points).

194 Quintus Prolog

3. QOF files can also be combined and loaded in flexible ways, and it is unclear what this
would mean for execution states.

4. The QOF file saved-states do not save any C (or other foreign language) state. This is a
change from the previous Quintus Prolog saved-states, and is further discussed below.

5. In the general case, Prolog execution can now be arbitrarily interleaved with C (or
other) function calls since Prolog and C are completely intercallable and can call each
other recursively.

6. Since the C state is not saved, it is not possible to meaningfully save the Prolog exe-
cution state in the general case where it depends on interleaved C execution state.

7. In addition, Prolog code embedded in a C (or other) application is highly likely to be
manipulating C data, such as pointers and other process-specific information. This
data would be meaningless if restored into another process, and indeed would be likely
to cause faults.

The model that an arbitrary Prolog execution state can be saved thus only works well within
a Prolog-only situation. In the complex embedded environments supported by Quintus
Prolog release 3 this model cannot work properly. Hence the removal of the facility.

As mentioned in points 4-7 above, an additional important aspect here is that Prolog no
longer makes any attempt to save the state of C (or other foreign language) code. This was
a feature of saved-states in previous releases where both the C code and its data structures
were saved (as a memory image) into saved-states. This was a feature that caused many
problems. A primary problem was that the saved C state was initialized (variables retained
their values when restored) and yet the initialized C state could contain many items that
were no longer valid in the new process, such as addresses and file descriptors. Such code
would often fail when restored. In addition, Prolog was unable to guarantee that it had
saved all the necessary foreign code state. With the advent of shared libraries and other
complex memory management facilities in the operating system, it became impossible for
Prolog to control and manage the states of other tools in the address space.

When one takes a step back and looks at Prolog in the light of the goals of release 3 (see
Section 1.2 [int-hig], page 4) — where Prolog code is a component that can be embedded in
complex applications written in many languages — it is clearly unreasonable for Prolog to
try and control, let alone save, arbitrary non-Prolog state. The Prolog operations for saving
and loading QOF files now operate solely on the Prolog database and these operations do not
involve making any assumptions about non-Prolog state. This is a much cleaner and more
robust approach, and is the most appropriate when Prolog applications become embedded
software components.

8.5.3 Foreign Code

Prolog QOF files do not contain any foreign code or foreign data structures. As discussed
in the previous section, this is different from saved-states in previous releases of Quintus
Prolog.

Chapter 8: The Prolog Language 195

However, QOF files can have dependencies on object files that will be automatically loaded
when the QOF file is loaded. These dependencies can arise because:

1. The QOF file was compiled with the stand-alone compiler qpc (see Section 9.1.2 [sap-
srs-qpc], page 341) and its source file contained calls to load_foreign_files/2, which
will have been turned into object file dependencies in the QOF file.

2. The QOF file was saved from a Prolog session, using save_program/[1,2] or save_
modules/2, in which foreign code had been previously loaded. The object files loaded
will be recorded as object file dependencies in the QOF file.

The qnm utility can be used (from the command prompt) to see the list of dependencies in
a QOF file:

% qnm -D file.qof

It is slower to start up a QOF file with object file dependencies because the object files
must be re-linked and re-loaded. This re-linking and re-loading will occur every time the
QOF file is loaded and the necessary object files are not yet loaded into the system. If this
start-up time becomes a problem then this can be tackled by statically linking your foreign
code into the Prolog system. This is described in Section 9.1 [sap-srs], page 337. This will
make the foreign code become part of the Prolog executable so there is no run-time linking
required at all. In addition, on most systems, this Prolog code will now be demand-paged
from the executable, which will improve start-up time and reduce paging (as compared with
dynamic linking). We recommend switching over to using static linking for programs with
a lot of foreign code. The dynamic foreign language interface can be used for loading code
while testing, but once your foreign code is stable it is better to have it statically linked.
Furthermore, dynamically loaded foreign code cannot be debugged with a debugger such as
gdb(1), so you will also need to statically link the foreign code so that the debugger can
be used on the resulting executable. This contradicts the fact that foreign code should be
dynamically loaded while testing.

All foreign code is either linked into the Prolog executable, or is re-loaded when a QOF file
is loaded. This means that when a program is started the foreign code will always be in
an uninitialized state. This is exactly the same as any other program. However, this is a
change from saved-states in previous releases of Quintus Prolog that saved the initialized
foreign state. The new semantics is much cleaner, is consistent with standard practice, and
avoids previous problems with invalid initializations that were not valid in the new process.
This latter problem was particularly problematic for libraries (such as Curses, X Windows,
and database interfaces) since the user did not usually have source code for the libraries
and how they initialized and what they depended upon could not be easily understood. In
Quintus Prolog Release 3, foreign code linked with Prolog, or loaded into Prolog, will work
just the same as if it were a separate program independent of Prolog.

It is possible that some of your previous programs relied on the saving of foreign state into
saved-states. If you have such programs then they will need to be changed. Usually the
change will involve making sure that the foreign code is explicitly initialized each time the
application is run. The initialization facilities described below, see Section 8.5.6 [ref-sls-igs],
page 199, may be useful for this.

196 Quintus Prolog

8.5.4 Saved-States

Saved-states are just a special case of QOF files. The save_program/[1,2] predicate will
save the entire Prolog database into a QOF file, and then in addition will make that QOF
file executable. Under UNIX, the QOF file is made executable by making the first line of
the file be a sh(1) script. This script runs the executable that the QOF file was saved from,
telling it to load the QOF file.

So, if a saved-state is created as follows:

| ?- save_program(savedstate).

then if we look at the first line of the file we will see something like the following. Note that
‘+L’ is a Prolog command line option to load a QOF file (‘$0’ will be the name of the QOF
file and ‘$*’ will be any other arguments given when it is run).

% head -1 savedstate

exec /usr/local/quintus/bin3.5/sun4-5/prolog +L $0 $*

This QOF file can then be run from the command line as follows:

% savedstate

In addition to the user’s code from the Prolog database, a saved-state saved by save_
program/[1,2] also contains Prolog system information such as flag settings, debugging
information and so forth. When the saved-state is loaded this system state is also restored,
which is convenient for continued development.

Apart from being made executable, and containing additional Prolog system information,
a saved-state saved through save_program/[1,2] is just a standard QOF file. This means
that it can be used anywhere you would otherwise use a QOF file, for such things as
loading into Prolog, linking together with other QOF files, and linking into executables (see
Section 9.1 [sap-srs], page 337 for information on these linking capabilities).

A saved-state, or any QOF file, can be restored using the restore/1 predicate from within
Prolog:

| ?- restore(savedstate).

The restore/1 predicate will re-execute the running executable (using the execv(3) system
call) in order to obtain a completely new environment, and will then load the QOF file. If
the QOF file was saved with save_program/[1,2] then this will restore exactly the same
Prolog database state as when the saved-state was saved. In runtime systems, however, it
is the application program’s responsibility to load the file into the restarted executable, see
Section 18.3.153 [mpg-ref-restore], page 1266 and Section 9.1.8 [sap-srs-sqf], page 354.

Note that the executable that will be re-executed by restore/1 is the one currently running.
This may be different from the one named in the first line in the QOF file, if that QOF file
was saved from some different executable. To use the executable that originally saved the

Chapter 8: The Prolog Language 197

QOF file you should return to the command interpreter and run the QOF file directly. To
use the executable you are currently running, you should use restore/1.

If the loaded QOF file has object file dependencies then those object files will be re-linked
and re-loaded as part of loading the QOF file. If the object file cannot be found or linked,
then an exception will be raised. Similarly, QOF dependencies are also reloaded at this
point.

Windows caveat:

Under Windows, it is not possible to replace a running executable with another.
Under Windows, restore/1 will instead start a new sub-process and then ter-
minate the running process. For more details see the Microsoft documentation
for execv().

In a Windows command prompt window, the command interpreter does not
wait when a process executes an execv() library call. Thus after restore/1,
the program gives the appearance of running in the background.

Please note: The QOF file saved by save_program/2 does not contain any of
the Prolog code that is statically linked into the executable. Only the Prolog
database (both compiled and dynamic) that has been built since the executable
started running is saved. This is done to avoid code duplication in the saved-
state. However, this does mean that if the QOF-file is loaded into a differ-
ent executable, then the program may be missing some code that it assumes
should be there, because it was present in the original executable. An example
would be a saved-state that was saved from an executable containing Quintus’
ProWINDOWS add-on product. If that saved-state is loaded into a normal
Prolog executable without ProWINDOWS then any calls to ProWINDOWS
will not work (they will generate undefined predicate exceptions). The correct
thing to do is clearly to make sure that you use either the original executable, or
an executable that contains the necessary programs, or you load the necessary
programs in addition to loading the saved-state QOF file.

The save_program/2 predicate can be used to specify an initial goal that will be run when
the saved-state is re-loaded. This usage of save_program/2 replaces the most common uses
of the old save/[1,2] predicates that are no longer available. For example:

| ?- save_program(saved_state,initial_goal([a,b,c])).

When ‘saved_state’ is loaded initial_goal/1 will be called. This allows saved-states
to be generated that will immediately start running the user’s program when they are
executed. In addition to this save_program/2 facility there is also a comprehensive facility
for programs to set up initializations to be run when they are loaded or otherwise started.
This is described below in Section 8.5.6 [ref-sls-igs], page 199.

198 Quintus Prolog

8.5.5 Selective saving and loading of QOF files

The save_program/[1,2] and restore/1 predicates discussed in the previous section are
used for saving and restoring the entire Prolog database. To save selected parts of a Prolog
database, the predicates save_modules/2 and save_predicates/2 are used.

For example, to save the modules user and special you would use:

| ?- save_modules([user,special],’file1.qof’).

All predicates in those modules will be saved, and in addition any foreign code files pre-
viously loaded into these modules will generate an object file dependency in the QOF file.
All information in these modules about predicates attached to foreign functions, and also
predicates that have been made externally callable from foreign code, is saved as a normal
part of the module.

For each module imported by one of the specified modules, a QOF file dependency is
included in the QOF file. This means that when you load ‘file1.qof’ into another Prolog
session, it will automatically load any additional QOF files that it needs.

To just save certain predicates you would use:

| ?- save_predicates([person/2,dept/4],’file2.qof’).

This will only save the predicates specified. In this case no additional dependency informa-
tion is saved into the QOF file. Note that the module information for these predicates is
included. When the QOF file is loaded the predicates will be loaded into the same module
they were in originally.

Any QOF file, however generated, can be loaded into Prolog with load_files/[1,2]:

| ?- load_files(’file1.qof’)

or, equivalently:

| ?- [’file1.qof’].

The information from each QOF file loaded is incrementally added to the database. This
means that definitions from later loads may replace definitions from previous loads. A saved-
state QOF file saved with save_program/[1,2] can also be loaded with load_files/[1,2]
in which case the contents of the saved-state are just incrementally added to the database
as for any other QOF file. The use of load_files/[1,2] for this is different from the use of
restore/1 in that restore/1 will re-execute the executable thus reinitializing the database.
Using load_files/[1,2] allows the database to be incrementally changed within the same
process.

If the loaded QOF file has object file dependencies then those object files will be linked and
loaded as part of loading the QOF file unless they have already been loaded. If the object
file cannot be found or linked, then an exception will be raised.

Chapter 8: The Prolog Language 199

The predicates load_files/[1,2] are used for compiling and loading source files as well
as QOF files. If ‘file1.qof’ and ‘file1.pl’ both exist (and ‘file1’ does not), then load_
files (file 1) will load the source (‘.pl’) or the QOF, whichever is the most recent. Refer
to Section 8.4 [ref-lod], page 189 for more information on loading programs, and also to the
reference page for load_files/[1,2].

Advanced note: Both save_modules/2 and save_predicates/2 will save Pro-
log code that is statically linked if such modules or predicates are specified. This
is different from save_program/[1,2], which will not save statically linked Pro-
log code. Note that if such a QOF file is loaded back into the same executable
that saved it, then the new definitions from the QOF file will replace the stat-
ically linked code. There is no problem with this, except that some space will
be wasted. The original statically linked code will not be used, but since it is
linked into the executable its space cannot be reclaimed. Since static linking
is normally used to optimize start-up time and the space usage for code, it is
somewhat of a waste to circumvent this by saving and loading a lot of Prolog
code that is already in the executable. If the QOF file is to be used for other
purposes, such as re-linking the executable, or as a part to be loaded into an-
other program, then, of course, the saving of statically linked code is probably
exactly what is required.

8.5.6 Initializing Goals in Saved States

Under the earlier model, a Prolog file could either be compiled into the development system,
or compiled to Quintus Object Format by qpc, as shown in the following figure.

200 Quintus Prolog

Compilation options: Quintus Prolog 2.5

The ability to save and load QOF files in a development system makes the picture more
complicated. The following figure shows the ways a Prolog source file can be compiled or
saved.

It would be natural to expect ‘a.qof’ to be the same, however generated. But both the
‘save’ predicates and qpc offer a rich variety of options, and the reality is less simple (see
the following figure).

Chapter 8: The Prolog Language 201

Saving and loading options: Quintus Prolog 3.5

8.5.6.1 The Initialization Declaration

The initialization/1 predicate is an important complement to the embedded directive
construct ‘:- Goal’ appearing in a file being consulted or compiled, and can in many cases
not only replace the directive, but also make the code work better when used in stand-alone
programs and runtime systems.

The main reason for this is that ‘:- Goal’ directive is executed at compile-time, not when the
file in which the construct occurs is actually loaded into a running system. This causes no
problems within development systems, but if we want to save states and compile programs
into qof-files, link them together, and later start them up again, problems arise because:

• The ‘:- Goal’ construct calls Goal only once, when the file is compiled, not when a
saved state containing the file is restored.

• Goal is called at compile-time, which means that if you use qpc to compile source code
into a qof-file, your directives will be run during this compilation, not when you load
the qof-file or start up a stand-alone system to which the qof-file has been linked.

202 Quintus Prolog

The initialization/1 predicate, on the other hand, provides a way of letting initialization
routines be called when a file is actually loaded or a system containing the file is started up.
This allows for correct initialization in stand-alone programs and runtime systems; therefore
a recommended programming style is to use initialization/1 instead of a bare ‘:- Goal

’ construct whenever appropriate.

In the following figure, Goal 1 might typically be an operator declaration and Goal 2, an
initialization predicate that modifies the database.

Embedded directives (goal 1) vs. initialized goals (goal 2)

The initialization goal, Goal 2, is defined to be run when:

• a source file with a :- initialization Goal directive is loaded into a running system
(using compile, consult etc.)

• a stand-alone program or runtime system is started up, and some file linked to the
system had a :- initialization Goal directive. If several files had such directives,
the order in which the goals are run is not defined.

• a saved state is restored, and some file loaded to the saved system had a :-

Chapter 8: The Prolog Language 203

initialization Goal directive, or initialization(Goal) was called before the state
was saved. If several initialization goals were defined in the system, the order in which
they are run upon a restore is not defined.

• a QOF file is loaded into a running system, and the source file that was compiled into
the qof file had a ‘(:- initialization Goal)’ directive.

8.5.6.2 Volatile Predicates

A predicate should be declared as volatile if it refers to data that cannot or should not be
saved in a QOF file. In most cases a volatile predicate will be dynamic, and it will be used
to keep facts about streams or references to C-structures. When a state or a module is
saved at run-time, the clauses of all volatile predicates defined in the context will be left
unsaved. The predicate definitions will be saved though, which means that the predicates
will keep all properties, that is volatile and maybe dynamic or multifile, when the saved
state is restored.

For example, if a Prolog application connects to an external database at start up, estab-
lishing a connection by an assertion like (A), a volatile declaration would prevent each
particular connection from getting saved in the QOF file, as illustrated in the following
figure. A code example is found in the reference page for initialization/1.

assert(db_connection(Connection)) (A)

204 Quintus Prolog

Using the Volatile Property

When used as a compile-time directive, the volatile declaration of a predicate must appear
before all clauses of that predicate. The predicate is reinitialized. When used as a callable
goal, the only effect on the predicate is that it is set to be volatile.

8.5.6.3 Fine Tuning

To tune the initialization of a file or system to be run only when it should be run,
volatile/1, in combination with other declarations, give initialization/1 the infor-

Chapter 8: The Prolog Language 205

mation necessary to distinguish different loading situations. In the reference pages, we
show how some common situations can be programmed using these predicates.

If a source file contains data that is supposed to be transformed according to some com-
plicated rules (which cannot be done with term_expansion/2), and the data after the
transformation can be saved into a saved state, we might want the transformation to be
done when the file is loaded, but not when a saved state is restored. The following program
defines the initialization to be run only when the file is loaded:

:- dynamic do_not_transform/0. % reset fact
:- initialization my_init.

my_init :-
(do_not_transform ->

true
; undo_transform, % remove old data

do_transform,
assert(do_not_transform)

).

In the above example, do_transform/0 and undo_transform/0 are user defined.

8.5.7 Predicate List

Detailed information is found in the reference pages for the following:

• initialization/1

• load_files/[1,2]

• prolog_load_context/2

• restore/1

• save_modules/2

• save_predicates/2

• save_program/[1,2]

• volatile/1

8.6 Files and Directories

8.6.1 The File Search Path Mechanism

As a convenience for the developer and as a means for extended portability of the final
application, Quintus Prolog provides a flexible mechanism to localize the definitions of the
system dependent parts of the file and directory structure a program relies on, in such a

206 Quintus Prolog

way that the application can be moved to a different directory hierarchy or to a completely
new file system, with a minimum of effort.

This mechanism, which can be seen as a generalization of the library_directory/1 scheme
available in previous releases, presents two main features:

1. An easy way to create aliases for frequently used directories, thus localizing the external,
file system and directory structure dependent directory name, to one single place in
the program.

2. A possibility to associate more than one directory specification with each alias, thus
giving the developer full freedom in sub-dividing libraries, and other collections of
programs, as it best suits the structure of the external file system, without making the
process of accessing files in the libraries any more complicated. In this case, the alias
can be said to represent a file search path, not only a single directory.

The directory aliasing mechanism, together with the additional file search capabilities of
absolute_file_name/3, can effectively serve as an intermediate layer between the external
world and a portable program. For instance, the developer can hide the directory repre-
sentation by defining directory aliases, and he can automatically get a proper file extension
added, dependent on the type of file he wants to access, by using the appropriate options
to absolute_file_name/3.

A number of directory aliases and file search paths, are predefined in the Quintus Prolog
system (though they can be redefined by the user). The most important of those is the
library file search path, giving the user instant access to the Quintus library, consisting of
several sub-directories and extensive supported programs and tools.

Specifying a library file, using the alias, is possible simply by replacing the explicit file (and
directory) specification with the following term:

library(file)

The name of the file search path, in this case library, is the main functor of the term, and
indicates that file is to be found in one of the library directories.

The association between the alias library (the name of the search path) and the li-
brary directories (the definitions of the search path), is defined by Prolog facts, library_
directory/1, which are searched in sequence to locate the file. Each of these facts specifies
a directory where to search for file, whenever a file specification of the form library(file
) is encountered.

The library mechanism discussed above, which can be extended with new directories associ-
ated with the alias library, has become subsumed by the more general aliasing mechanism,
in which arbitrary names can be used as aliases for directories. The general mechanism also
gives the possibility of defining path aliases in terms of already defined aliases.

In addition to library, the following aliases are predefined in Quintus Prolog: quintus,
runtime, system, helpsys language and tutorial. The interpretation of the predefined
aliases are explained below.

Chapter 8: The Prolog Language 207

8.6.1.1 Defining File Search Paths

The information about which directories to search when an alias is encountered, is defined
by the dynamic, multifile predicate file_search_path/2. The clauses for this predicate
are located in module user, and have the following form:

file_search_path(PathAlias, DirectorySpec).

PathAlias must be an atom. It can be used as an alias for DirectorySpec

DirectorySpec
Can either be an atom, spelling out the name of a directory, or a compound
term using other path aliases to define the location of the directory.

The directory path may be absolute, as in (A) or relative as in (B), which defines a path
relative to the current working directory.

Then, files may be referred to by using file specifications of the form similar to library(file
). For example, (C), names the file ‘/usr/jackson/.login’, while (D) specifies the path
‘etc/demo/my_demo’ relative to the current working directory.

file_search_path(home, ’/usr/jackson’). (A)

file_search_path(demo, ’etc/demo’). (B)

home(’.login’) (C)

demo(my_demo) (D)

As mentioned above, it is also possible to have multiple definitions for the same alias. If
clauses (E) and (F) define the home alias, then to locate the file specified by (G) each home
directory is searched in sequence for the file ‘.login’. If ‘/usr/jackson/.login’ exists, it
is used. Otherwise, ‘/u/jackson/.login’ is used if it exists.

file_search_path(home, ’/usr/jackson’). (E)
file_search_path(home, ’/u/jackson’). (F)

home(’.login’) (G)

The directory specification may also be a term of arity 1, in which case it specifies that the
argument of the term is relative to the file_search_path/2 defined by its functor. For
example, (H) defines a directory relative to the directory given by the home alias. Therefore,
the alias qp_directory represents the search path ‘/usr/jackson/prolog/qp’ followed by
‘/u/jackson/prolog/qp’. Then, the file specification (I) refers to the file (J), if it exists.
Otherwise, it refers to the file (K), if it exists.

208 Quintus Prolog

file_search_path(qp_directory, home(’prolog/qp’)). (H)

qp_directory(test) (I)

/usr/jackson/prolog/qp/test (J)

/u/jackson/prolog/qp/test (K)

Aliases such as home or qp_directory are useful because even if the home directory changes,
or the qp_directory is moved to a different location, only the appropriate file_search_
path/2 facts need to be changed. Programs relying on these paths are not affected by the
change of directories because they make use of file specifications of the form home(file)
and qp_directory(file).

All built-in predicates that take file specification arguments allow these specifications to
include path aliases defined by file_search_path/2 facts. These predicates are:

• absolute_file_name/[2,3]

• compile/1

• consult/1

• ensure_loaded/1

• load_files/[1,2]

• open/[2,3]

• restore/1

• save_module/2

• save_predicates/2

• save_program/[1,2]

• see/1

• tell/1

• use_module/[1,2,3]

Notes:

1. The file_search_path/2 database may contain directories that do not exist or are
syntactically invalid (as far as the operating system is concerned). If an invalid directory
is part of the database, the system will fail to find any files in it, and the directory will
effectively be ignored.

2. This facility is provided so that one can load library or other files without knowing
their absolute file names, but this does not restrict the way a file can be accessed. It
is strongly suggested that writing to a file not be done using the PathAlias(FileSpec
) facility. (One could write to PathAlias(FileSpec) but this may not have the desired
effect, since the system will write to one of possibly many files depending upon the
current order of the clauses in the file_search_path/2 predicate.) The absolute
name of the file to which one is writing should be known. To find the absolute name
of a library file, for example, one can type

Chapter 8: The Prolog Language 209

| ?- absolute_file_name(library(FileSpec), AbsFileName).

3. file_search_path/2 must be defined in the default module user — definitions in any
other module will not be found.

8.6.1.2 Frequently Used File Specifications

Frequently used file_search_path/2 facts are best defined using the initialization file
‘prolog.ini’ , which is consulted at startup time by the Development System. Therefore,
with reference to the examples from Section 8.6.1.1 [ref-fdi-fsp-def], page 207, clauses like
one following should be placed in the ‘prolog.ini’ file so that they are automatically
available to user programs after startup:

:- multifile file_search_path/2.
:- dynamic file_search_path/2.
file_search_path(home, ’/usr/jackson’).
file_search_path(qp_directory, home(’prolog/qp’)).
file_search_path(demo, ’etc/demo’).

If it is necessary to avoid multiple definitions of the same fact, this would be useful, for exam-
ple, when restoring a saved state saved by save_program/1 at which time the ‘prolog.ini’
file is consulted again, a predicate such as add_my_search_path/2 can be defined in the
‘prolog.ini’ file.

add_my_search_path(Name, FileSpec) :-
file_search_path(Name, FileSpec),
!.

add_my_search_path(Name, FileSpec) :-
assert(file_search_path(Name, FileSpec)).

This predicate only asserts a clause into the database if it is not already defined. Then,
using goals of the following form avoids multiple definitions:

:- add_my_search_path(home, ’/usr/jackson’).
:- add_my_search_path(demo, ’etc/demo’).
:- add_my_search_path(qp_directory, home(’prolog/qp’)).

8.6.1.3 Filename Defaults

Some of the predicates that take file specification arguments not only can search for a file
among the directories defined by file_search_path/2 facts (if a path alias is used), but
also can help the user in finding the correct file by adding appropriate extensions and/or
looking for the most recent file by comparing modification times.

load_files/[1,2] (and the predicates defined in terms of load_files/2), uses the follow-
ing algorithm to find the most appropriate file to load:

210 Quintus Prolog

1. if the file specification is of the form PathAlias(FileName), retrieve the first directory
in the search path associated with PathAlias and apply the algorithm below in that di-
rectory (for instance, if library(strings) are given, look in the first library directory,
with FileName set to strings):

2. if ‘FileName’ exists, load it.
3. if ‘FileName.pl’ exists, but not ‘FileName.qof’, load ‘FileName.pl’
4. if ‘FileName.qof’ exists, but not ‘FileName.pl’, load ‘FileName.qof’
5. if both ‘FileName.pl’ and ‘FileName.qof’ exist, load the one that was most recently

modified.
6. if the file specification contained a path alias, retrieve the next directory in the path

and retry from (2).

For example,

| ?- [user].

| :- multifile file_search_path/2.

| :- dynamic file_search_path/2.

| file_search_path(home, ’/usr’).

| file_search_path(home, ’/usr/prolog’).

| end_of_file. % (or <^D>)
% user compiled in module user, 0.034 sec 284 bytes

yes

In this case the directory ‘/usr’ is searched first and ‘/usr/prolog’ second. Therefore, if
the file ‘foo.pl’ exists in both of these directories, the following query will compile ‘foo.pl’
in the directory ‘/usr’ (on the condition that ‘foo.qof’ does not exist).

| ?- compile(library(foo)).

8.6.1.4 Predefined file search path Facts

An example of a directory hierarchy that has a constant structure, but that may be installed
at different parts of the file system, is the Quintus installation hierarchy. Several file_
search_path/2 facts are defined in the system to support the flexibility of this installation.

The predefined file_search_path/2 facts are dynamic and multifile, so they can be re-
defined or expanded by users. In the Quintus Prolog Development System installed for a
Sparc running Solaris, the following predefined file_search_path/2 facts exist to specify
the location of certain Development System related directories:

Chapter 8: The Prolog Language 211

file_search_path(quintus,quintus-directory).
file_search_path(runtime,runtime-directory).
file_search_path(runtime,’’).
file_search_path(system,’sun4-5’).
file_search_path(system,sun4).
file_search_path(system,’’).
file_search_path(helpsys,quintus(’generic/q3.5/helpsys’)).
file_search_path(helpsys,package(helpsys)).
file_search_path(qplib,quintus(’generic/qplib3.5’)).
file_search_path(library,A) :-

library_directory(A).
file_search_path(messages,qplib(embed)).
file_search_path(language,english).
file_search_path(demo,quintus(’generic/q3.5/demo/bench’)).
file_search_path(demo,quintus(’generic/q3.5/demo/chat’)).
file_search_path(demo,quintus(’generic/q3.5/demo/curses’)).
file_search_path(demo,quintus(’generic/q3.5/demo/math’)).
file_search_path(demo,quintus(’generic/q3.5/demo/menu’)).
file_search_path(demo,quintus(’generic/q3.5/demo/search’)).
file_search_path(demo,quintus(’generic/q3.5/demo/wafer’)).
file_search_path(demo,qplib(’IPC/TCP/demo’)).
file_search_path(demo,qplib(’IPC/RPC/demo’)).
file_search_path(demo,package(demo)).
file_search_path(tutorial,quintus(’generic/q3.5/tutorial’)).
file_search_path(tutorial,package(tutorial)).
file_search_path(package,qplib(structs)).
file_search_path(package,qplib(objects)).
file_search_path(package,qplib(prologbeans)).
file_search_path(package,quintus(’qui3.5’)).
file_search_path(package,quintus(’proxt3.5’)).
file_search_path(package,quintus(’proxl3.5’)).

quintus-directory is the root of the Quintus installation hierarchy. It is the directory where
Quintus Prolog is installed, and is also returned by

| ?- prolog_flag(quintus_directory, QuintusDir).

(see Section 8.10.4.1 [ref-lps-flg-cha], page 246, for discussion of prolog_flags). The Prolog
flag host_type creates the system facts.

The path aliases predefined by the file_search_path/2 facts above have the following
interpretation:

quintus gives the absolute name of the quintus-directory; quintus-directory is the root
of the Quintus installation hierarchy;

runtime set to the value of the runtime prolog_flag/2; in the Development System,
the current working directory is also added as a runtime path;

212 Quintus Prolog

system gives the name of the system specific directories; see Section 8.6.1.5 [ref-fdi-fsp-
sys], page 213 below for more discussion of the system specific directories;

helpsys gives the location of the help-system files; only defined for the Development
System;

qplib gives the root directory of the Quintus libraries; see the library_directory/1
facts below;

library defined in terms of the library_directory/1 facts for compatibility with pre-
vious releases;

package lists Quintus Prolog packages, such as add-ons, for which general file search
path facts are defined (e.g. library, helpsys, demo, and tutorial);

messages gives the location of message files (e.g. ‘QU_messages’);

language gives the name of the current language specific directory. One language specific
directory exists under the embeddability directory in the library. This directory
contains, for example, the file ‘QU_messages.pl’, which thus can be retrieved
using the file specification messages(language(’QU_messages’));

demo gives the location of the Quintus Prolog demos;

tutorial gives the location of the Quintus Prolog tutorials.

Windows note: The syslib file search path is provided to allow standard con-
vention for Windows to be followed when searching for DLLs and libraries spec-
ified in load_foreign_executable/1. At startup time, Prolog asserts syslib
file search path facts based upon the path specified in the environment variable
PATH (as well as a couple of standard locations).

When running qld, the syslib file search path will be initialized to the path
specified in the environment variable LIB in order to follow the Microsoft linker
convention.

Therefore, the directive

:- load_foreign_executable(syslib(kernel32)).

executed in the Development System will load kernel32.dll from a directory
in the PATH environment variable, whereas if it is encountered by qld, the envi-
ronment variable LIB will be used to locate the import library ‘kernel32.lib’.

The syslib file search paths can be modified by user code in the Development
System or with the ‘-f’ and ‘-F’ options to qld if necessary.

The library directories defined by the system are:

Chapter 8: The Prolog Language 213

library_directory(qplib(library)).
library_directory(qplib(tools)).
library_directory(qplib(’IPC/TCP’)).
library_directory(qplib(’IPC/RPC’)).
library_directory(qplib(embed)).
library_directory(package(library)).

Note that these file_search_path/2 and library_directory/1 tables, except for
helpsys, are also defined in qpc and qld (see Section 20.1.6 [too-too-qpc], page 1489 and
Section 20.1.4 [too-too-qld], page 1481).

8.6.1.5 The system file search path

The system directory is used to store system dependent files. Its main purpose is to allow
different platforms sharing the same file system to share system independent files, such as
‘.pl’ and ‘.qof’ files, but still be able to locate the necessary system dependent files.

Generally, several system directories are defined by file_search_path/2 facts to include
different host and operating system combinations. The reason for this is that certain system
files are only machine dependent and can be shared by applications running on the same
type of machine, but some system files are operating system dependent also.

The most commonly used system files are object files that are loaded by load_foreign_
files/2 and load_foreign_executable/1 predicates. Quintus Prolog libraries, for exam-
ple, make frequent use of system dependent foreign code, but also contain system indepen-
dent files that are shared by all platforms. Therefore, the system dependent object files are
stored in a system directory for each platform. The system directories are located under
the library directory, and the library files use calls like these:

:- load_foreign_files([system(’file’)], []).

:- load_foreign_executable(system(’file’)).

to specify files located in system directories. The library object files are compiled for each
platform at installation time, and placed in the system directory specific to the platform.

The file_search_path/2 list in Section 8.6.1.4 [ref-fdi-fsp-pre], page 210, shows the differ-
ent combinations of system file_search_path facts for a Sun 4 running SunOS 5.x. The
order of search starts at the most specific system definition, which includes the host and full
operating system, and proceeds to less specific forms of the system definitions. Finally, if
none of the system directories exist, or none contain the specified file, the current working
directory is tried. This way, if Quintus Prolog is to run on a single platform, the system
dependent files may reside in the same directory as the system independent files.

214 Quintus Prolog

8.6.1.6 The Library Paths

The library path is special in that there are two methods of establishing and finding library
search paths. Although file_search_path/2 is more general and more powerful, you may
choose to define library_directory/1 if it is adequate for your needs.

The default clauses for library_directory/1 in the Prolog system can be seen by calling
listing/[0,1], or by usint the ‘+p library’ option to prolog (see Section 20.1.1 [too-too-
prolog], page 1476). They are also shown in Section 8.6.1.4 [ref-fdi-fsp-pre], page 210. To
specify an additional directory to be searched before the default ones, add a goal of the
form

:- asserta(library_directory(Directory)).

to your ‘prolog.ini’ file. See Section 8.3 [ref-pro], page 186 for a description of
‘prolog.ini’ files.

8.6.1.7 Editor Command for Library Search

Under the Emacs interface there is a command 〈ESC〉 x library, which, when given File-
Name as an argument, visits the file specified by library(FileName). This facility is
provided so one can visit/edit the copy of the file that will be accessed as a result of a
library search.

The notes at the end of Section 8.6.1.1 [ref-fdi-fsp-def], page 207 apply here as well.

8.6.2 List of Predicates

• absolute_file_name/[2,3]

• file_search_path/2

• library_directory/1

• source_file/[1,2,3]

8.7 Input and Output

8.7.1 Introduction

Prolog provides two classes of predicates for input and output: those that handle individual
characters, and those that handle complete Prolog terms.

The following predicates have been added for I/O at the Prolog level:

Chapter 8: The Prolog Language 215

• at_end_of_file/[0,1]

• at_end_of_line/[0,1]

• open/4

• peek_char/[1,2]

• prompt/3

• read_term/[2,3]

• seek/4

• skip_line/[0,1]

• write_term/[1,2]

Input and output happen with respect to streams. Therefore, this section discusses pred-
icates that handle files and streams in addition to those that handle input and output of
characters and terms.

In Quintus Prolog Release 3, the I/O system has been redesigned. Streams are now record
based by default, for an increase in efficiency and portability. This leads to increased
efficiency in opening streams, putting characters, flushing output, and in character I/O
operations involving lines (end of line, new line, skipping lines). For a description of the new
model, see Section 10.5.2 [fli-ios-iom], page 434. Combining Prolog and C I/O operations
on the same stream is facilitated by a more complete set of functions.

8.7.2 About Streams

A Prolog stream can refer to a file or to the user’s terminal1. Each stream is used either
for input or for output, but not for both. At any one time there is a current input stream
and a current output stream.

Input and output predicates fall into three categories:

1. those that use the current input or output stream;
2. those that take an explicit stream argument;
3. those that use the standard input or output stream — these generally refer to the user’s

terminal. Their names begin with ‘tty’.

Initially, the current input and output streams both refer to the user’s terminal. Each input
and output built-in predicate refers implicitly or explicitly to a stream. The predicates that
perform character and term I/O operations come in pairs such that (A) refers to the current
stream, and (B) specifies a stream.

predicate_name/n (A)
predicate_name/n+1 (B)

1 At the C level, you can define more general streams, e.g. referring to pipes or to encrypted files (see
Section 10.5.7.2 [fli-ios-uds-est], page 465).

216 Quintus Prolog

8.7.2.1 Programming Note

Deciding which version to use involves a trade-off between speed and readability of code: In
general, version (B), which specifies a stream, runs slower than (A). So it may be desirable
to write code that changes the current stream and uses version (A). However, the use of
(B) avoids the use of global variables and results in more readable programs.

8.7.2.2 Stream Categories

Quintus Prolog streams are divided into two categories, those opened by see/1 or tell/1
and those opened by open/[3,4]. A stream in the former group is referred to by its
file specification, while a stream in the latter group is referred to by its stream object
(see the figure “Categorization of Stream Handling Predicates”). For further information
about file specifications, see Section 8.6 [ref-fdi], page 205. Stream objects are discussed in
Section 8.7.7.1 [ref-iou-sfh-sob], page 226. Reading the state of open streams is discussed
in Section 8.7.8 [ref-iou-sos], page 230.

Each operating system permits a different number of streams to be open. For more infor-
mation on this, refer to Section 2.4 [bas-lim], page 32.

8.7.3 Term Input

Term input operations include:

• reading a term and
• changing the prompt that appears while reading.

8.7.3.1 Reading Terms: The "Read" Predicates

The “Read” predicates are

• read(-Term)

• read(+Stream, -Term)

• read_term(+Options, -Term)

• read_term(+Stream, +Options, -Term)

read_term/[2,3] offers many options to return extra information about the term.

When Prolog reads a term from the current input stream the following conditions hold:

• The term must be followed by a full-stop. See Section 8.1.8.1 [ref-syn-syn-ove], page 171.
The full-stop is removed from the input stream but is not a part of the term that is
read.

Chapter 8: The Prolog Language 217

read/[1,2] does not terminate until the full-stop is encountered. Thus, if you type at
top level

| ?- read(X)

you will keep getting prompts (first ‘|: ’, and five spaces thereafter) every time you
type 〈RET〉, but nothing else will happen, whatever you type, until you type a full-stop.

• The term is read with respect to current operator declarations. See Section 8.1.5 [ref-
syn-ops], page 165, for a discussion of operators.

• When a syntax error is encountered, an error message is printed and then the “read”
predicate tries again, starting immediately after the full-stop that terminated the erro-
neous term. That is, it does not fail on a syntax error, but perseveres until it eventually
manages to read a term. This behavior can be changed with prolog_flag/3 or using
read_term/[2,3].

• If the end of the current input stream has been reached, then read(X) will cause X to
be unified with the atom end_of_file.

8.7.3.2 Changing the Prompt

To query or change the sequence of characters (prompt) that indicates that the system is
waiting for user input, call prompt/[2,3].

This predicate affects only the prompt given when a user’s program is trying to read from
the terminal (for example, by calling read/1 or get0/1). Note also that the prompt is reset
to the default ‘|: ’ on return to the top level.

8.7.4 Term Output

Term output operations include:

• writing to a stream (various “write” Predicates)
• displaying, usually on the user’s terminal (display/1)
• changing the effects of print/1 portray/1

• writing a clause as listing/[0,1] does. (portray_clause)

8.7.4.1 Writing Terms: the "Write" Predicates

• write(+Stream, +Term)

• write(+Term)

• writeq(+Stream, +Term)

• writeq(+Term)

• write_canonical(+Term)

• write_canonical(+Stream, +Term)

218 Quintus Prolog

• write_term(+Stream, +Term, +Options)

• write_term(+Term, +Options)

write_term/[2,3] is a generalization of the others and provides a number of options.

8.7.4.2 Common Characteristics

The output of the “Write” predicates is not terminated by a full-stop; therefore, if you want
the term to be acceptable as input to read/[1,2], you must send the terminating full-stop
to the output stream yourself. For example,

| ?- write(a), put(0’.), nl.

If Term is uninstantiated, it is written as an anonymous variable (an underscore followed
by a non-negative integer).

write_canonical/[1,2] is provided so that Term, if written to a file, can be read back by
read/[1,2] regardless of special characters in Term or prevailing operator declarations.

8.7.4.3 Distinctions Among the "write" Predicates

• With write and writeq the term is written with respect to current operator declara-
tions (See Section 8.1.5 [ref-syn-ops], page 165, for a discussion of operators).
write_canonical(Term) writes Term to the current or specified output stream in
standard syntax (see Section 8.1 [ref-syn], page 159 on Prolog syntax), and quotes
atoms and functors to make them acceptable as input to read/[1,2]. That is, operator
declarations are not used and compound terms are therefore always written in the form:

predicate_name(arg1, ..., argn)

• Atoms output by write/[1,2] cannot in general be read back using read/[1,2]. For
example,

| ?- write(’a b’).

a b

If you want to be sure that the atom can be read back by read/[1,2], you should
use writeq/[1,2], or write_canonical/[1,2], which put quotes around atoms when
necessary, or use write_term/[2,3] with the quoted option set to yes.

•
write/[1,2] and writeq/[1,2] treat terms of the form ’$VAR’(N) specially: they
write ‘A’ if N=0, ‘B’ if N=1, . . . ‘Z’ if N=25, ‘A1’ if N=26, etc. Terms of this form are
generated by numbervars/3 (see Section 8.9.5 [ref-lte-anv], page 241). Terms of the
form ’$VAR’(X), where X is not a number are written as unquoted terms. For example,

| ?- writeq(a(’$VAR’(0),’$VAR’(’Test’))).
a(A,Test)

write_canonical/1 does not treat terms of the form ’$VAR’(N) specially. It writes
square bracket lists using ./2 and [] (that is, [a,b] is written as ‘.(a,.(b,[]))’). If

Chapter 8: The Prolog Language 219

the character_escapes flag is on then write_canonical/1 tries to write layout char-
acters (except ASCII 9 and ASCII 32) in the form ‘\lower-case-letter’, if possible;
otherwise, write_canonical/1 writes the ‘\^control-char’ form. If the character_
escapes flag is off then it writes the actual character, without using an escape sequence
(see Section 8.1.4 [ref-syn-ces], page 163).

• Depending upon whether character escaping is on or off, writeq/[1,2] and write_
canonical/[1,2] behave differently when writing quoted atoms. If character escaping
is on:
1. The characters with ASCII codes 9 (horizontal tab), 32 (space), and 33 through

126 (non-layout characters) are written as themselves.
2. The characters with ASCII codes 8, 10, 11, 12, 13, 27, and 127 are written in their

‘\lowercase letter’ form.
3. The character with ASCII code 39 (single quote) is written as two consecutive

single quotes.
4. The character with ASCII code 92 (back slash) is written as two consecutive back

slashes.
5. All other characters are written in their ‘\^control char’ form.

If character escaping is off:
1. The character with ASCII code 39 (single quote) is written as two consecutive

single quotes.
2. All other characters are written as themselves.
3. In general, one can only read (using read/[1,2]) a term written by write_

canonical/[1,2] if the value of the character_escapes flag is the same when
the term is read as when it was written.

8.7.4.4 Displaying Terms

Like write_canonical, display/1 ignores operator declarations and shows all compound
terms in standard prefix form. For example, the command

| ?- display(a+b).

produces the following:

+(a,b)

Calling display/1 is a good way of finding out how Prolog parses a term with several
operators. Unlike write_canonical/[1,2], display/1 does not put quotes around atoms
and functors.

8.7.4.5 Using the ‘portray’ hook

print/1 is called from within the system in two places:

220 Quintus Prolog

1. to print the bindings of variables after a question has succeeded
2. to print a goal during debugging

By default, the effect of print/1 is the same as that of write/1, but you can change its
effect by providing clauses for the hook predicate portray/1.

If X is a variable, then it is printed using write(X). Otherwise the user-definable procedure
portray(X) is called. If this succeeds, then it is assumed that X has been printed and
print/1 exits (succeeds). Note that print/1 always calls portray/1 in module user.
Therefore, to be visible to print/1, portray/1 must either be defined in or imported into
module user.

If the call to portray/1 fails, and if X is a compound term, then write/1 is used to write
the principal functor of X and print/1 is called recursively on its arguments. If X is atomic,
it is written using write/1.

When print/1 has to print a list, say [X1,X2,...,Xn], it passes the whole list to
portray/1. As usual, if portray/1 succeeds, it is assumed to have printed the entire
list, and print/1 does nothing further with this term. Otherwise print/1 writes the list
using bracket notation, calling print/1 on each element of the list in turn.

Since [X1,X2,...,Xn] is simply a different way of writing .(X1,[X2,...,Xn]), one might
expect print/1 to be called recursively on the two arguments X1 and [X2,...,Xn], giving
portray/1 a second chance at [X2,...,Xn]. This does not happen; lists are a special case
in which print/1 is called separately for each of X1,X2,...Xn.

If you would like lists of character codes printed by print/1 using double-quote notation,
you should include library(printchars) (described in Chapter 12 [lib], page 521) as part
of your version of portray/1.

Often it is desirable to define clauses for portray/1 in different files. This can be achieved
either by declaring it multifile in each of the files, or by using library(addportray).

8.7.4.6 Portraying a Clause

If you want to print a clause, portray_clause/1 is almost certainly the command you
want. None of the other term output commands puts a full-stop after the written term. If
you are writing a file of facts to be loaded by compile/1, use portray_clause/1, which
attempts to ensure that the clauses it writes out can be read in again as clauses.

The output format used by portray_clause/1 and listing/1 has been carefully designed
to be clear. We recommend that you use a similar style. In particular, never put a semicolon
(disjunction symbol) at the end of a line in Prolog.

8.7.5 Character Input

Chapter 8: The Prolog Language 221

8.7.5.1 Overview

Please note: For compatibility with DEC-10 Character I/O a set of predicates
are provided, which are similar to the primary ones except that they always
use the standard input and output streams, which normally refer to the user’s
terminal rather than to the current input stream or current output stream.
They are easily recognizable as they all begin with ‘tty’.

Given stream-based input/output, these predicates are actually redundant. For
example, you could write get0(user, C) instead of ttyget0(C).

This note applies to the character output as well (see Section 8.7.6 [ref-iou-cou],
page 222).

The operations in this category are:

• reading characters (“get” predicates),
• peeking
• skipping
• checking for end of line or end of file

8.7.5.2 Reading Characters

get0(N) unifies N with the ASCII code of the next character from the current input stream.
Cf. ttyget0/1.

get(N) unifies N with the ASCII code of the next non-layout character from the current
input stream. Layout characters are all outside the inclusive range 33..126; this includes
space, tab, linefeed, delete, and all control characters. Cf. ttyget/1.

8.7.5.3 Peeking

Peeking at the next character without consuming it is useful when the interpretation of
“this character” depends on what the next one is. Use peek_char/[1,2].

8.7.5.4 Skipping

There are two ways of skipping over characters in the current input stream: skip to a given
character, or skip to the end of a line (or record).

• To skip over characters from the current input or specified stream through the first
occurrence of the character with ASCII code N, (see Section 18.3.169 [mpg-ref-skip],
page 1293) Cf. ttyskip/1.

222 Quintus Prolog

• Generally it is more useful to skip to the end of a line using skip_line/[0,1]. Use
of this predicate helps portability of code since it avoids dependence on any particular
character code(s) being returned at the end of a line.

8.7.5.5 Finding the End of Line and End of File

To test whether the end of a line on the end of the file has been reached on the current or
specified input stream, use at_end_of_line/[0,1] or at_end_of_file/[0,1].

8.7.6 Character Output

The character output operations are:

• writing (putting) characters
• creating newlines and tabs
• flushing buffers
• formatting output.

Please note: The note about “tty-” predicates at the beginning of Section 8.7.5
[ref-iou-cin], page 220 applies here as well.

8.7.6.1 Writing Characters

put(N) writes N to the current output stream or put(Stream, N) writes N to a specified
one, Stream. N should be a legal ASCII character code or an integer expression.

If N evaluates to an integer, the least significant 8 bits are written.

The character is not necessarily printed immediately; they may be flushed if the buffer is
full. See Section 8.7.7.9 [ref-iou-sfh-flu], page 230.

Cf. ttyput/1.

8.7.6.2 New Line

nl and nl(Stream) terminates the current output record on the current output stream or
on a specified one, Stream. If the stream format is delimited(lf) or delimited(tty) (the
default), a linefeed character (ASCII) is printed.

Cf. ttynl/0.

Chapter 8: The Prolog Language 223

8.7.6.3 Tabs

tab(N) writes N spaces to the current output stream. N may be an integer expression.

The spaces are not necessarily printed immediately; see Section 8.7.7.9 [ref-iou-sfh-flu],
page 230.

Cf. ttytab/1

8.7.6.4 Formatted Output

format(Control, Arguments) interprets the Arguments according to the Control string
and prints the result on the current output stream. A stream can be specified using
format/3.

This is used to produce output like this, either on the current output or on a specified
stream:

| ?- toc(1.5).

Table of Contents i

Table of Contents

1. Documentation supplement for Quintus Prolog Re-
lease 1.5 2

1-1 Defini-
tion of the term "loaded" 2

1-2 Finding all solu-
tions ... 3

1-3 Searching for a file in a li-
brary 4

1-4 New Built-in Predi-
cates 5

1-4-
1 write_canonical (?Term) 5

.

.

.
1-7 File Specifica-

tions .. 17
1-7-1 multi-

file(+PredSpec) 18

yes

For details, including the code to produce this example, see the example program in the
reference page for format/[2,3]. The character escaping facility is also used.

224 Quintus Prolog

8.7.7 Stream and File Handling

The operations implemented are opening, closing, querying status, flushing, error handling,
setting.

The predicates in the “see” and “tell” families are supplied for DEC-10 Prolog compatibility.
They take either file specifications or stream objects as arguments (see Section 18.1 [mpg-
ref], page 985) and they specify an alternative, less powerful, mechanism for dealing with
files and streams than the similar predicates (open/[3,4], etc.), which take stream objects
(see the figure “Categorization of Stream Handling Predicates”).

Chapter 8: The Prolog Language 225

226 Quintus Prolog

Categorization of Stream Handling Predicates

8.7.7.1 Stream Objects

Each input and output stream is represented by a unique Prolog term, a stream object. In
general, this term is of the form

’$stream’(X).

where X is an integer. In addition, the following terms are used to identify the standard
I/O streams:

• user_input

• user_output

• user_error

Stream objects are created by the predicate open/[3,4] Section 8.7.7.4 [ref-iou-sfh-opn],
page 227and passed as arguments to those predicates that need them. Representation for
stream objects to be used in C code is different. Use stream_code/2 to convert from one
to the other when appropriate.

8.7.7.2 Exceptions related to Streams

All predicates that take a stream argument will raise the following exceptions:

instantiation_error
Stream argument is not ground

type_error
Stream is not an input (or output) stream type.

existence_error
Stream is syntactically valid but does not name an open stream.

permission_error
Stream names an open stream but the stream is not open for input (or output).

The reference page for each stream predicate will simply refer to these as “Stream errors”
and will go on to detail other exceptions that may be raised for a particular predicate.

8.7.7.3 Suppressing Error Messages

nofileerrors/0 resets the fileerrors flag, so that the built-in predicates that open files
simply fail, instead of raising an exception if the specified file cannot be opened.

Chapter 8: The Prolog Language 227

To cancel the effect of fileerrors/0, call nofileerrors/0. It sets the fileerrors flag to
its default state, on, in which an error message is produced by see/1, tell/1, and open/3
if the specified file cannot be opened. The error message is followed by an abort/0; that
is, execution of the program is abandoned and the system returns to top level.

The fileerrors flag is only enabled or disabled by an explicit call to fileerrors/0 or
nofileerrors/0, or via prolog_flag/[2,3], which can also be used to obtain the current
value of the fileerrors flag. See Section 8.10.1 [ref-lps-ove], page 245, for more information
on the fileerrors flag.

8.7.7.4 Opening a Stream

Before I/O operations can take place on a stream, the stream must be opened, and it must
be set to be current input or current output. As illustrated in the figure “Categorization
of Stream Handling Predicates”, the operations of opening and setting are separate with
respect to the stream predicates, and combined in the File Specification Predicates.

• open(+File, +Mode, -Stream) attempts to open the file File in the mode specified
(read,write or append). If the open/3 request is successful, a stream object, which can
be subsequently used for input or output to the given file, is unified with Stream.
The read mode is used for input. The write and append modes are used for output.
The write option causes a new file to be created for output. If the file already exists,
then it is set to empty and its previous contents are lost. The append option opens an
already-existing file and adds output to the end of it. The append option will create
the file if it does not already exist.
Options can be specified by calling open/4.

• set_input(Stream) makes Stream the current input stream. Subsequent input predi-
cates such as read/1 and get0/1 will henceforth use this stream.

• set_output(Stream) makes Stream the current output stream. Subsequent output
predicates such as write/1 and put/1 will henceforth use this stream.

Opening a stream and making it current are combined in see and tell:

• see(S) makes file S the current input stream. If S is an atom, it is taken to be a file
specification, and
− if there is an open input stream associated with the filename, and that stream was

opened by see/1, then it is made the current input stream;
− Otherwise, the specified file is opened for input and made the current input stream.

If it is not possible to open the file, see/1 fails. In addition, if the fileerrors
flag is set (as it is by default), see/1 sends an error message to the standard error
stream and calls abort/0, returning to the top level.

• tell(S) makes S the current output stream.
− if there is an open output stream currently associated with the filename, and that

stream was opened by tell/1, then it is made the current output stream;

228 Quintus Prolog

− Otherwise, the specified file is opened for output and made the current output
stream. If the file does not exist, it is created. If it is not possible to open the file
(because of protections, for example), tell/1 fails. In addition, if the fileerrors
flag is set (which it is by default), tell/1 sends an error message to the standard
error stream and calls abort/0, returning to the top level.

It is important to remember to close streams when you have finished with them. Use seen/0
or close/1 for input files, and told/0 or close/1 for output files.

• open_null_stream(Stream) opens an output stream that is not connected to any
file and unifies its stream object with Stream. Characters or terms that are sent to
this stream are thrown away. This predicate is useful because various pieces of local
state are kept for null streams: the predicates character_count/2, line_count/2,
and line_position/2 can be used on these streams (see Section 8.7.8 [ref-iou-sos],
page 230).

8.7.7.5 Finding the Current Input Stream

• current_input(Stream) unifies Stream with the current input stream.
• seeing(S) unifies S with the current input stream. This is exactly the same as

current_input(S), except that S will be unified with a filename if the current input
stream was opened by see/1 (see Section 8.7.7.4 [ref-iou-sfh-opn], page 227).
seeing/1 can be used to verify that FileNameOrStream is still the current input stream
as follows:

/* nonvar(FileNameOrStream), */
see(FileNameOrStream),
...
seeing(FileNameOrStream)

If the current input stream has not been changed (or if changed, then restored),
the above sequence will succeed for all file names and all stream objects opened by
open/[3,4]. However, it will fail for all stream objects opened by see/1 (since only
filename access to streams opened by see/1 is supported). This includes the stream
object user_input (since the standard input stream is assumed to be opened by see/1,
and so seeing/1 would return user in this case).
seeing/1 can be followed by see/1 to ensure that a section of code leaves the current
input unchanged

8.7.7.6 Finding the current output stream

• current_output(Stream) unifies Stream with the current output
stream.

• telling(S) unifies S with the current output stream. This is exactly the same as
current_output(S), except that S will be unified with a filename if the current output
stream was opened by tell/1.
A common usage of telling/1 is

Chapter 8: The Prolog Language 229

tell(’Some File Name’)
...
telling(’Some File Name’)

telling/1 should succeed if the current input stream was not changed (or if changed,
restored). It succeeds for any filename (including user) and any stream object
opened by open/3 (see Section 8.7.7.4 [ref-iou-sfh-opn], page 227), but fails for user_
output and any stream object opened by tell/1 (see Section 8.7.7.4 [ref-iou-sfh-opn],
page 227). Passing file names to tell/1 is the only DEC-10 Prolog usage of telling/1,
so Quintus Prolog is compatible with this usage.

WARNING: The sequence
telling(File),
...
set_output(File),

will signal an error if the current output stream was opened by tell/1.
The only sequences that are guaranteed to succeed are

telling(FileOrStream),
...
tell(FileOrStream)

and
current_output(Stream),
...
set_output(Stream)

8.7.7.7 Backtracking through Open Streams

• current_stream(*File, *Mode, *Stream) succeeds if Stream is a stream that is cur-
rently open on file File in mode Mode, where Mode is either read, write, or append.
None of the arguments need be initially instantiated. This predicate is nondeterminate
and can be used to backtrack through all open streams. It fails when there are no
(further) matching open streams.
current_stream/3 ignores the three special streams for the standard input, output,
and error channels.

8.7.7.8 Closing a Stream

• close(X) closes the stream corresponding to X.
If X is a stream object, then if the corresponding stream is open, it will be closed;
otherwise, close/1 succeeds immediately, taking no action.
If X is a file specification, the corresponding stream will be closed. It is only closed if
the file was opened by see/1 or tell/1. In the example

see(foo),
...
close(foo)

‘foo’ will be closed. However, in the example

230 Quintus Prolog

open(foo, read, S),
...
close(foo)

an exception will be raised and ‘foo’ will not be closed.
• told/0 closes the current output stream. The current output stream is then set to be

user_output; that is, the user’s terminal.
• seen/0 closes the current input stream. The current input stream is then set to be

user_input; that is, the user’s terminal.

8.7.7.9 Flushing Output

Output to a stream is not necessarily sent immediately; it is buffered. The predicate flush_
output/1 flushes the output buffer for the specified stream and thus ensures that everything
that has been written to the stream is actually sent at that point.

• flush_output(Stream) sends all data in the output buffer to stream Stream.
• ttyflush/0 is equivalent to flush_output(user).

8.7.8 Reading the State of Opened Streams

Character count, line count and line position for a specified stream are obtained as follows:

• character_count(Stream, N) unifies N with the total number of characters either
read or written on the open stream Stream.

• line_count(Stream, N) unifies N with the total number of lines either read or written
on the open stream Stream. A freshly opened stream has a line count of 1.

• line_position(Stream, N) unifies N with the total number of characters either read
or written on the current line of the open stream Stream. A fresh line has a line position
of 0.

8.7.8.1 Stream Position Information for Terminal I/O

Input from Prolog streams that have opened the user’s terminal for reading is echoed back as
output to the same terminal. This is interleaved with output from other Prolog streams that
have opened the user’s terminal for writing. Therefore, all streams connected to the user’s
terminal share the same set of position counts and thus return the same values for each of
the predicates character_count/2, line_count/2, and line_position/2. The following
example assumes that user_input, user_output, and user_error are all connected to the
user’s terminal (which may not always be true if I/O is being redirected),

Chapter 8: The Prolog Language 231

| ?- line_count(user, X1),

line_count(user_input, X2),

line_count(user_output, X3),

line_count(user_error, X4).

X1 = X2 = X3 = X4 = 36 ;

no
| ?- line_position(user, X1),

line_position(user_input, X2),

line_position(user_output, X3),

line_position(user_error, X4).

X1 = X2 = X3 = X4 = 0 ;

no
| ?- character_count(user, X1),

character_count(user_input, X2),

character_count(user_output, X3),

character_count(user_error, X4).

X1 = X2 = X3 = X4 = 1304 ;

no

8.7.9 Random Access to Files

There are two methods of finding and setting the stream position, stream positioning and
seeking. The current position of the read/write pointer in a specified stream can be ob-
tained by using stream_position/2. It may be changed by using stream_position/3.
Alternatively, seek/4 may be used.

Seeking is more general, and stream positioning is more portable. The differences between
them are:

• stream_position/2 is equivalent to seek/4 with Offset = 0, and Method = current.
• Where stream_position/3 asks for stream position objects, seek/4 uses integer ex-

pressions to represent the position or offset. Stream position objects are obtained by
calling stream_position/[2,3], and are discussed in the reference page.

• seek/4 is supported only on certain operating systems. stream_position/3 is
portable.

232 Quintus Prolog

8.7.10 Summary of Predicates and Functions

Reference pages for the following provide further detail on the material in this section.

• at_end_of_file/[0,1]

• at_end_of_line/[0,1]

• character_count/2

• close/1

• current_input/1

• current_output/1

• current_stream/3

• display/1

• fileerrors/0

• flush_output/1

• format/[2,3]

• get0/[1,2]

• get/[1,2]

• line_count/2

• line_position/2

• nl/[0,1]

• nofileerrors/0

• open/[3,4]

• open_null_stream/1

• peek_char/[1,2]

• portray/1

• portray_clause/1

• print/[1,2]

• prompt/[2,3]

• put/[1,2]

• read/[1,2]

• read_term/[2,3]

• see/1

• seeing/1

• seek/4

• seen/0

• set_input/1

• set_output/1

• skip/[1,2]

• skip_line/[0,1]

Chapter 8: The Prolog Language 233

• stream_position/[2,3]

• tab/[1,2]

• tell/1

• telling/1

• told/0

• ttyflush/0

• ttyget0/1

• ttyget/1

• ttynl/0

• ttyput/1

• ttyskip/1

• ttytab/1

• write/[1,2]

• write_canonical/[1,2]

• writeq/[1,2]

• write_term/[2,3]

Also, see Section 10.5 [fli-ios], page 433.

8.7.11 Library Support

• library(addportray)

•
• library(printchars)

8.8 Arithmetic

8.8.1 Overview

In Prolog, arithmetic is performed by certain built-in predicates, which take arithmetic
expressions as their arguments and evaluate them. Arithmetic expressions can evaluate to
integers or floating-point numbers (floats).

With release 3 Quintus Prolog has full 32 bit integer arithmetic and full 64 bit double preci-
sion floating point arithmetic. The range of integers is -2147483648 (-2^31) to 2147483647
(2^31-1) both inclusive. Arithmetic operations like integer addition and multiplication raise
a representation error if there is an overflow.

The range of floating-point numbers is approximately 2.3E-308 to 1.7E+308. Floats are
represented by 64 bits and they conform to the IEEE 754 standard. The behavior on
floating-point overflow or underflow is machine-dependent.

234 Quintus Prolog

Chapter summary: The arithmetic operations of evaluation and comparison are imple-
mented in the predicates described in Section 8.8.2 [ref-ari-eae], page 234 and Section 8.8.3
[ref-ari-acm], page 234. All of them take arguments of the type Expr, which is described in
detail in Section 8.8.4 [ref-ari-aex], page 235.

8.8.2 Evaluating Arithmetic Expressions

The most common way to do arithmetic calculations in Prolog is to use the built-in predicate
is/2.

-Term is +Expr
Term is the value of arithmetic expression Expr.

Term must not contain any uninstantiated variables. Do not confuse is/2 with =/2.

8.8.3 Arithmetic Comparison

Each of the following predicates evaluates each of its arguments as an arithmetic expression,
then compares the results. If one argument evaluates to an integer and the other to a float,
the integer is coerced to a float before the comparison is made.

Note that two floating-point numbers are equal if and only if they have the same bit pattern.
Because of rounding error, it is not normally useful to compare two floats for equality.

Expr1 =:= Expr2

succeeds if the results of evaluating terms Expr1 and Expr2 as arithmetic ex-
pressions are equal

Expr1 =\= Expr2

succeeds if the results of evaluating terms Expr1 and Expr2 as arithmetic ex-
pressions are not equal

Expr1 < Expr2

succeeds if the result of evaluating Expr1 as an arithmetic expression is less
than the result of evaluating Expr2 as an arithmetic expression.

Expr1 > Expr2

succeeds if the result of evaluating Expr1 as an arithmetic expression Expr1 is
greater than the result of evaluating Expr2 as an arithmetic expression.

Expr1 =< Expr2

succeeds if the result of evaluating Expr1 as an arithmetic expression is not
greater than the result of evaluating Expr2 as an arithmetic expression.

Chapter 8: The Prolog Language 235

Expr1 >= Expr2

succeeds if the result of evaluating Expr1 as an arithmetic expression is not less
than the result of evaluating Expr2 as an arithmetic expression.

8.8.4 Arithmetic Expressions

Arithmetic evaluation and testing is performed by predicates that take arithmetic expres-
sions as arguments. An arithmetic expression is a term built from numbers, variables, and
functors that represent arithmetic functions. These expressions are evaluated to yield an
arithmetic result, which may be either an integer or a float; the type is determined by the
rules described below.

At the time of evaluation, each variable in an arithmetic expression must be bound to a
number or another arithmetic expression. If the expression is not sufficiently bound or if it
is bound to terms of the wrong type then Prolog raises exceptions of the appropriate type
(see Section 8.19.3 [ref-ere-hex], page 312). Some arithmetic operations can also detect
overflows. They also raise exceptions. e.g. Division by zero results in a domain error being
raised.

Only certain functors are permitted in arithmetic expressions. These are listed below,
together with a description of their arithmetic meanings. For the rest of the section, X and
Y are considered to be arithmetic expressions.

8.8.4.1 Arithmetic calculations

X + Y Evaluates to the sum of X and Y. If both operands are integers, the result is an
integer; otherwise, the result is a float. If integer addition results in an overflow,
a representation error is raised.

X - Y Evaluates to the difference of X and Y. If both operands are integers, the result
is an integer; otherwise, the result is a float. If integer subtraction results in an
underflow, a representation error is raised.

X * Y Evaluates to the product of X and Y. If both operands are integers, the result
is an integer; otherwise, the result is a float. If integer multiplication results in
an overflow, a representation error is raised.

- X Evaluates to the negative of X. The type of the result, integer or float, is the
same as the type of the operand.

abs(X) Evaluates to X if X is a positive number, -X if it is a negative number.

X / Y Evaluates to the quotient of X and Y. The result is always a float, regardless
of the types of the operands X and Y. Attempt to divide by zero results in a
domain error being raised.

X // Y Evaluates to the integer quotient of X and Y. X and Y must both be integers.
The result is truncated to the nearest integer that is between it and 0. Attempt
to divide by zero results in a domain error being raised.

236 Quintus Prolog

X div Y Equivalent to ‘//’.

X mod Y Evaluates to the remainder after the integer division of X by Y. X and Y must
both be integers. The result, if non-zero, has the same sign as X. If Y evaluates
to 0, a domain error is raised.

integer(X)
Evaluates to X if X is an integer. Otherwise (if X is a float) the result is the
nearest integer that is between it and 0.

float(X) Evaluates to X if X is a float. Otherwise (if X is an integer) the result is the
floating-point equivalent of X.

min(X,Y) Evaluates to the minimum of X and Y.

max(X,Y) Evaluates to the maximum of X and Y.

8.8.4.2 Peeking into Memory

The following operations can be used to peek into memory. They can be used in conjunc-
tion with the foreign interface to peek into data structures within foreign code from Prolog.
These operations take an integer argument and access the data stored at the address rep-
resented by the argument. Note that these operations can result in segmentation faults
and bus errors if the argument you are trying to access is a bad address or if the address
is not aligned properly for the data you are going to access from it. The only sure way of
getting an integer in Prolog that represents an address that makes sense is by returning an
address from a foreign function through the foreign language interface (see Section 10.3.9
[fli-p2f-poi], page 397). For built-ins that poke (“store”) values into memory, see the refer-
ence page for assign/2 in the reference section. For more structured ways of doing this,
see the Structs and Objects packages.

integer_8_at(X)
Evaluates to the signed byte stored at address X.

unsigned_8_at(X)
Evaluates to the unsigned byte stored at address X.

integer_16_at(X)
Evaluates to the signed short stored at address X.

unsigned_16_at(X)
Evaluates to the unsigned short stored at address X.

integer_at(X)
Evaluates to the signed integer stored at address X.

address_at(X)
Evaluates to the address stored at address X.

single_at(X)
Evaluates to the single precision floating point number stored at address X.

Chapter 8: The Prolog Language 237

double_at(X)
Evaluates to the double precision floating point number stored at address X.

8.8.4.3 Bit-vector Operations

The following bit-vector operations apply to integer arguments only. Supplying non-integer
arguments results in an exception being raised. Note that the slant lines used in these
operator names are produced with the forward and backward slash keys.

X /\ Y Evaluates to the bitwise conjunction of X and Y.

X \/ Y Evaluates to the bitwise disjunction of X and Y.

\(X,Y) Evaluates to the bitwise xor of X and Y. Note that this is not an operator.

\ (X) Evaluates to the complement of the bits in X.

X << Y X is shifted left Y places. Equivalent to X << (Y /\ 2’11111).

X >> Y X is shifted right Y places with sign extension.

8.8.4.4 Character Codes

The following operation is included in order to allow integer arithmetic on character codes.

[X] Evaluates to X for numeric X. This is relevant because character strings in
Prolog are lists of character codes, that is, integers. Thus, for those integers
that correspond to character codes, the user can write a string of one character
in place of that integer in an arithmetic expression. For example, the expression
(A) is equivalent to (B), which in turn becomes (C) in which case X is unified
with 2:

X is "c" - "a" (A)

X is [99] - [97] (B)

X is 99 - 97 (C)

A cleaner way to do the same thing is
X is 0’c - 0’a

8.8.5 Predicate Summary

• is/2

• =:=/2

• =\=/2

• </2

238 Quintus Prolog

• >//2

• =</2

• >=/2

8.8.6 Library Support

Additional arithmetic predicates can be found in library(math).

8.9 Looking at Terms

8.9.1 Meta-logical Predicates

Meta-logical predicates are those predicates that allow you to examine the current instan-
tiation state of a simple or compound term, or the components of a compound term. This
section describes the meta-logical predicates as well as others that deal with terms as such.

8.9.1.1 Type Checking

The following predicates take a term as their argument. They are provided to check the
type of that term.

Predicate Succeeds if term is:

var/1 a variable; the term is currently uninstantiated.

nonvar/1 a non-variable; the term is currently instantiated.

integer/1
an integer

atom/1 an atom

float/1 a float

number/1 an integer or float.

atomic/1 an atom, number or database reference.

simple/1 an atom, number, variable or database reference.

compound/1
a compound term (arity > 0).

callable/1
a term that call/1 would take as an argument; atom or compound term.

ground/1 ground; the term contains no uninstantiated variables.

Chapter 8: The Prolog Language 239

db_reference/1
a Prolog database reference

Please note: Although database references are read and written as
compound terms, and formerly were, they now are a distinct atomic
term type (see Section 8.14.3 [ref-mdb-dre], page 288).

The reference pages for these predicates include examples of their use.

8.9.1.2 Unification and Subsumption

To unify two items simply use =/2, which is defined as if by the clause

=(X, X).

Please note: Do not confuse this predicate with =:=/2 (arithmetic comparison)
or ==/2 (term identity).

Term subsumption is a sort of one-way unification. Term S and T unify if they have
a common instance, and unification in Prolog instantiates both terms to that common
instance. S subsumes T if T is already an instance of S. For our purposes, T is an instance
of S if there is a substitution that leaves T unchanged and makes S identical to T.

Subsumption is checked by subsumes_chk/2. It is especially useful in applications such as
theorem provers. The built-in predicate behaves identically to the original library version
but is much more efficient.

Related predicates are defined in library(subsumes) and library(occurs). (For infor-
mation on these packages see Chapter 12 [lib], page 521).

8.9.2 Analyzing and Constructing Terms

The built-in predicate functor/3 performs these functions

• Decomposes a given term into its name and arity or
• given a name and arity, it constructs the corresponding compound term creating new

uninstantiated variables for its arguments.

The built-in predicate arg/3 performs these functions:

• Unifies a term with a specified argument of another term.

The built-in predicate Term =.. List performs these functions:

• The built-in predicate =../2 (otherwise known as “univ”) unifies List with a list whose
head is the atom corresponding to the principal functor of Term and whose tail is a list
of the arguments of Term.

240 Quintus Prolog

8.9.3 Analyzing and Constructing Lists

To combine two lists to form a third list, use append(+Head, +Tail, -List).

To analyze a list into its component lists in various ways, use append/3 with List instantiated
to a proper list. The reference page for append/3 includes examples of its usage, including
backtracking.

To check the length of a list call length(+List, -Integer).

To produce a list of a certain length, use length/2 with Integer instantiated and List
uninstantiated or instantiated to a list whose tail is a variable.

8.9.4 Converting between Constants and Text

Three predicates convert between constants and lists of ASCII character codes: atom_
chars/2, number_chars/2, and name/2.

There is a general convention that a predicate that converts objects of type foo to objects
of type baz should have one of these forms:

foo_to_baz(+Foo, -Baz) (1)

foo_baz(?Foo, ?Baz) (2)

Use (1) if the conversion works only one way, or (2) if for any Foo there is exactly one
related Baz and for any Baz at most one Foo.

The type name used for lists of ASCII character codes is chars thus, the predicate that
relates an atom to its name is atom_chars(?Atom, ?Chars), and the predicate that relates
a number to its textual representation is number_chars(?Number, ?Chars).

atom_chars(Atom, Chars) is a relation between an atom Atom and a list Chars consisting of
the ASCII character codes comprising the printed representation of Atom. Initially, either
Atom must be instantiated to an atom, or Chars must be instantiated to a proper list of
character codes.

number_chars(Number, Chars) is a relation between a number Number and a list Chars
consisting of the ASCII character codes comprising the printed representation of Number.
Initially, either Number must be instantiated to a number, or Chars must be instantiated
to a proper list of character codes.

name/2 converts from any sort of constant to a chars representation. Given a chars value,
name/2 will convert it to a number if it can, otherwise to an atom. This means that there
are atoms that can be constructed by atom_chars/2 but not by name/2. name/2 is retained
for backwards compatibility with DEC-10 Prolog and C-Prolog. New programs should use
atom_chars/2 or number_chars/2 as appropriate.

Chapter 8: The Prolog Language 241

8.9.5 Assigning Names to Variables

Each variable in a term is instantiated to a term of the form ’$VAR’(N), where N is an
integer, by the predicate numbervars/2. The “write” predicates (write/1, writeq/1, and
write_term/2 with the numbervars option set to true) transform these terms into upper
case letters.

8.9.6 Copying Terms

The meta-logical predicate copy_term/2 makes a copy of a term in which all variables have
been replaced by new variables that occur nowhere else. This is precisely the effect that
would have been obtained from the definition

copy_term(Term, Copy) :-
recorda(copy, copy(Term), DBref),
instance(DBref, copy(Temp)),
erase(DBref),
Copy = Temp.

although the built-in predicate copy_term/2 is more efficient.

When you call clause/[2,3] or instance/2, you get a new copy of the term stored in the
database, in precisely the same sense that copy_term/2 gives you a new copy. One of the
uses of copy_term/2 is in writing interpreters for logic-based languages; with copy_term/2
available you can keep “clauses” in a Prolog data structure and pass this structure as an
argument without having to store the “clauses” in the Prolog database. This is useful if
the set of “clauses” in your interpreted language is changing with time, or if you want to
use clever indexing methods.

A naive way to attempt to find out whether one term is a copy of another is shown in this
example:

identical_but_for_variables(X, Y) :-
\+ \+ (

numbervars(X, 0, N),
numbervars(Y, 0, N),
X = Y

).

This solution is sometimes sufficient, but will not work if the two terms have any variables
in common. If you want the test to succeed even when the two terms do have some variables
in common, you need to copy one of them; for example,

242 Quintus Prolog

identical_but_for_variables(X, Y) :-
\+ \+ (

copy_term(X, Z),
numbervars(Z, 0, N),
numbervars(Y, 0, N),
Z = Y

).

copy_term/2 is efficient enough to use without hesitation if there is no solution that does
not require the use of meta-logical predicates. However, for the sake of both clarity and
efficiency, such a solution should be sought before using copy_term/2.

8.9.7 Comparing Terms

8.9.7.1 Introduction

The predicates are described in this section used to compare and order terms, rather than to
evaluate or process them. For example, these predicates can be used to compare variables;
however, they never instantiate those variables. These predicates should not be confused
with the arithmetic comparison predicates (see Section 8.8.3 [ref-ari-acm], page 234) or with
unification.

8.9.7.2 Standard Order of Terms

These predicates use a standard total order when comparing terms. The standard total
order is:

variables @< database references @< numbers @< atoms @< compound terms

(Interpret ‘@<’ as “comes before”.)

Within these categories, ordering is as follows.

• Variables are put in a standard order. (Roughly, the oldest variable is put first; the order
is not related to the names of variables. Users should not rely on the order of variables.
They should be considered implementation dependent. The ordering of variables within
a sorted list, as produced by setof/3 or sort/2, shall remain constant.)

• Database references are put in a standard order (the order is based roughly on the time
of creation of the reference).

• Numbers are put in numeric order. Where a number may be represented by an integer
or a floating-point number, as in 2 and 2.0, the integer is considered to be infinitesimally
smaller than its floating-point counterpart.

Chapter 8: The Prolog Language 243

• Atoms are put in alphabetical order according to the character set in use.
• Compound terms are ordered first by arity, then by the name of the principal functor,

then by the arguments (in left-to-right order).
• Lists are compared as ordinary compound terms with functor ./2

For example, here is a list of terms in the standard order:

[X, ’$ref’(123456,12), -9, 1, 1.0, fie, foe, fum, [1],
X = Y, fie(0,2), fie(1,1)]

The predicates for comparison of terms are described below.

T1 == T2 T1 and T2 are literally identical (in particular, variables in equivalent positions
in the two terms must be identical).

T1 \== T2
T1 and T2 are not literally identical.

T1 @< T2 T1 is before term T2 in the standard order.

T1 @> T2 T1 is after term T2

T1 @=< T2
T1 is not after term T2

T1 @>= T2
T1 is not before term T2

compare(Op, T1, T2)
the result of comparing terms T1 and T2 is Op, where the possible values for
Op are:

= if T1 is identical to T2,

< if T1 is before T2 in the standard order,

> if T1 is after T2 in the standard order.

8.9.7.3 Sorting Terms

Two predicates, sort/2 and keysort/2 sort lists into the standard order. keysort/2 takes
a list consisting of key-value pairs and sorts according to the key.

Further sorting routines are available in library(samsort).

8.9.8 Library Support

• library(occurs)

• library(subsumes)

• library(samsort)

244 Quintus Prolog

Regarding list-processing: Section 12.2 [lib-lis], page 528

8.9.9 Summary of Predicates

• ’=’/2

• ’=..’/2

• ==/2
• \==/2
• @</2

• @=</2

• @>=/2

• @>/2

• append/3

• arg/3

• atom/1

• atom_chars/2

• atomic/1

• compare/3

• copy_term/2

• float/1

• functor/3

• integer/1

• keysort/2

• length/2

• name/2

• nonvar/1

• number/1

• number_chars/2

• numbervars/3

• sort/2

• subsumes_chk/2

• var/1

8.10 Looking at the Program State

Chapter 8: The Prolog Language 245

8.10.1 Overview

Various aspects of the program state can be inspected: The clauses of all or selected dynamic
procedures, currently available atoms, user defined predicates, source files of predicates and
clauses, predicate properties and the current load context can all be accessed by calling
the predicates listed in Section 8.10.1 [ref-lps-ove], page 245. Furthermore, the values of
prolog flags can be inspected and, where it makes sense, changed. The following predicates
accomplish these tasks:

listing list all dynamic procedures in the type-in module

listing(P)
list the dynamic procedure(s) specified by P

current_atom(A)
A is a currently available atom (nondeterminate)

current_predicate(A,P)
A is the name of a predicate with most general goal P (nondeterminate)

predicate_property(P,Prop)
Prop is a property of the loaded predicate P (nondeterminate)

prolog_flag(F,V)
V is the current value of Prolog flag F (nondeterminate)

prolog_flag(F,O,N)
O is the old value of Prolog flag F; N is the new value

prolog_load_context(K,V)
find out the context of the current load

source_file(F)
F is a source file that has been loaded into the database

source_file(P,F)
P is a predicate defined in the loaded file F

source_file(P,F,N)
Clause number N of predicate P came from file F

8.10.2 Associating Predicates with their Properties

The following properties are associated with predicates either implicitly or by declaration:

• built_in

• checking_advice

• compiled

• dynamic

• exported

246 Quintus Prolog

• extern_link

• foreign

• has_advice

• imported_from

• interpreted

• locked

• meta_predicate

• multifile

• spied

• volatile

These are described elsewhere in the manual (see Index). To query these associations, use
predicate_property/2. The reference page contains several examples.

8.10.3 Associating Predicates with Files

Information about loaded files and the predicates and clauses in them is returned by source_
file/[1,2,3]. source_file/1 can be used to identify an absolute filename as loaded, or
to backtrack through all loaded files. To find out the correlation between loaded files and
predicates, call source_file/2. source_file/3 allows for querying about which clause
for a predicate is in which loaded file. source_file/3 is useful for handling multifile
predicates (see Section 18.3.105 [mpg-ref-multifile], page 1184), but it works for predicates
defined completely in one file, as well.

Any combination of bound and unbound arguments is possible, and source_file/3 will
generate the others.

8.10.4 Prolog Flags

8.10.4.1 Changing or Querying System Parameters

Prolog flags enable you to modify certain aspects of Prolog’s behavior, as outlined below.
This is accomplished by using prolog_flag/3. If you simply want to query the value of a
flag, use prolog_flag/2.

By using the prolog flags listed below, it is possible to:

Flag Purpose

character_escapes
Enable or disable escaping of special characters in I/O operations. (See Sec-
tion 8.1.4 [ref-syn-ces], page 163)

Chapter 8: The Prolog Language 247

debugging
Turn on/off trace and debug mode by using prolog_flag/3 or by using the
predicates trace/0, debug/0, notrace/0, and nodebug/0.

fileerrors
Set or reset the fileerrors flag by using prolog_flag/3 or by using the pair
of predicates fileerrors/0 and nofileerrors/0.

gc Turn on/off garbage collection by using prolog_flag/3 or by using the predi-
cates gc/0 and nogc/0.

gc_margin
Set the number of bytes that must be reclaimed by a garbage collection in
order to avoid heap expansion (not available on some systems; see Section 8.12
[ref-mgc], page 256)

gc_trace Enable or disable diagnostic tracing of garbage collections.

multiple on or off.

single_var
on or off.

syntax_error
Control Prolog’s response to syntax errors. See Section 8.19.4.10 [ref-ere-err-
syn], page 322.

unknown Set the action to be taken on unknown procedures by using prolog_flag/3 or
unknown/2 (see Section 6.1.5.4 [dbg-bas-con-unk], page 120). unknown/2 writes
a message to user_output saying what the new state is. It is intended for use
at the top level. prolog_flag/3 does not write a message. It is intended for
use in code.

For further details, see the reference page. Also see Section 8.12 [ref-mgc], page 256 for
more detailed descriptions of the garbage collection flags.

To inspect the value of a flag without changing it, one can say

| ?- prolog_flag(FlagName, Value).

You can use prolog_flag/2 to enumerate all the FlagNames that the system currently
understands, together with their current values.

8.10.4.2 Parameters that can be Queried Only

Prolog flags can be used to effect the changes listed above, or to ask about the current
values of those parameters. In addition, you can use prolog_flag/2 (not prolog_flag/3)
to make the following queries using the flag names listed below:

Flag Purpose

add_ons What add-on products are statically linked into to Prolog system?

248 Quintus Prolog

host_type
What is the host-type?

quintus_directory
What is the absolute name of the Quintus directory, where is the root of the
entire Quintus Installation hierarchy?

runtime_directory
What is the absolute name of the directory where all Prolog executables reside?
In the Runtime System, it is expected that this value will be overwritten, using
qsetpath when the runtime system is installed (see Section 20.1.3 [too-too-
qgetpath], page 1480 and Section 20.1.8 [too-too-qsetpath], page 1495). This
flag is used to define file_search_path(runtime,RuntimeDir).

version What version of Prolog is being run?

system_type
development

Use prolog_flag/2 to make queries, prolog_flag/3 to make changes.

Chapter 8: The Prolog Language 249

8.10.5 Load Context

250 Quintus Prolog

Load Context

By calling prolog_load_context/[2,3] you can determine:

• whether the current context is in a loading/compilation or a start-up of an application
(see the above figure).

• the current Prolog load/compilation context: module, file, directory or stream.

8.10.5.1 Predicate Summary

• current_atom/1

• current_predicate/2

• listing/[0,1]

• predicate_property/2

• prolog_flag/[2,3]

• prolog_load_conitemize/2

• source_file/[1,2,3]

8.11 Interrupting Execution

8.11.1 Control-c Interrupts

At any time, Prolog’s execution can be interrupted by typing ^c. Under Windows, interrup-
tion may be delayed if Prolog is in certain OS routines, especially when waiting for input;
the interrupt will then happen when returning to the OS routine. The following prompt is
then displayed:

Prolog interruption (h for help)?

If you then type h, followed by 〈RET〉, you will get a list of the possible responses to this
prompt:

Prolog interrupt options:
h help - this list
c continue - do nothing
d debug - debugger will start leaping
t trace - debugger will start creeping
a abort - abort to the current break level
q really abort - abort to the top level
e exit - exit from Prolog

The d option will cause you to enter the debugger the next time control passes to a spypoint.
You can then use the g (ancestors) option of the debugger to find out at what level of
execution you interrupted the program.

Chapter 8: The Prolog Language 251

The t option will also cause you to enter the debugger at the next call.

The a option causes an abort to the current break level. In previous releases of Quintus
Prolog, the a option ignored break levels, always aborting to the top level (break level 0).

The q option causes an abort to the top level (break level 0). This behavior is identical to
the a option in previous Quintus Prolog systems.

In runtime systems, the default behavior on a ^c interrupt is to abort immediately, rather
than display the above menu.

For more information on ^c interrupts and signal handlers, see Section 8.11.2 [ref-iex-iha],
page 251.

The predicates that control this are:

halt/0 exit from Prolog

break/0 start a new break-level to interpret commands from the user

abort/0 abort execution of the program; return to current break level

8.11.2 Interrupt Handling

8.11.2.1 Changing Prolog’s Control Flow from C

If the application has a toplevel, the function QP_action() can be called from C to alter
Prolog’s flow of control. This function allows the user to make Prolog abort, exit, suspend
execution, turn on debugging, or prompt for the desired action. To use it, use #include
<quintus/quintus.h> in your C source code. This file should be installed in a central
place; if not, there should be a copy of it in the ‘embed’ directory (refer to Section 1.3
[int-dir], page 11 for location). ‘quintus.h’ defines the following constants:

QP_ABORT *Abort to the current break level

QP_REALLY_ABORT
*Abort to top level

QP_STOP Stop (suspend) process

QP_IGNORE
Do nothing

QP_EXIT Exit Prolog immediately

QP_MENU Present action menu

QP_TRACE Turn on trace mode

QP_DEBUG Turn on debugging

252 Quintus Prolog

To change Prolog’s control flow in a given instance, call QP_action() with one of these
constants; for example,

#include <quintus/quintus.h>
void abort_execution(){

QP_action(QP_ABORT);
}

Some calls to QP_action() do not normally return, for example when the QP_ABORT constant
is specified. However, calls to QP_action() from an interrupt handler must be viewed as
requests. They are requests that will definitely be honored, but not always at the time
of the call to QP_action(). Therefore calls to QP_action() should be prepared for the
function to return.

It is currently not possible to call Prolog from an interrupt handler.

For systems that do not have a toplevel, the actions marked with an asterisk will have no
effect other than to make QP_action() return QP_ERROR.

What does it mean to have a toplevel? If the application is calling the function QP_
toplevel(), then the application has a toplevel. The development system and runtime
systems both call QP_toplevel(). An exit from either of these environments is effec-
tively a return from QP_toplevel(). An embedded application may or may not call QP_
toplevel(). One of the things QP_toplevel() does is establish signal handlers. Another
thing it does is establish a place for QP_action() to jump to, the actions marked with
an asterik are essentially a jump to the toplevel, and will not work in systems without a
toplevel. For more about QP_toplevel(), see Section 19.3.66 [cfu-ref-toplevel], page 1446.

8.11.2.2 User-specified signal handlers

This section only applies to UNIX as signals are not used under Windows.

Prolog sets up signal handlers when either QP_initialize() or QP_toplevel() is called.
These handlers provide the default interrupt handling for ^c described in the previous
sections. QP_initialize() and QP_toplevel() sets handlers for all signals that have the
default handler and the default behavior is not what Prolog wants. If users have set their
own signal handlers (which are different from the default signal handlers) then Prolog will
not change these handlers. Once Prolog has started up and is running the toplevel read-
prove loop, Prolog will not change any signal handlers unless the user calls QP_toplevel().

Users can set and remove signal handlers using the system function signal(2).

To set up a signal handler, call the routine

signal(signal_name, function_name)

from within a C foreign function, where signal name is a constant identifying the sig-
nal being trapped and function name is the name of the function to be called in the

Chapter 8: The Prolog Language 253

event of the signal. The constants identifying the various signals are defined in the file
‘/usr/include/signal.h’.

The example below shows how one would define an interrupt handler using signal and
QP_action(). For most users ^C is the interrupt character. The files ‘interrupt.c’ and
‘interrupt.pl’ make up this example; the interrupt handler is set up by calling establish_
handler/0 after compiling ‘interrupt.pl’.

interrupt.pl

/*
This is the foreign interface file for a sample interrupt handler.

*/

foreign_file(’interrupt’,[establish_handler]).

foreign(establish_handler, establish_handler).

:- load_foreign_files([’interrupt’], []).

254 Quintus Prolog

interrupt.c

/*
The function my_handler is called when the user types the interrupt
character (normally ^c). This function prompts for a response
and executes the user’s choice.

*/

#include <signal.h>
#include <quintus/quintus.h>

int my_handler()
{

char c;

for(;;) {
printf("\nWell? ");
c = getchar();
if (c != ’\n’)

while (getchar() != ’\n’) {};
switch(c) {
case ’a’: QP_action(QP_ABORT);
case ’e’: QP_action(QP_EXIT);
case ’c’: return;
default: printf("a, c or e, please");
}

}
}

void establish_handler()
{

signal(SIGINT, my_handler);
}

The following trace illustrates the use of these files:

Chapter 8: The Prolog Language 255

% cc -c interrupt.c

% prolog

Quintus Prolog Release 3.5 (Sun 4, SunOS 5.5)

| ?- compile(interrupt).

% compiling file /goedel/tim/interrupt.pl
% foreign file /goedel/tim/interrupt.o loaded
% interrupt.pl compiled in module user, 0.150 sec 1,508 bytes

yes
| ?- establish_handler.

yes
| ?- write(hi).

hi
yes
| ?- ^C
Well? g
a, c or e, please
Well? a

! Execution aborted

| ?- ^C
Well? e
%

8.11.2.3 Critical Regions

A critical region is a section of code during whose execution interrupts are to be ignored.
To create a critical region, one must block signals for the duration of the critical region and
unblock the signals when leaving the critical region. Examples of how to do this in both
Prolog and C are in the library files ‘critical.pl’ and ‘critical.c’, which is discussed
further in Section 8.19.6 [ref-ere-ecr], page 324.

8.11.3 Predicate/Function Summary

• abort/0

• break/0

• halt/0

• QP_action()

256 Quintus Prolog

8.11.4 Library Support

library(critical)

8.12 Memory Use and Garbage Collection

8.12.1 Overview

Quintus Prolog uses three data areas: program space, local stack space, and global stack
space. Each of these areas is automatically expanded if it overflows; if necessary, the other
areas are shifted to allow this.

The local stack contains all the control information and variable bindings needed in a Prolog
execution. Space on the local stack is reclaimed on determinate success of predicates and
by tail recursion optimization, as well as on backtracking.

The global stack space contains the heap (also known as the global stack) and the trail.
The heap contains all the data structures constructed in an execution of the program, and
the trail contains references to all the variables that need to be reset when backtracking
occurs. Both of these areas grow with forward execution and shrink on backtracking. These
fluctuations can be monitored by statistics/[0,2].

The program space contains compiled and interpreted code, recorded terms, and atoms.
The space occupied by compiled code, interpreted code, and recorded terms is recovered
when it is no longer needed; the space occupied by atoms that are no longer in use can be
recovered by atom garbage collection described in Section 8.12.8 [ref-mgc-ago], page 266.

Quintus Prolog uses the heap to construct compound terms, including lists. Heap space is
used as Prolog execution moves forward. When Prolog backtracks, it automatically reclaims
space on the heap. However, if a program uses a large amount of space before failure and
backtracking occur, this type of reclamation may be inadequate.

Without garbage collection, the Prolog system must attempt to expand the heap whenever
a heap overflow occurs. To do this, it first requests additional space from the operating
system. If no more space is available, the Prolog system attempts to allocate unused space
from the other Prolog data areas. If additional space cannot be found, a resource error is
raised.

Heap expansion and abnormal termination of execution due to lack of heap space can occur
even if there are structures in the heap that are no longer accessible to the computation
(these structures are what is meant by “garbage”). The proportion of garbage to non-
garbage terms varies during execution and with the Prolog code being executed. The heap
may contain no garbage at all, or may be nearly all garbage.

Chapter 8: The Prolog Language 257

The garbage collector periodically reclaims inaccessible heap space, reducing the need for
heap expansion and lessening the likelihood of running out of heap. When the garbage
collector is enabled (as it is by default), the system makes fewer requests to the operating
system for additional space. The fact that less space is required from the operating system
can produce a substantial savings in the time taken to run a program, because paging
overhead can be much less.

For example, without garbage collection, compiling a file containing the sequence

p(_) :- p([a]).
:- p(_).

causes the heap to expand until the Prolog process eventually runs out of space. With
garbage collection enabled, the above sequence continues indefinitely. The list built on the
heap by each recursive call is inaccessible to future calls (since p/1 ignores its argument)
and can be reclaimed by the garbage collector.

Garbage collection does not guarantee freedom from out-of-space errors, however. Compil-
ing a file containing the sequence

p(X) :- p([X]).
:- p(a).

expands the heap until the Prolog process eventually runs out of space. This happens in
spite of the garbage collector, because all the terms built on the heap are accessible to future
computation and cannot be reclaimed.

8.12.1.1 Reclaiming Space

trimcore/0 reclaims space in all of Prolog’s data areas. At any given time, each data area
contains some free space. For example, the local stack space contains the local stack and
some free space for that stack to grow into. The data area is automatically expanded when
it runs out of free space, and it remains expanded until trimcore/0 is called, even though
the stack may have shrunk considerably in the meantime. The effect of trimcore/0 is to
reduce the free space in all the data areas as much as possible, and to give the space no
longer needed back to the operating system. trimcore/0 is called each time Prolog returns
to the top level or the top of a break level.

8.12.1.2 Displaying Statistics

Statistics relating to memory usage, run time, and garbage collection, including information
about which areas of memory have overflowed and how much time has been spent expanding
them, can be displayed by calling statistics/0.

The output from statistics/0 looks like this:

258 Quintus Prolog

memory (total) 377000 bytes: 350636 in use, 26364 free
program space 219572 bytes

atom space (2804 atoms) 61024 in use, 43104 free

global space 65532 bytes: 9088 in use, 56444 free
global stack 6984 bytes
trail 16 bytes
system 2088 bytes

local stack 65532 bytes: 356 in use, 65176 free
local stack 332 bytes
system 24 bytes

0.000 sec. for 0 global and 0 local space shifts
0.000 sec. for 0 garbage collections which collected 0 bytes
0.000 sec. for 0 atom garbage collections which collected 0 bytes
0.233 sec. runtime

Note the use of indentation to indicate sub-areas. That is, memory contains the program
space, global space, and local stack, and the global space contains the global stack and trail.

The memory (total) figure shown as “in use” is the sum of the spaces for the program,
global and local areas. The “free” figures for the global and local areas are for free space
within those areas. However, this free space is considered used as far as the memory (total)
area is concerned, because it has been allocated to the global and local areas. The program
space is not considered to have its own free space. It always allocates new space from the
general memory (total) free area.

Individual statistics can be obtained by statistics/2, which accepts a keyword and returns
a list of statistics related to that keyword.

The keys and values for statistics(Keyword, List) are summarized below. The keywords
core and heap are included to retain compatibility with DEC-10 Prolog. Times are given
in milliseconds and sizes are given in bytes.

Keyword List

runtime [cpu time used by Prolog, cpu time since last call to statistics/[0,2]]

system time
[cpu time used by the operating system, cpu time used by the system since the
last call to statistics/[0,2]]

real time [wall clock time since 00:00 GMT 1/1/1970, wall clock time since the last call
to statistics/[0,2]]

memory [total virtual memory in use, total virtual memory free]

stacks [total global stack memory, total local stack memory]

program [program space, 0]

Chapter 8: The Prolog Language 259

global stack
[global stack in use, global stack free]

local stack
[local stack in use, local stack free]

trail [size of trail, 0]

garbage collection
[number of GCs, freed bytes, time spent]

stack shifts
[number of global stack area shifts, number of local stack area shifts, time spent
shifting]

atoms [number of atoms, atom space in use, atom space free]

atom garbage collection
[number of AGCs, freed bytes, time spent]

core (same as memory)

heap (same as program)

For the keywords program and trail, the second element of the returned list is always 0.
This is for backward compatibility only, 0 being the most appropriate value in the Quintus
Prolog system for the quantities that would be returned here in DEC-10 Prolog and previous
releases of Quintus Prolog .

To see an example of the use of each of these keywords, type

| ?- statistics(K, L).

and then repeatedly type ‘;’ to backtrack through all the possible keywords. As an addi-
tional example, to report information on the runtime of a predicate p/0, add the following
to your program:

:- statistics(runtime, [T0| _]),
p,
statistics(runtime, [T1|_]),
T is T1 - T0,
format(’p/0 took ~3d sec.~n’, [T]).

8.12.2 Garbage Collection and Programming Style

The availability of garbage collection can lead to a more natural programming style. With-
out garbage collection, a procedure that generates heap garbage may have to be executed in
a failure-driven loop. Failure-driven loops minimize heap usage from iteration to iteration
of a loop via Quintus Prolog’s automatic recovery of heap space on failure. For instance, in
the following procedure echo/0 echoes Prolog terms until it reads an end-of-file character.
It uses a failure-driven loop to recover inaccessible heap space.

260 Quintus Prolog

echo :- repeat,
read(Term),
echo_term(Term),
!.

echo_term(Term) :-
Term == end_of_file.

echo_term(Term) :-
write(Term), nl,
fail.

Any heap garbage generated by read/1 or write/1 is automatically reclaimed by the failure
of each iteration.

Although failure-driven loops are an accepted Prolog idiom, they are not particularly easy
to read or understand. So we might choose to write a clearer version of echo/0 using
recursion instead, as in

echo :- read(Term),
echo_term(Term).

echo_term(Term) :-
Term == end_of_file,
!.

echo_term(Term) :-
write(Term), nl,
echo.

Without garbage collection the more natural recursive loop accumulates heap garbage that
cannot be reclaimed automatically. While it is unlikely that this trivial example will run
out of heap space, larger and more practical applications may be unable to use the clearer
recursive style without garbage collection. With garbage collection, all inaccessible heap
space will be reclaimed by the garbage collector.

Using recursion rather than failure-driven loops can improve programming style further.
We might want to write a predicate that reads terms and collects them in a list. This
is naturally done in a recursive loop by accumulating results in a list that is passed from
iteration to iteration. For instance,

collect(List) :-
read(Term),
collect_term(Term, List).

collect_term(Term, []) :-
Term == end_of_file,
!.

collect_term(Term, [Term|List0]) :-
collect(List0).

Chapter 8: The Prolog Language 261

For more complex applications this sort of construction might prove unusable without
garbage collection. Instead, we may be forced to use a failure-driven loop with side-effects
to store partial results, as in the following much less readable version of collect/1:

collect(List) :-
repeat,
read(Term),
store_term(Term),
!,
collect_terms(List).

store_term(Term) :-
Term == end_of_file.

store_term(Term) :-
assertz(term(Term)),
fail.

collect_terms([M|List]) :-
retract(term(M)),
!,
collect_terms(List).

collect_terms([]).

The variable bindings made in one iteration of a failure-driven loop are unbound on failure
of the iteration. Thus partial results cannot simply be stored in a data structure that is
passed along to the next iteration. We must instead resort to storing partial results via
side-effects (here, assertz/1) and collect (and clean up) partial results in a separate pass.
The second example is much less clear to most people than the first. It is also much less
efficient than the first. However, if there were no garbage collector, larger examples of the
second type might be able to run where those of the first type would run out of memory.

8.12.3 Enabling and Disabling the Garbage Collector

The user has the option of executing programs with or without garbage collection. Proce-
dures that do not use a large amount of heap space before backtracking may not be affected
when garbage collection is enabled. Procedures that do use a large amount of heap space
may execute more slowly due to the time spent garbage collecting, but will be more likely
to run to completion. On the other hand, such programs may run faster when the garbage
collector is enabled because the virtual memory is not expanded to the extent that “thrash-
ing” occurs. gc/0 and nogc/0 are the built-in predicates that are used to enable and disable
the garbage collector. Alternatively, the gc Prolog flag can be set to on or off. To run
the gc in a verbose mode, set the gc_trace flag to on. By default, garbage collection is
enabled.

262 Quintus Prolog

8.12.4 Monitoring Garbage Collections

By default, the user is given no indication that the garbage collector is operating. If no
program ever runs out of space and no program using a lot of heap space requires an
inordinate amount of processing time, then such information is unlikely to be needed.

However, if a program thought to be using much heap space runs out of space or runs
inordinately slowly, the user may want to determine whether more or less frequent garbage
collections are necessary. Information obtained from the garbage collector by turning on
the gc_trace option of prolog_flag/3 can be helpful in this determination.

8.12.5 Interaction of Garbage Collection and Heap Expansion

For most programs, the default settings for the garbage collection parameters should suffice.
For programs that have high heap requirements, the default parameters may result in a
higher ratio of garbage collection time to run time. These programs should be given more
space in which to run.

The gc_margin is a non-negative integer specifying the desired margin in kilobytes. For
example, the default value of 1000 means that the heap will not be expanded if garbage
collection can reclaim at least one megabyte. The advantage of this criterion is that it takes
into account both the user’s estimate of the heap usage and the effectiveness of garbage
collecting.

1. Setting the gc_margin higher than the default will cause fewer heap expansions and
garbage collections. However, it will use more space, and garbage collections will be
more time-consuming when they do occur.
Setting the margin too large will cause the heap to expand so that if it does overflow,
the resulting garbage collection will significantly disrupt normal processing. This will
be especially so if much of the heap is accessible to future computation.

2. Setting the gc_margin lower than the default will use less space, and garbage collections
will be less time-consuming. However, it will cause more heap expansions and garbage
collections.
Setting the margin too small will cause many garbage collections in a small amount of
time, so that the ratio of garbage-collecting time to computation time will be abnor-
mally high.

3. Setting the margin correctly will cause the heap to expand to a size where expan-
sions and garbage collections are infrequent and garbage collections are not too time-
consuming, if they occur at all.

The correct value for the gc_margin is dependent upon many factors. Here is a non-
prioritized list of some of them:

• The amount of memory available to the Prolog process

Chapter 8: The Prolog Language 263

• The maximum memory limit imposed on the Prolog process (see Section 8.12.7 [ref-
mgc-osi], page 264, Section 8.12.7 [ref-mgc-osi], page 264)

• The program’s rate of heap garbage generation
• The program’s rate of heap non-garbage generation
• The program’s backtracking behavior
• The amount of time needed to collect the generated garbage
• The growth rate of the other Prolog stacks

The algorithm used when the heap overflows is as follows:

if gc is on
and the heap is larger than gc_margin kilobytes then

garbage collect the heap
if less than gc_margin bytes are reclaimed then

try to expand the heap
endif

else
try to expand the heap

endif

The user can use the gc_margin option of prolog_flag/3 to reset the gc_margin (see
Section 8.10.1 [ref-lps-ove], page 245). If a garbage collection reclaims at least the gc_
margin kilobytes of heap space the heap is not expanded after garbage collection completes.
Otherwise, the heap is expanded after garbage collection. This expansion provides space
for the future heap usage that will presumably occur. In addition, no garbage collection
occurs if the heap is smaller than gc_margin kilobytes.

Please note: prolog_flag(gc_margin, Old, New) has nothing to do with the
gcguide(margin, Old, New) of older Prolog systems. The “margin” of those
other systems was used for entirely different purposes.

8.12.6 Invoking the Garbage Collector Directly

Normally, the garbage collector is invoked only when some Prolog data area overflows, so the
time of its invocation is not predictable. In some applications it may be desirable to invoke
the garbage collector at regular intervals (when there is known to be a significant amount
of garbage on the heap) so that the time spent garbage collecting is more evenly distributed
in the processing time. For instance, it may prove desirable to invoke the garbage collector
after each iteration of a question-and-answer loop that is not failure-driven.

In rare cases the default garbage collection parameters result in excessive garbage collecting
costs or heap expansion, and the user cannot tune the gc_margin parameter adequately.
Explicitly invoking the garbage collector using the built-in predicate garbage_collect/0
can be useful in these circumstances.

264 Quintus Prolog

8.12.7 Operating System Interaction

This section describes the various system parameters required to run Prolog.

There is normally no need for you to seek any special privileges or quotas in order to run
Prolog. Prolog will automatically expand its space up to the total amount of virtual space
you are allowed. If it should run out of space, Prolog will raise a resource error.

This may happen because of an infinite recursion in your program, or it may be that your
program really needs more space than is available. Under UNIX, if you are using the C
shell (csh), you can find out how much space is available by means of the csh command
limit. The command

% limit

will list a number of limits of which the relevant one is datasize. This number is the
number of kilobytes available to Prolog for its data areas. You can reduce this limit by
typing, for example,

% limit datasize 2000

The main reason that you might want to reduce the limit is that some systems allow the
allocation of more virtual memory than there is swap space available, and then to crash.
You can run quite large programs with a datasize of 2000 kilobytes.

UNIX Caveat:

On some UNIX systems, the specified datasize (program) limit (see
limit(csh) and getrlimit(3)) can be grossly higher then the maximum break
that a process can set. This is because the setting of the break is dependent
upon the amount of swap space available. Since all processes share the same
swap space, the space available to any one process is based on the space usage
of all other processes running on the machine. Therefore, one process that has
set a large program break may prevent another process from doing the same, if
both are running simultaneously.

The Quintus Prolog memory manager makes calculations based upon the specified datasize
limit, since the actual limit cannot be determined except by experimentation, and even then
the limit changes over time. Better memory management will result when the specified
datasize limit is close to the actual limit.

The default behavior of Prolog is tuned to be optimal for a large class of programs. If the
programmers need greater control of the way Prolog grows and frees memory, they can set
environment variables, the documentation for which follow. Note that the default values for
these variables should satisfy almost all programs and you really do not need to set these
variables at all. The values for these variables are entered in bytes, but may be followed by
‘K’ or ‘M’ meaning kilobytes or megabytes respectively.

Chapter 8: The Prolog Language 265

PROLOGINITSIZE
Controls the size of Prolog’s initial memory allocation. Can be set to a suffi-
ciently large size to allow the Prolog application to execute without needing to
expand. This must be done before Prolog is invoked.
By default, the value is the minimum memory required for Prolog to start up.
In addition, the value is constrained to be at least that amount, regardless of
the user setting.

PROLOGMAXSIZE
Can be used to place a limit on the amount of data space that a given Prolog
process will use.
The csh command limit can also be used to set the amount of data space that
can be used by the the current shell and all processes within it.
By default, the value is effectively infinity, which is to say that Prolog’s expan-
sion will only be limited by the space that the shell is able to provide it.

PROLOGINCSIZE
Can be used to control the amount of space Prolog asks the operating system
for in any given memory expansion.
By default, the value is the minimum amount of memory that will allow Pro-
log to expand one of its data areas, by kilobytes. In addition, the value is
constrained to be at least that amount, regardless of the user setting.

PROLOGKEEPSIZE
Can be used to control the amount of space Prolog retains after performing some
computation. By default, Prolog gets memory from the operating system as the
user program executes and returns all the free memory back to the operating
system when the user program does not need any more. If the programmer
knows that her program once it has grown to a certain size is likely to need
as much memory for future computations, then she can advise Prolog not to
return all the free memory back to the operating system by setting the value to
K. Once Prolog grows to K bytes, it will always keep at least K bytes around.
Only memory that was allocated above and beyond K bytes is returned to the
OS.

PROLOGLOCALMIN
Can be used to control the amount of space Prolog reserves for the local stack.
The purpose of the local stack is described in detail in Section 8.12 [ref-mgc],
page 256. The default value is 64Kb.

PROLOGGLOBALMIN
Can be used to control the amount of space Prolog reserves for the global stack.
The purpose of the global stack is described in detail in Section 8.12 [ref-mgc],
page 256. The default value is 64Kb.

266 Quintus Prolog

8.12.8 Atom Garbage Collection

By default, atoms created during the execution of a program remain permanently in the
system until Prolog exits. For the majority of applications this behavior is not a problem
and can be ignored. However, for two classes of application this can present problems.
Firstly the internal architecture of Quintus Prolog limits the number of atoms that be can
created to 2,031,616 and this can be a problem for database applications that read large
numbers of atoms from a database. Secondly, the space occupied by atoms can become
significant and dominant memory usage, which can be a problem for processes designed to
run perpetually.

These problems can be overcome by using atom garbage collection to reclaim atoms that
are no longer accessible to the executing program.

Atoms can be created in many ways: when an appropriate token is read with read_term/3,
when source or QOF files are loaded, when atom_chars/2 is called with a character list,
or when QP_atom_from_string() is called in C code. In any of these contexts an atom
is only created if it does not already exist; all atoms for a given string are given the same
identification number, which is different from the atom of any other string. Thus, atom
recognition and comparison can be done quickly, without having to look at strings. An
occurrence of an atom is always of a fixed, small size, so where a given atom is likely to be
used in several places simultaneously the use of atoms can also be more compact than the
use of strings.

A Prolog functor is implemented like an atom, but also has an associated arity. For the
purposes of atom garbage collection, a functor is considered to be an occurrence of the atom
of that same name.

Atom garbage collection is similar to heap garbage collection except that it is not invoked au-
tomatically, but rather through a call to the built-in predicate garbage_collect_atoms/0.
The atom garbage collector scans Prolog’s data areas looking for atoms that are currently
in use and then throws away all unused atoms, reclaiming their space.

Atom garbage collection can turn an application that continually grows and eventually either
runs into the atom number limit or runs out of space into one that can run perpetually. It
can also make feasible applications that load and manipulate huge quantities of atom-rich
data that would otherwise become full of useless atoms.

8.12.8.1 The Atom Garbage Collector User Interface

Because the creation of atoms does not follow any other system behaviors like memory
growth or heap garbage collection, Quintus has chosen to keep the invocation of atom
garbage collection independent of any other operation and to keep the invocation of atom
garbage collection explicit rather than making it automatic. It is often preferable for the
programmer to control when it will occur in case preparations need to be made for it.

Chapter 8: The Prolog Language 267

Atom garbage collection is invoked by calling the new built-in predicate garbage_collect_
atoms/0. The predicate normally succeeds silently. The user may determine whether to
invoke atom garbage collection at a given point based on information returned from a call
to statistics/2 with the keyword atoms. That call returns a list of the form

[number of atoms, atom space in use, atom space free]

For example,

| ?- statistics(atoms, Stats).

Stats = [4313,121062,31032]

One would typically choose to call garbage_collect_atoms/0 prior to each iteration of
an iterative application, when either the number of atoms or the atom space in use passes
some threshold, e.g.

<driver loop> :-
...
repeat,

maybe_atom_gc,
<do next iteration>
...

fail.
<driver loop>.

where

maybe_atom_gc :-
statistics(atoms, [_,Inuse,_]),
atom_gc_space_threshold(Space),
(Inuse > Space -> garbage_collect_atoms ; true).

% Atom GC if there are more than 100000 bytes of atoms:
atom_gc_space_threshold(100000).

More sophisticated approaches might use both atom number and atom space thresholds,
or could adjust a threshold if atom garbage collection didn’t free an adequate number of
atoms.

To be most effective, atom garbage collection should be called when as few as possible
atoms are actually in use. In the above example, for instance, it makes the most sense to
do atom garbage collection at the beginning of each iteration rather than at the end, as
at the beginning of the iteration the previous failure may just have freed large amounts of
atom-rich global and local stack. Similarly, it’s better to invoke atom garbage collection
after abolishing or retracting a large database than to do so before.

268 Quintus Prolog

8.12.8.2 Protecting Atoms in Foreign Memory

Quintus Prolog’s foreign language interface allows atoms to be passed to foreign functions.
When calling foreign functions from Prolog, atoms are passed via the +atom argument type
in the predicate specifications of foreign/[2,3] facts. The strings of atoms can be passed
to foreign functions via the +string argument type. In the latter case a pointer to the
Prolog symbol table’s copy of the string for an atom is what is passed. When calling Prolog
from C, atoms are passed back from C to Prolog using the -atom and -string argument
types in extern/1 declarations. Atoms can also be created in foreign code via functions
like QP_atom_from_string().

Prolog does not keep track of atoms (or strings of atoms) stored in foreign memory. As such,
it cannot guarantee that those atoms will be retained by atom garbage collection. Therefore
Quintus Prolog provides functions to register atoms (or their strings) with the atom garbage
collector. Registered atoms will not be reclaimed by the atom garbage collector. Atoms can
be registered while it is undesirable for them to be reclaimed, and then unregistered when
they are no longer needed.

Of course, the majority of atoms passed as atoms or strings to foreign functions do not
need to be registered. Only those that will be stored across foreign function calls (in global
variables) or across nested calls to Prolog are at risk. An extra margin of control is given by
the fact the programmer always invokes atom garbage collection explicitly, and can ensure
that this is only done in contexts that are “safe” for the individual application.

To register or unregister an atom, one of the following functions is used:

int QP_register_atom(atom)
QP_atom atom;

int QP_unregister_atom(atom)
QP_atom atom;

These functions return either QP_ERROR or a non-negative integer. The return values are
discussed further in Section 8.12.8.4 [ref-mgc-ago-are], page 270.

As noted above, when an atom is passed as a string (+string) to a foreign function, the
string the foreign function receives is the one in Prolog’s symbol table. When atom garbage
collection reclaims the atom for that string, the space for the string will also be reclaimed.

Thus, if the string is to be stored across foreign calls then either a copy of the string or else
the atom (+atom) should be passed into the foreign function so that it can be registered
and QP_string_from_atom() can be used to access the string from the atom.

Keep in mind that the registration of atoms only pertains to those passed to foreign functions
or created in foreign code. Atoms in Prolog’s data areas are maintained automatically. Note
also that even though an atom may be unregistered in foreign code, atom garbage collection
still may not reclaim it as it may be referenced from Prolog’s data areas. But if an atom

Chapter 8: The Prolog Language 269

is registered in foreign code, it will be preserved regardless of its presence in Prolog’s data
areas.

The following example illustrates the use of these functions. In this example the current
value of an object (which an atom) is being stored in a C global variable. There are two C
functions that can be called from Prolog, one to update the current value and one to access
the value.

#include <quintus/quintus.h>

QP_atom current_object = NULL;

update_object(newvalue)
QP_atom newvalue;
{

/* if current_object contains an atom, unregister it */
if (current_object)

(void) QP_unregister_atom(current_object);

/* register new value */
(void) QP_register_atom(newvalue);
current_object = newvalue;

}

QP_atom get_object()
{

return current_object;
}

8.12.8.3 Permanent Atoms

Atom garbage collection scans all Prolog’s dynamic data areas when looking for atoms
that are in use. Scanning finds atoms in the Prolog stacks and in all compiled and inter-
preted code that has been dynamically loaded into Prolog via consult/1, use_module/1,
assert/2, etc. However, there are certain potential sources of atoms in the Prolog image
from which atoms cannot be reclaimed. Atoms for Prolog code that has been statically
linked with either the Prolog Development Environment or the Runtime Environment have
been placed in the text space, making them (and the code that contains them) effectively
permanent. Although such code can be abolished, its space can never be reclaimed.

These atoms are internally flagged as permanent by the system and are always retained
by atom garbage collection. An atom that has become permanent cannot be made non-
permanent, so can never be reclaimed.

270 Quintus Prolog

8.12.8.4 Details of Atom Registration

The functions that register and unregister atoms are in fact using reference counting to
keep track of atoms that have been registered. As a result, it is safe to combine your code
with libraries and code others have written. If the other code has been careful to register
and unregister its atoms as appropriate, atoms will not be reclaimed until everyone has
unregistered them.

Of course, it is possible when writing code that needs to register atoms that errors could
occur. Atoms that are registered too many times simply will not be garbage collected until
they are fully unregistered. However, atoms that aren’t registered when they should be
may be reclaimed on atom garbage collection. One normally doesn’t need to think about
the reference counting going on in QP_register_atom() and QP_unregister_atom(), but
some understanding of its details could prove helpful when debugging.

To help you diagnose problems with registering and unregistering atoms, QP_register_
atom() and QP_unregister_atom() both normally return the current reference count for
the atom. If an error occurs, e.g. a nonexistent atom is registered or unregistered, QP_ERROR
is returned.

An unregistered atom has a reference count of 0. Unregistering an atom that is unregis-
tered is a no-op; in this case, QP_unregister_atom() returns 0. A permanent atom has
a reference count of 128. In addition, if an atom is simultaneously registered 128 times,
it becomes permanent. (An atom with 128 distinct references is an unlikely candidate
for reclamation!) Registering or unregistering an atom that is permanent is also a no-op;
QP_register_atom() and QP_unregister_atom() return 128.

Various safeguards enable you to detect when an atom may have been reclaimed prema-
turely. An atom that has been reclaimed and has not yet been reused appears as the special
system atom ’$anon’, which cannot match any user atom (even a user-supplied ’$anon’,
which will be a distinct atom). However, once an atom’s space is reused, any references to
the old atom will now see only the new atom. It is not possible to detect that an atom has
been reused once the reuse occurs.

8.12.9 Summary of Predicates

• garbage_collect/0

• gc/0

• nogc/0

• prolog_flag/3

• statistics/[0,2]

• trimcore/0

• garbage_collect_atoms/0

Chapter 8: The Prolog Language 271

8.13 Modules

8.13.1 Overview

The module system lets the user divide large Prolog programs into modules, or rather
smaller sub-programs, and define the interfaces between those modules. Each module has
its own name space; that is, a predicate defined in one module is distinct from any predicates
with the same name and arity that may be defined in other modules. The module system
encourages a group of programmers to define the dependence each has on others’ work before
any code is written, and subsequently allows all to work on their own parts independently.
It also helps to make library predicates behave as extensions of the existing set of built-in
predicates.

The Quintus Prolog library uses the module system and can therefore serve as an extended
example of the concepts presented in the following text. The design of the module system
is such that loading library files and calling library predicates can be performed without
knowledge of the module system.

Some points to note about the module system are that:

• It is based on predicate modularity rather than on data modularity; that is, atoms and
functors are global.

• It is flat rather than hierarchical; any module may refer to any other module by its
name — there is no need to specify a path of modules.

• It is not strict; modularity rules can be explicitly overridden. This is primarily for
flexibility during debugging.

• It is efficient; calls to predicates across module boundaries incur little or no overhead.
• It is compatible with previous releases of Quintus Prolog; existing Prolog code should

run unchanged.

8.13.2 Basic Concepts

Each predicate in a program is identified by its module, as well as by its name and arity.

A module defines a set of predicates, some of which have the property of being public. Public
predicates are predicates that can be imported by other modules, which means that they
can then be called from within those modules. Predicates that are not public are private
to the module in which they are defined; that is, they cannot be called from outside that
module (except by explicitly overriding the modularity rules as described in Section 8.13.6
[ref-mod-vis], page 274).

There are two kinds of importation:

1. A module M1 may import a specified set of predicates from another module M2. All

272 Quintus Prolog

the specified predicates should be public in M2.
2. A module M1 may import all the public predicates of another module M2.

Built-in predicates do not need to be imported; they are automatically available from within
any module.

There is a special module called user, which is used by default when predicates are being
defined and no other module has been specified.

If you are using a program written by someone else, you need not be concerned as to
whether or not that program has been made into a module. The act of loading a module
from a file using compile/1, or ensure_loaded/1 (see Section 8.4 [ref-lod], page 189) will
automatically import all the public predicates in that module. Thus the command

:- ensure_loaded(library(basics)).

will load the basic list-processing predicates from the library and make them available.

8.13.3 Defining a Module

The normal way to define a module is by creating a module-file for it and loading it into
the Prolog system. A module-file is a Prolog file that begins with a module declaration.

A module declaration has the form

:- module(+ModuleName, +PublicPredList).

Such a declaration must appear as the first term in a file, and declares that file to be a
module-file. The predicates in the file will become part of the module ModuleName, and
the predicates specified in PublicPredList are those that can be imported by other modules;
that is, the public predicates of this module.

Instead of creating and loading a module-file, it is also possible to define a module dynam-
ically by, for example, asserting clauses into a specified module. A module created in this
way has no public predicates; all its predicates are private. This means that they cannot be
called from outside that module except by explicitly overriding the modularity rules as de-
scribed in Section 8.13.6 [ref-mod-vis], page 274. Dynamic creation of modules is described
in more detail in Section 8.13.9 [ref-mod-dmo], page 276.

8.13.4 Converting Non-module-files into Module-files

The Prolog cross-referencer located in qplib(tools) can automatically generate module/2
declarations from its cross-reference information. This is useful if you want to take a set
of files making up a program and make each of those files into a module-file. See the file
library(’xref.doc’) for more information.

Chapter 8: The Prolog Language 273

Alternatively, if you have a complete Prolog program consisting of a set of source files
{file1, file2, ...}, and you wish to encapsulate it in a single module mod, then this
can be done by creating a “driver” file of the following form:

:- module(mod, [...]).

:- ensure_loaded(file1).
:- ensure_loaded(file2).

.

.

.

When a module is created in this way, none of the files in the program {file1, file2,
...} have to be changed.

8.13.5 Loading a Module

To gain access to the public predicates of a module-file, load it as you would any other file—
using compile/1, or ensure_loaded/1 as appropriate. For example, if your code contains
a directive such as

:- ensure_loaded(File).

this directive will load the appropriate file File whether or not File is a module-file. The
only difference is that if File is a module-file any private predicates that it defines will not
be visible to your program.

The load predicates are adequate for use at Prolog’s top level, or when the file being
loaded is a utility such as a library file. When you are writing modules of your own;
use_module/[1,2,3] is the most useful.

The following predicates are used to load modules:

use_module(F)
import the module-file(s) F, loading them if necessary; same as ensure_
loaded(F) if all files in F are module-files

use_module(F,I)
import the procedure(s) I from the module-file F, loading module-file F if nec-
essary

use_module(M,F,I)
import I from module M, loading module-file F if necessary

Before a module-file is loaded, the associated module is reinitialized: any predicates previ-
ously imported into that module are forgotten by the module.

274 Quintus Prolog

If a module of the same name with a different PublicPredList or different meta-predicate
list has previously been loaded from a different module-file, a warning is printed and you
are given the option of abandoning the load. Only one of these two modules can exist in
the system at one time.

Normally, a module-file can be reloaded after editing with no need to reload any other
modules. However, when a module-file is reloaded after its PublicPredList or its meta-
predicate declaration (see Section 8.13.17 [ref-mod-met], page 284) has been changed, any
modules that import predicates from it may have become inconsistent. This is because a
module is associated with a predicate at compile time, rather than run time. Thus, other
modules may refer to predicates in a module-file that are no longer public or whose module
name expansion requirements have changed. In the case of module-importation (where all,
rather than specific, public predicates of a module are imported), it is possible that some
predicates in the importing module should now refer to a newly-public predicate but do
not. Whenever the possibility of such inconsistency arises, you will be warned at the end
of the load that certain modules need to be reloaded. This warning will be repeated at the
end of each subsequent load until those modules have been reloaded.

Modules may be saved to a QOF file by calling save_modules(Modules,File) (see Sec-
tion 8.5 [ref-sls], page 192).

8.13.6 Visibility Rules

By default, predicates defined in one module cannot be called from another module. This
section enumerates the exceptions to this—the ways in which a predicate can be visible to
modules other than the one in which it is defined.

1. The built-in predicates can be called from any module.
2. Any predicate that is named in the PublicPredList of a module, and that is imported

by some other module M, can be called from within M.
3. Module Prefixing: Any predicate, whether public or not, can be called from any other

module if its module is explicitly given as a prefix to the goal, attached with the :/2
operator. The module prefix overrides the default module. For example,

:- mod:foo(X,Y).

always calls foo/2 in module mod. This is effectively a loophole in the module system,
which allows you to override the normal module visibility rules. It is intended primarily
to facilitate program development and debugging, and it should not be used extensively
since it subverts the original purposes of using the module system.
Note that a predicate called in this way does not necessarily have to be defined in the
specified module. It may be imported into it. It can even be a built-in predicate, and
this is sometimes useful — see Section 8.13.7 [ref-mod-som], page 275, for an example.

Chapter 8: The Prolog Language 275

8.13.7 The Source Module

For any given procedure call, or goal, the source module is the module in which the cor-
responding predicate must be visible. That is, unless the predicate is built-in it must be
defined in, or imported into, the source module.

For goals typed at the top level, the source module is the type-in module, which is user by
default — see Section 8.13.8 [ref-mod-tyi], page 276. For goals appearing in a file (either
as goal clauses or as normal clauses), the source module is the one into which that file has
been loaded.

There are a number of built-in predicates that take predicate specifications, clauses, or goals
as arguments. Each of these types of argument must be understood with reference to some
module. For example, assert/1 takes a clause as its argument, and it must decide into
which module that clause should be asserted. The default assumption is that it asserts the
clause into the source module. Another example is call/1. The goal (A) calls the predicate
foo/1 in the source module; this ensures that in the compound goal (B) both occurrences
of foo/1 refer to the same predicate.

call(foo(X)) (A)

call(foo(X)), foo(Y) (B)

All predicates that refer to the source module allow you to override it by explicitly naming
some other module to be used instead. This is done by prefixing the relevant argument
of the predicate with the module to be used followed by a ‘:’ operator. For example (C),
asserts f(x) in module m.

| ?- assert(m:f(x)). (C)

Note that if you call a goal in a specified module, overriding the normal visibility rules (see
Section 8.13.6 [ref-mod-vis], page 274), then the source module for that goal is the one you
specify, not the module in which this call occurs. For example (D), has exactly the same
effect as (C)—f(x) is asserted in module m. In other words, prefixing a goal with a module
duplicates the effect of calling that goal from that module.

| ?- m:assert(f(x)). (D)

Another built-in predicate that refers to the source module is compile/1. In this case,
the argument is a file, or list of files, rather than a predicate specification, clause, or goal.
However, in the case where a file is not a module-file, compile/1 must decide into which
module to compile its clauses, and it chooses the source module by default. This means
that you can compile a file File into a specific module M using

| ?- compile(M:File).

Thus if File is a module-file, this command would cause its public predicates to be imported
into module M. If File is a non-module-file, it is loaded into module M.

276 Quintus Prolog

For a list of the built-in predicates that depend on the source module, see Section 8.13.16
[ref-mod-mne], page 282. In some cases, user-defined predicates may also require the concept
of a source module. This is discussed in Section 8.13.17 [ref-mod-met], page 284.

8.13.8 The Type-in Module

The type-in module is the module that is taken as the source module for goals typed in by
the user. The name of the default type-in module is user. That is, the predicates that are
available to be called directly by the user are those that are visible in the module user.

When debugging, it is often useful to call, directly from the top level, predicates that are
private to a module, or predicates that are public but that are not imported into user. This
can be done by prefixing each goal with the module name, as described in Section 8.13.6
[ref-mod-vis], page 274; but rather than doing this extensively, it may be more convenient
to make this module the type-in module.

The type-in module can be changed using the built-in predicate module/1 (see Sec-
tion 18.3.103 [mpg-ref-module1], page 1182); for example,

| ?- module(mod).

This command will cause subsequent goals typed at the top level to be executed with mod
as their source module.

The name of the type-in module is always displayed, except when it is user. If you are
running Prolog under the editor interface, the type-in module is displayed in the status line
of the Prolog window. If you are running Prolog without the editor interface, the type-in
module is displayed before each top-level prompt.

For example, if you are running Prolog without the editor:

| ?- module(foo).

yes
[foo]
| ?-

It should be noted that it is unlikely to be useful to change the type-in module via a directive
embedded in a file to be loaded, because this will have no effect on the load — it will only
change the type-in module for commands subsequently entered by the user.

8.13.9 Creating a Module Dynamically

There are several ways in which you can create a module without loading a module-file
for it. One way to do this is by asserting clauses into a specified module. For example,

Chapter 8: The Prolog Language 277

the command (A) will create the dynamic predicate f/1 and the module m if they did not
previously exist.

| ?- assert(m:f(x)). (A)

Another way to create a module dynamically is to compile a non-module-file into a specified
module. For example (B), will compile the clauses in File into the module M.

| ?- compile(M:File). (B)

The same effect can be achieved by (temporarily) changing the type-in module to M (see
Section 8.13.8 [ref-mod-tyi], page 276) and then calling compile(File), or executing the
command in module M as in (C).

| ?- M:compile(File). (C)

8.13.10 Module Prefixes on Clauses

Every clause in a Prolog file has a source module implicitly associated with it. If the file
is a module-file, then the module named in the module declaration at the top of the file is
the source module for all the clauses. If the file is not a module-file, the relevant module is
the source module for the command that caused this file to be loaded.

The source module of a predicate decides in which module it is defined (the module of the
head), and in which module the goals in the body are going to be called (the module of
the body). It is possible to override the implicit source module, both for head and body, of
clauses and directives, by using prefixes. For example, consider the module-file:

:- module(a, []).

:- dynamic m:a/1.
b(1).
m:c([]).
m:d([H|T]) :- q(H), r(T).
m:(e(X) :- s(X), t(X)).
f(X) :- m:(u(X), v(X)).

In the previous example, the following modules apply:

1. a/1 is declared dynamic in the module m.
2. b/1 is defined in module a (the module of the file).
3. c/1 is defined in module m.
4. d/1 is defined in module m, but q/1 and r/1 are called in module a (and must therefore

be defined in module a).
5. e/1 is defined in module m, and s/1 and t/1 are called in module m.
6. f/1 is defined in module a, but u/1 and v/1 are called in module m.

278 Quintus Prolog

Module prefixing is especially useful when the module prefix is user. There are several
predicates that have to be defined in module user but that you may want to define (or
extend) in a program that is otherwise entirely defined in some other module or modules:

• runtime_entry/1

• term_expansion/2

• portray/1

• file_search_path/2

• library_directory/1

Note that if clauses for one of these predicates are to be spread across multiple files, it will
be necessary to declare that predicate to be multifile by putting a multifile declaration in
each of the files.

8.13.10.1 Current Modules

A loaded module becomes current as soon as it is encountered, and a module can never lose
the property of being current.

8.13.11 Debugging Code in a Module

Having loaded a module to be debugged, you can trace through its execution in the normal
way. When the debugger stops at a port, the procedure being debugged is displayed with
its module name as a prefix unless the module is user.

The predicate spy/1 depends on the source module. It can be useful to override this during
debugging. For example,

| ?- spy mod1:f/3.

puts a spypoint on f/3 in module mod1.

It can also be useful to call directly a predicate that is private to its module in order to test
that it is doing the right thing. This can be done by prefixing the goal with its module; for
example,

| ?- mod1:f(a,b,X).

8.13.12 Modules and Loading through the Editor Interface

When you (re)load some Prolog code through the editor interface, the module into which
the code is to be loaded is selected as follows.

Chapter 8: The Prolog Language 279

• if the code begins with a module declaration, this is exactly the same as loading that
text from a file using the Load Predicates;

• otherwise, if the file containing the code has previously been associated with some
module other than user, the code is reloaded into that module;

• otherwise, if the type-in module is user, the code is loaded into user;
• otherwise, you are prompted to confirm that you wish to load the code into the type-in

module — if not, the load is abandoned.

Note that when a fragment of code has been loaded into a particular module other than
user, the editor will subsequently insist that that code belongs to that module. In order to
change this, the entire module must be reloaded.

When a module declaration is processed, the module is reinitialized; all predicates previously
imported into that module are forgotten. Therefore, when only part of a module-file is
reloaded through the editor interface, that part should generally not include the module
declaration.

Loading an entire module through the editor interface is like loading the module via the
Load Predicates in that all the public predicates in the module are imported into the type-in
module. The only difference is that in the case in which you load the module through the
editor interface you will be prompted for confirmation before the importation takes place.
This is because there are situations in which you might want to reload a module via the
editor interface without importing it into the type-in module; that is, situations in which you
would not want to allow the importation to happen. For example, suppose that the type-in
module is the default user, and that you have been modifying a module m1 from which
another module m2 imports predicates, but from which user does not import anything. In
this case, you may want to reload m1, using the editor interface, without importing it into
user.

When a file that is not a module-file is loaded into several different modules, reloading all
or part of it through the editor interface affects only the module into which it was most
recently loaded.

8.13.13 Name Clashes

A name clash can arise if:

1. a module tries to import a predicate from some other module m1 and it has already
imported a predicate with the same name and arity from a module m2;

2. a module tries to import a predicate from some other module m1 and it already contains
a definition of a predicate with the same name and arity; or

3. a module tries to define a predicate with the same name and arity as one that it has
imported.

Whenever a name clash arises, a message is displayed beginning with the words ‘NAME
CLASH’. If the module that is importing or defining the clashing predicate is not user, then

280 Quintus Prolog

this message is just a warning, and the attempt to import or define the predicate simply
fails. Otherwise, if the module is user, the user is asked to choose from one of several
options; for example,

NAME CLASH: f/3 is already imported into module user
from module m1;
do you want to override this definition with
the one in m2? (y,n,p,s,a or ?)

The meanings of the four recognized replies are as follows:

• y means forget the previous definition of f/3 from m1 and use the new definition of f/3
from m2 instead.

• n means retain the previous definition of f/3 from m1 and ignore the new definition of
f/3 from m2.

• p (for proceed) means forget the previous definition of f/3 and of all subsequent pred-
icate definitions in m1 that clash during the current load of m2. Instead, use the new
definitions in m2. When the p option is chosen, predicates being loaded from m1 into
m2 will cause no ‘NAME CLASH’ messages for the remainder of the load, though clashes
with predicates from other modules will still generate such messages.

• s (for suppress) means forget the new definition of f/3 and of all subsequent predicate
definitions in m1 that clash during the current load of m2. Instead, use the old definitions
in m2. When the s option is chosen, predicates being loaded from m1 into m2 will cause
no ‘NAME CLASH’ messages for the remainder of the load, though clashes with predicates
from other modules will still generate such messages.

• ? gives brief help information.

8.13.14 Obtaining Information about Loaded Modules

current_module(M)
M is the name of a current module

current_module(M,F)
F is the name of the file in which M’s module declaration appears

8.13.14.1 Predicates Defined in a Module

The built-in predicate current_predicate/2 can be used to find the predicates that are
defined in a particular module.

To backtrack through all of the predicates defined in module m, use

| ?- current_predicate(_, m:Goal).

To backtrack through all predicates defined in any module, use

| ?- current_predicate(_, M:Goal).

Chapter 8: The Prolog Language 281

This succeeds once for every predicate in your program.

8.13.14.2 Predicates Visible in a Module

The built-in predicate predicate_property/2 can be used to find the properties of any
predicate that is visible to a particular module.

To backtrack through all of the predicates imported by module m, use

| ?- predicate_property(m:Goal, imported_from(_)).

To backtrack through all of the predicates imported by module m1 from module m2, use

| ?- predicate_property(m1:Goal, imported_from(m2)).

For example, you can load the basics module from the library and then remind yourself of
what predicates it defines like this:

| ?- compile(library(basics)).
% ... loading messages ...

yes
| ?- predicate_property(P, imported_from(basics)).

P = member(_2497,_2498) ;

P = memberchk(_2497,_2498) ;

.

.

.

This tells you what predicates are imported into the type-in module from basics.

You can also find all imports into all modules using

| ?- predicate_property(M1:G, imported_from(M2)).

To backtrack through all of the predicates exported by module m, use

| ?- predicate_property(m:Goal, exported).

There is a library package, library(showmodule), which prints out information about
current modules. For more information see Chapter 12 [lib], page 521.

8.13.15 Importing Dynamic Predicates

Imported dynamic predicates may be asserted and retracted. For example, suppose the
following file is loaded via use_module/1:

282 Quintus Prolog

:- module(m1, [f/1]).
:- dynamic f/1.
f(0).

Then f/1 can be manipulated as if it were defined in the current module. For example,

| ?- clause(f(X), true).

X = 0

The built-in predicate listing/1 distinguishes predicates that are imported into the current
source module by prefixing each clause with the module name. Thus,

| ?- listing(f).

m1:f(0).

However, listing/1 does not prefix clauses with their module if they are defined in the
source module itself. Note that

| ?- listing.

can be used to see all the dynamic predicates defined in or imported into the current type-in
module. And

| ?- listing(m1:_).

can be used to see all such predicates that are defined in or imported into module m1.

8.13.16 Module Name Expansion

The concept of a source module is explained in Section 8.13.7 [ref-mod-som], page 275. For
any goal, the applicable source module is determined when the goal is compiled rather than
when it is executed.

A procedure that needs to refer to the source module has arguments designated for module
name expansion. These arguments are expanded at compile time by the transformation

X -> M:X

where M is the name of the source module. For example, the goal call(X) is expanded into
call(M:X) and the goal clause(Head, Body) is expanded into clause(M:Head, Body).

Module name expansion is avoided if the argument to be expanded is already a :/2 term.
In this case it is unnecessary since the module to be used has already been supplied by the
programmer.

Chapter 8: The Prolog Language 283

The built-in predicates that use module name expansion, and the arguments requiring
module name expansion are shown below. These arguments are labeled ‘[MOD]’ in the
Arguments field of the reference page for each.

• abolish(M:Pred)

• abolish(M:Name, Arity)

• assert(M:Term)

• assert(M:Term, Ref)

• asserta(M:Term)

• asserta(M:Term, Ref)

• assertz(M:Term)

• assertz(M:Term, Ref)

• bagof(T, M:P, S)

• call(M:Goal)

• check_advice(M:ListOfPredSpecs)

• clause(M:Head, Body)

• clause(M:Head, Body, Ref)

• compile(M:Files)

• consult(M:Files)

• current_advice(M1:Goal, Port, M2:Action)

• current_predicate(Name, M:Term)

• debugger(Current, M:New)

• ensure_loaded(M:Files)

• findall(T, M:Pred, List)

• initialization(M:Goal)

• listing(M:List)

• load_files(M:Files)

• load_files(M:Files, Options)

• load_foreign_files(M:Files, Libs)

• multifile_assertz(M:Term)

• nocheck_advice(M:ListOfPredSpecs)

• nospy(M:List)

• phrase(M:Phrase, S0)

• phrase(M:Phrase, S0, S)

• predicate_property(M:Goal, Property)

• remove_advice(M:Goal, Port, Action)

• retract(M:Term)

• retractall(M:Term)

• save_predicates(M:PredSpecs,File)

284 Quintus Prolog

• save_program(File,M:Goal)

• setof(T, M:P, S)

• source_file(M:Term,File)

• source_file(M:PredSpec,ClauseNumber,File)

• spy(M:List)

• use_module(M:Files)

• use_module(M:File, IL)

• use_module(ExportModule, M:File, IL)

• volatile(M:PredSpec)

• X^(M:Goal)

• [M:File|Rest]

In all of these predicates, M: can stand for multiple modules. It is the innermost module
that is used in this case. For example, call(m1:m2:m3:p) calls m3:p/0.

8.13.17 The meta_predicate Declaration

Sometimes a user-defined predicate will require module name expansion (see Section 8.13.16
[ref-mod-mne], page 282). This can be specified by providing a meta_predicate declaration
for that procedure.

Module name expansion is needed whenever the argument of a predicate has some module-
dependent meaning. For example, if this argument is a goal that is to be called, it will
be necessary to know in which module to call it — or, if the argument is a clause to be
asserted, in which module it should go.

Consider, for example, a sort routine to which the name of the comparison predicate is
passed as an argument. In this example, the comparison predicate should be called with
respect to the module containing the call to the sort routine. Suppose that the sort routine
is

mysort(+CompareProc, +InputList, -OutputList)

An appropriate meta_predicate declaration for this is

:- meta_predicate mysort(:, +, -).

The significant argument in the mysort/3 term is the ‘:’, which indicates that module name
expansion is required for this argument. This means that whenever a goal mysort(A, B, C

) appears in a clause, it will be transformed at load time into mysort(M:A, B, C), where M
is the source module. There are some exceptions to this compile-time transformation rule;
the goal is not transformed if either of the following applies:

1. A is of the form Module:Goal.

Chapter 8: The Prolog Language 285

2. A is a variable and the same variable appears in the head of the clause in a module-
name-expansion position.

The reason for (2) is that otherwise module name expansion could build larger and larger
structures of the form Mn: . . . :M2:M1:Goal. For example, consider the following program
fragment adapted from the library (see library(samsort) for the full program):

:- module(samsort, [samsort/3]).

:- meta_predicate
samsort(:, +, ?),
sam_sort(+, :, +, +, ?).

samsort(_, [], []) :- !.
samsort(Order, List, Sorted) :-

sam_sort(List, Order, [], 0, Sorted).
.
.
.

Normally, the sam_sort/5 goal in this example would have the module name of its second
argument expanded thus:

sam_sort(List, samsort:Order, [], 0, Sorted)

because of the meta_predicate declaration. However, in this situation the appropriate
source module will have already been attached to Order because it is the first argument
of samsort/3, which also has a meta_predicate declaration. Therefore it is not useful to
attach the module name (samsort) to Order in the call of sam_sort/5.

The argument of a meta_predicate declaration can be a term, or a sequence of terms
separated by commas. Each argument of each of these terms must be one of the following:

‘:’ requires module name expansion

non-negative integer
same as ‘:’

‘+’, ‘-’, ‘*’ ignored

The reason for allowing a non-negative integer as an alternative to ‘:’ is that this may be
used in the future to supply additional information to the cross-referencer (library(xref))
and to the Prolog compiler. An integer n is intended to mean that that argument is a term
that will be supplied n additional arguments. Thus, in the example above where the meta-
argument is the name of a comparison routine that would be called with two arguments, it
would be appropriate to write the integer 2 instead of a ‘:’.

286 Quintus Prolog

The reason for ‘+’, ‘-’ and ‘*’ is simply so that the information contained in a DEC-10
Prolog-style “mode” declaration may be represented in the meta_predicate declaration if
you wish. There are many examples of meta_predicate declarations in the library.

8.13.18 Predicate Summary

• current_module/[1,2]

• meta_predicate/1

• module/1

• module/2

• save_modules/2

• use_module/[1,2,3]

8.14 Modification of the Database

8.14.1 Introduction

The family of assertion and retraction predicates described below enables you to modify a
Prolog program by adding or deleting clauses while it is running. These predicates should
not be overused. Often people who are experienced with other programming languages have
a tendency to think in terms of global data structures, as opposed to data structures that
are passed as procedure arguments, and hence they make too much use of assertion and
retraction. This leads to less readable and less efficient programs.

An interesting question in Prolog is what happens if a procedure modifies itself, by asserting
or retracting a clause, and then fails. On backtracking, does the current execution of the
procedure use new clauses that are added to the bottom of the procedure?

Historical note: In early releases of Quintus Prolog, changes to the Prolog
database became globally visible upon the success of the built-in predicate
modifying the database. An unsettling consequence was that the definition
of a procedure could change while it was being run. This could lead to code
that was difficult to understand. Furthermore, the memory performance of the
interpreter implementing these semantics was poor. Worse yet, the semantics
rendered ineffective the added determinacy detection available through index-
ing.

Quintus Prolog implements the “logical” view in updating dynamic predicates. This means
that the definition of a dynamic procedure that is visible to a call is effectively frozen when
the call is made. A procedure always contains, as far as a call to it is concerned, exactly
the clauses it contained when the call was made.

Chapter 8: The Prolog Language 287

A useful way to think of this is to consider that a call to a dynamic procedure makes a
virtual copy of the procedure and then runs the copy rather than the original procedure.
Any changes to the procedure made by the call are immediately reflected in the Prolog
database, but not in the copy of the procedure being run. Thus, changes to a running
procedure will not be visible on backtracking. A subsequent call, however, makes and runs
a copy of the modified Prolog database. Any changes to the procedure that were made by
an earlier call will now be visible to the new call.

In addition to being more intuitive and easy to understand, the new semantics allow in-
terpreted code to execute with the same determinacy detection (and excellent memory
performance) as static compiled code (see Section 2.5.3 [bas-eff-ind], page 36, for more
information on determinacy detection).

8.14.2 Dynamic and Static Procedures

All Prolog procedures are classified as being either static or dynamic procedures. Static
procedures can be changed only by completely redefining them using the Load Predicates
(see Section 8.4 [ref-lod], page 189). Dynamic procedures can be modified by adding or
deleting individual clauses using the assert and retract procedures.

If a procedure is defined by being compiled, it is static by default. If you need to be able
to add, delete, or inspect the individual clauses of such a procedure, you must make the
procedure dynamic.

There are two ways to make a procedure dynamic:

• If the procedure is to be compiled, then it must be declared to be dynamic before it is
defined.

• If the procedure is to be created by assertions only, then the first assert operation on
the procedure automatically makes it dynamic.

A procedure is declared dynamic by preceding its definition with a declaration of the form:

:- dynamic Pred

where Pred must be a procedure specification of the form Name/Arity, or a sequence of
such specifications, separated by commas. For example,

:- dynamic exchange_rate/3, spouse_of/2,
gravitational_constant/1.

where ‘dynamic’ is a built-in prefix operator. If Pred is not of the specified form an exception
is raised, and the declaration is ignored.

Note that the symbol ‘:- ’ preceding the word ‘dynamic’ is essential. If this symbol is
omitted, a permission error is raised because it appears that you are trying to define a

288 Quintus Prolog

clause for the built-in predicate dynamic/1. Although dynamic/1 is a built-in predicate, it
may only be used in declarations.

When a dynamic declaration is encountered in a file being compiled, it is considered to be
a part of the redefinition of the procedures specified in its argument. Thus, if you compile
a file containing only

:- dynamic hello/0

the effect will be to remove any previous definition of hello/0 from the database, and to
make the procedure dynamic. You cannot make a procedure dynamic retroactively. If you
wish to make an already-existing procedure dynamic it must be redefined.

It is often useful to have a dynamic declaration for a procedure even if it is to be created only
by assertions. This helps another person to understand your program, since it emphasizes
the fact that there are no pre-existing clauses for this procedure, and it also avoids the
possibility of Prolog stopping to tell you there are no clauses for this procedure if you
should happen to call it before any clauses have been asserted. This is because unknown
procedure catching (see Section 6.1.5.4 [dbg-bas-con-unk], page 120) does not apply to
dynamic procedures; it is presumed that a call to a dynamic procedure should simply fail
if there are no clauses for it.

If a program needs to make an undefined procedure dynamic, this can be achieved by calling
clause/2 on that procedure. The call will fail because the procedure has no clauses, but
as a side-effect it will make the procedure dynamic and thus prevent unknown procedure
catching on that procedure. See the Reference page for details of clause/2.

Although you can simultaneously declare several procedures to be dynamic, as shown above,
it is recommended that you use a separate dynamic declaration for each procedure placed
immediately before the clauses for that procedure. In this way when you reconsult or
recompile the procedure using the editor interface, you will be reminded to include its
dynamic declaration.

Dynamic procedures are implemented by interpretation, even if they are included in a file
that is compiled. This means that they are executed more slowly than if they were static,
and also that can be printed out using listing/0. Dynamic procedures, as well as static
procedures, are indexed on their first argument; see Section 2.5.3 [bas-eff-ind], page 36.

8.14.3 Database References

A database reference is a term that uniquely identifies a clause or recorded term (see Sec-
tion 8.14.8 [ref-mdb-idb], page 294) in the database. Database references are provided only
to increase efficiency in programs that access the database in complex ways. Use of a
database reference to a clause can save repeated searches using clause/2. However, it does
not normally pay to access a clause via a database reference when access via first argument
indexing is possible.

Chapter 8: The Prolog Language 289

Consistency checking is done whenever a reference is used; any attempt to use a reference
to a clause that has been retracted will cause an existence error to be raised.

There is no restriction on the use of references. References may be included in asserted
clauses. Database references to clauses and in clauses are preserved across saving and
restoring via QOF files (see also Section 9.1.1.5 [sap-srs-bas-cld], page 339).

In release 3, a database reference reads and writes like a Prolog term of the form
’$ref’(integer,integer); however, it is actually represented as a distinguished atomic
data type by the Prolog system. As a result, Prolog operations like functor/3 and arg/3
treat database references as they would numbers or atoms:

| ?- assert(foo,M).

M = ’$ref’(1296804,1)

| ?- functor(’$ref’(1296804,1), N, A).

N = ’$ref’(1296804,1),
A = 0

| ?- arg(1, ’$ref’(1296804,1), A).

no
| ?-

Database references can be identified using the type test db_reference/1.

In previous releases of Quintus Prolog, operations such as the above were occasionally used
on database references so that their components could be indexed on in asserted clauses.
Such operations have always been discouraged. In release 3, full indexing is automati-
cally available on the entire database reference, so it is unnecessary to have access to its
components.

As in the past, the representation of database references may change in future releases, so
programs should not rely on it.

8.14.4 Adding Clauses to the Database

The assertion predicates are used to add clauses to the database in various ways. The
relative position of the asserted clause with respect to other clauses for the same predicate
is determined by the choice among assert/1, asserta/1, and assertz/1. A database
reference that uniquely identify the clause being asserted is established by providing an
optional second argument to any of the assertion predicates.

assert(C)
clause C is asserted in an arbitrary position in its predicate

290 Quintus Prolog

assert(C,R)
as assert/1; reference R is returned

asserta(C)
clause C is asserted before existing clauses

asserta(C,R)
as asserta/1; reference R is returned

assertz(C)
clause C is asserted after existing clauses

assertz(C,R)
as assertz/1; reference R is returned

multifile_assertz(C)
add clause C to the end of a (possibly compiled) multifile procedure

8.14.5 Removing Clauses from the Database

This section briefly describes the predicates used to remove the clauses and/or properties
of a predicate from the system.

Please note: Removing all of a predicate’s clauses by retract/1 and/or
erase/1 (see Section 8.14.5.1 [ref-mdb-rcd-efu], page 290) does not remove
the predicate’s properties (and hence its definition) from the system. The
only way to completely remove a predicates clauses and properties is to use
abolish/[1,2].

retract(C)
erase the first dynamic clause that matches C

retractall(H)
erase every clause whose head matches H

abolish(F)
abolish the predicate(s) specified by F

abolish(F,N)
abolish the predicate named F of arity N

erase(R) erase the clause or recorded term (see Section 8.14.8 [ref-mdb-idb], page 294)
with reference R

8.14.5.1 A Note on Efficient Use of retract/1

WARNING: retract/1 is a nondeterminate procedure. Thus, we can use

| ?- retract((foo(X) :- Body)), fail.

Chapter 8: The Prolog Language 291

to retract all clauses for foo/1. A nondeterminate procedure in Quintus Prolog uses a
choice point, a data structure kept on an internal stack, to implement backtracking. This
applies to user-defined procedures as well as to built-in and library procedures. In a simple
model, a choice point is created for each call to a nondeterminate procedure, and is deleted
on determinate success or failure of that call, when backtracking is no longer possible. In
fact, Quintus Prolog improves upon this simple model by recognizing certain contexts in
which choice points can be avoided, or are no longer needed.

The Prolog cut (‘!’) works by removing choice points, disabling the potential backtracking
they represented. A choice point can thus be viewed as an “outstanding call”, and a cut as
deleting outstanding calls.

To avoid leaving inconsistencies between the Prolog database and outstanding calls, a re-
tracted clause is reclaimed only when the system determines that there are no choice points
on the stack that could allow backtracking to the clause. Thus, the existence of a sin-
gle choice point on the stack can disable reclamation of retracted clauses for the procedure
whose call created the choice point. Space is recovered only when the choice point is deleted.

Often retract/1 is used determinately; for example, to retract a single clause, as in

| ?- <do some stuff>
retract(Clause),
<do more stuff without backtracking>.

No backtracking by retract/1 is intended. Nonetheless, if Clause may match more than one
clause in its procedure, a choice point will be created by retract/1. While executing “<do
more stuff without backtracking>”, that choice point will remain on the stack, making it
impossible to reclaim the retracted Clause. Such choice points can also disable tail recursion
optimization. If not cut away, the choice point can also lead to runaway retraction on the
unexpected failure of a subsequent goal. This can be avoided by simply cutting away the
choice point with an explicit cut or a local cut (‘->’). Thus, in the previous example, it is
preferable to write either

| ?- <do some stuff>
retract(Clause),

!,

<do more stuff without backtracking>.

or

| ?- <do some stuff>
(retract(Clause) -> true),

<do more stuff without backtracking>.

This will reduce stack size and allow the earliest possible reclamation of retracted clauses.
Alternatively, you could use retract_first/1, defined in library(retract).

292 Quintus Prolog

8.14.6 Accessing Clauses

Goal Succeeds If:

clause(P,Q)
there is a clause for a dynamic predicate with head P and body Q

clause(P,Q,R)
there is a clause for a dynamic predicate with head P, body Q, and reference R

instance(R,T)
T is an instance of the clause or term referenced by R

8.14.7 Modification of Running Code: Examples

The following examples show what happens when a procedure is modified while it is running.
This can happen in two ways:

1. The procedure calls some other procedure that modifies it.
2. The procedure succeeds nondeterminately, and a subsequent goal makes the modifica-

tion.

In either case, the question arises as to whether the modifications take effect upon back-
tracking into the modified procedure. In Quintus Prolog the answer is that they do not.
As explained in the overview to this section (see Section 8.14.1 [ref-mdb-bas], page 286),
modifications to a procedure affect only calls to that procedure that occur after the modi-
fication.

8.14.7.1 Example: assertz

Consider the procedure foo/0 defined by

:- dynamic foo/0.
foo :- assertz(foo), fail.

Each call to foo/0 asserts a new last clause for foo/0. After the Nth call to foo/0 there
will be N+1 clauses for foo/0. When foo/0 is first called, a virtual copy of the procedure
is made, effectively freezing the definition of foo/0 for that call. At the time of the call,
foo/0 has exactly one clause. Thus, when fail/0 forces backtracking, the call to foo/0
simply fails: it finds no alternatives. For example,

Chapter 8: The Prolog Language 293

| ?- compile(user).

| :- dynamic foo/0.

| foo :- assertz(foo), fail.

| ^D
% user compiled in module user, 0.100 sec 2.56 bytes

yes
| ?- foo. % The asserted clause is not found

no
| ?- foo. % A later call does find it, however

yes
| ?-

Even though the virtual copy of foo/0 being run by the first call is not changed by the
assertion, the Prolog database is. Thus, when a second call to foo/0 is made, the virtual
copy for that call contains two clauses. The first clause fails, but on backtracking the second
clause is found and the call succeeds.

8.14.7.2 Example: retract

| ?- assert(p(1)), assert(p(2)), assert(p(3)).

yes
| ?- p(N), write(N), nl, retract(p(2)),

retract(p(3)), fail.

1
2
3

no
| ?- p(N), write(N), fail.

1
no
| ?-

At the first call to p/1, the procedure has three clauses. These remain visible throughout
execution of the call to p/1. Thus, when backtracking is forced by fail/0, N is bound to 2
and written. The retraction is again attempted, causing backtracking into p/1. N is bound
to 3 and written out. The call to retract/1 fails. There are no more clauses in p/1, so
the query finally fails. A subsequent call to p/1, made after the retractions, sees only one
clause.

294 Quintus Prolog

8.14.7.3 Example: abolish

| ?- compile(user).

| :- dynamic q/1.

| q(1).

| q(2).

| q(3).

| ^D
% user compiled in modules user, 0.117 sec 260 bytes

yes
| ?- q(N), write(N), nl, abolish(q/1), fail.

1
2
3

no
| ?-

Procedures that are abolished while they have outstanding calls do not become invisible to
those calls. Subsequent calls however, will find the procedure undefined.

8.14.8 The Internal Database

The following predicates are provided solely for compatibility with other Prolog systems.
Their semantics can be understood by imagining that they are defined by the following
clauses:

recorda(Key, Term, Ref) :-
functor(Key, Name, Arity),
functor(F, Name, Arity),
asserta(’$recorded’(F,Term), Ref).

recordz(Key, Term, Ref) :-
functor(Key, Name, Arity),
functor(F, Name, Arity),
assertz(’$recorded’(F,Term), Ref).

recorded(Key, Term, Ref) :-
functor(Key, Name, Arity),
functor(F, Name, Arity),
clause(’$recorded’(F,Term), _, Ref).

The reason for the calls to functor/3 in the above definition is that only the principal
functor of the key is significant. If Key is a compound term, its arguments are ignored.

Please note: Equivalent functionality and performance, with reduced memory
costs, can usually be had through normal dynamic procedures and indexing

Chapter 8: The Prolog Language 295

(see Section 8.14.1 [ref-mdb-bas], page 286, and indexing tutorial in “Writing
Efficient Programs” section).

In some implementations, database references are also represented by compound terms, and
thus subject to the limitation described above.

recorda(+Key, +Term, -Ref) records the Term in the internal database as the first item
for the key Key; a database reference to the newly-recorded term is returned in Ref.

recordz(+Key, +Term, -Ref) is like recorda/3 except that it records the term as the last
item in the internal database.

recorded(*Key, *Term, *Ref) searches the internal database for a term recorded under
the key Key that unifies with Term, and whose database reference unifies with Ref.

current_key(*KeyName, *KeyTerm) succeeds when KeyName is the atom or integer that
is the name of KeyTerm. KeyTerm is an integer, atom, or compound term that is the key
for a currently recorded term.

8.14.9 Summary of Predicates

• abolish/[1,2]

• assert/[1,2]

• asserta/[1,2]

• assertz/[1,2]

• clause/[2,3]

• erase/1

• current_key/3

• instance/2

• recorda/3

• recorded/3

• recordz/3

• retract/1

• retractall/1

8.15 Sets and Bags: Collecting Solutions to a Goal

8.15.1 Introduction

When there are many solutions to a goal, and a list of all those solutions is desired, one
means of collecting them is to write a procedure that repeatedly backtracks into that goal to
get another solution. In order to collect all the solutions together, it is necessary to use the

296 Quintus Prolog

database (via assertion) to hold the solutions as they are generated, because backtracking
to redo the goal would undo any list construction that had been done after satisfying the
goal.

The writing of such a backtracking loop can be avoided by the use of one of the built-in
predicates setof/3, bagof/3 and findall/3, which are described below. These provide a
nice logical abstraction, whereas with a user-written backtracking loop the need for explicit
side-effects (assertions) destroys the declarative interpretation of the code. The built-in
predicates are also more efficient than those a user could write.

8.15.2 Collecting a Sorted List

setof(Template, Generator, Set) returns the set Set of all instances of Template such
that Generator is provable, where that set is non-empty. The term Generator specifies a
goal to be called as if by call/1. Set is a set of terms represented as a list of those terms,
without duplicates, in the standard order for terms (see Section 8.9.7 [ref-lte-cte], page 242).

Obviously, the set to be enumerated should be finite, and should be enumerable by Prolog
in finite time. It is possible for the provable instances to contain variables, but in this case
Set will only provide an imperfect representation of what is in reality an infinite set.

If Generator is instantiated, but contains uninstantiated variables that do not also appear
in Template, then setof/3 can succeed nondeterminately, generating alternative values
for Set corresponding to different instantiations of the free variables of Generator. (It is to
allow for such usage that Set is constrained to be non-empty.) For example, if your program
contained the clauses

likes(tom, beer).
likes(dick, beer).
likes(harry, beer).
likes(bill, cider).
likes(jan, cider).
likes(tom, cider).

then the call

| ?- setof(X, likes(X,Y), S).

might produce two alternative solutions via backtracking:

Chapter 8: The Prolog Language 297

X = _872,
Y = beer,
S = [dick,harry,tom] ;

X = _872,
Y = cider,
S = [bill,jan,tom] ;

no

The call

| ?- setof((Y,S), setof(X,likes(X,Y),S), SS).

would then produce

Y = _402,
S = _417,
X = _440,
SS = [(beer,[dick,harry,tom]),(cider,[bill,jan,tom])] ;

no

8.15.2.1 Existential Quantifier

X ^ P is recognized as meaning “there exists an X such that P is true”, and is treated as
equivalent to simply calling P. The use of the explicit existential quantifier outside setof/3
and bagof/3 is superfluous.

Variables occurring in Generator will not be treated as free if they are explicitly bound
within Generator by an existential quantifier. An existential quantification is written:

Y^Q

meaning “there exists a Y such that Q is true”, where Y is some Prolog variable. For
example:

| ?- setof(X, Y^likes(X,Y), S).

would produce the single result

X = _400,
Y = _415,
S = [bill,dick,harry,jan,tom] ;

no

298 Quintus Prolog

in contrast to the earlier example.

Furthermore, it is possible to existentially quantify a term, where all the variables in that
term are taken to be existentially quantified in the goal. e.g.

A=term(X,Y), setof(Z, A^foo(X,Y,Z), L).

will treat X and Y as if they are existentially quantified.

8.15.3 Collecting a Bag of Solutions

bagof/3 is is exactly the same as setof/3 except that the list (or alternative lists) returned
will not be ordered, and may contain duplicates. This relaxation saves time and space in
execution.

8.15.3.1 Collecting All Instances

findall/3 is a special case of bagof/3, where all free variables in the generator are taken to
be existentially quantified. Thus the use of the operator ^ is avoided. Because findall/3
avoids the relatively expensive variable analysis done by bagof/3, using findall/3 where
appropriate rather than bagof/3 can be considerably more efficient.

Previously, findall/3 was available in library(findall).

8.15.4 Library Support

• library(basics)

• library(lists)

• library(ordsets)

• library(sets)

8.15.5 Predicate Summary

• setof/3

• bagof/3

• findall/3

• ^/2

8.16 Grammar Rules

This section describes Quintus Prolog’s grammar rules, and the translation of these rules
into Prolog clauses. At the end of the section is a list of grammar-related built-in predicates.

Chapter 8: The Prolog Language 299

8.16.1 Definite Clause Grammars

Prolog’s grammar rules provide a convenient notation for expressing definite clause gram-
mars, which are useful for the analysis of both artificial and natural languages.

The usual way one attempts to make precise the definition of a language, whether it is
a natural language or a programming lanaguage, is through a collection of rules called a
“grammar”. The rules of a grammar define which strings of words or symbols are valid
sentences of the language. In addition, the grammar generally analyzes the sentence into a
structure that makes its meaning more explicit.

A fundamental class of grammar is the context-free grammar (CFG), familiar to the com-
puting community in the notation of “BNF” (Backus-Naur form). In CFGs, the words,
or basic symbols, of the language are identified by “terminal symbols”, while categories
of phrases of the language are identified by non-terminal symbols. Each rule of a CFG
expresses a possible form for a non-terminal, as a sequence of terminals and non-terminals.
The analysis of a string according to a CFG is a parse tree, showing the constitutent phrases
of the string and their hierarchical relationships.

Context-free grammars (CFGs) consist of a series of rules of the form:

nt --> body.

where nt is a non-terminal symbol and body is a sequence of one or more items separated by
commas. Each item is either a non-terminal symbol or a sequence of terminal symbols. The
meaning of the rule is that body is a possible form for a phrase of type nt. A non-terminal
symbol is written as a Prolog atom, while a sequence of terminals is written as a Prolog
list, whereas a terminal may be any Prolog term.

Definite clause grammars (DCGs) are a generalization of context-free grammars and rules
corresponding to DCGs are referred to as “Grammar Rules”. A grammar rule in Prolog
takes the general form

head --> body.

meaning “a possible form for head is body”. Both body and head are sequences of one or
more items linked by the standard Prolog conjunction operator ‘,’ (comma).

Definite clause grammars extend context-free grammars in the following ways:

• A non-terminal symbol may be any Prolog term (other than a variable or integer).
• A terminal symbol may be any Prolog term. To distinguish terminals from non-

terminals, a sequence of one or more terminal symbols is written within a grammar rule
as a Prolog list. An empty sequence is written as the empty list ‘[]’. If the terminal
symbols are ASCII character codes, such lists can be written (as elsewhere) as strings.
An empty sequence is written as the empty list (‘[]’ or ‘""’).

• Extra conditions, in the form of Prolog procedure calls, may be included in the right-
hand side of a grammar rule. These extra conditions allow the explicit use of procedure

300 Quintus Prolog

calls in the body of a rule to restrict the constitutents accepted. Such procedure calls
are written enclosed in curly brackets (‘{’ and ‘}’).

• The left-hand side of a grammar rule consists of a non-terminal, optionally followed by
a sequence of terminals (again written as a Prolog list).

• Alternatives may be stated explicitly in the right-hand side of a grammar rule, using
the disjunction operator ‘;’ (semicolon) as in Prolog. (The disjunction operator can
also be written as ‘|’ (vertical-bar).)

• The cut symbol ‘!’ (exclamation point) may be included in the right-hand side of a
grammar rule, as in a Prolog clause. The cut symbol does not need to be enclosed in
curly brackets. The conditional arrow ‘->’ can also be used in grammar rules, without
the curly brackets. However, all other control predicates, repeat/0 for example, can
only be used within curly brackets. If you use the goal repeat/0 without the brackets
it will be taken to be a non-terminal symbol.

• The extra arguments of non-terminals provide the means of building structure (such as
parse trees) in grammar rules. As non-terminals are “expanded” by matching against
grammar rules, structures are progressively built up in the course of the unification
process.

• The extra arguments of non-terminals can also provide a general treatment of context
dependency by carrying test and contextual information.

8.16.2 How to Use the Grammar Rule Facility

Following is a summary of the steps that enable you to construct and utilitze definte clause
grammars:

STEPS:

1. Write a grammar, using -->/2 to formulate rules.
2. Compile the file containing the grammar rules. The Load Predicates call expand_

term/2, which translates the grammar rules into Prolog clauses.
3. Use phrase/[2,3] to parse or generate strings.

OPTIONAL STEPS:

1. Modify the way in which Prolog translates your grammar rules by defining clauses for
term_expansion/2.

2. In debugging or in using the grammar facility for more obscure purposes it may be
useful to understand more about expand_term/2 and ’C’/3.

8.16.3 An Example

As an example, here is a simple grammar that parses an arithmetic expression (made up of
digits and operators) and computes its value. Create a file containing the following rules:

Chapter 8: The Prolog Language 301

grammar.pl

expr(Z) --> term(X), "+", expr(Y), {Z is X + Y}.
expr(Z) --> term(X), "-", expr(Y), {Z is X - Y}.
expr(X) --> term(X).

term(Z) --> number(X), "*", term(Y), {Z is X * Y}.
term(Z) --> number(X), "/", term(Y), {Z is X / Y}.
term(Z) --> number(Z).

number(C) --> "+", number(C).
number(C) --> "-", number(X), {C is -X}.
number(X) --> [C], {"0"=<C, C=<"9", X is C - "0"}.

In the last rule, C is the ASCII code of a decimal digit.

This grammar can now be used to parse and evaluate an expression by means of the built-in
predicates phrase/2 and phrase/3. For example,

| ?- [grammar].
| ?- phrase(expr(Z), "-2+3*5+1").

Z = 14

| ?- phrase(expr(Z), "-2+3*5", Rest).

Z = 13,
Rest = [] ;

Z = 1,
Rest = "*5" ;

Z = -2,
Rest = "+3*5" ;

no

8.16.4 Translation of Grammar Rules into Prolog Clauses

Grammar rules are merely a convenient abbreviation for ordinary Prolog clauses. Each
grammar rule is translated into a Prolog clause as it is compiled. This translation is de-
scribed below.

The procedural interpretation of a grammar rule is that it takes an input list of symbols
or character codes, analyzes some initial portion of that list, and produces the remaining
portion (possibly enlarged) as output for further analysis. The arguments required for the

302 Quintus Prolog

input and output lists are not written explicitly in a grammar rule, but are added when the
rule is translated into an ordinary Prolog clause. The translations shown differ from the
output of listing/[0,1] in that internal translations such as variable renaming are not
represented. This is done in the interests of clarity. For example, a rule such as (A) will be
depicted as translating into (B) rather than (C).

p(X) --> q(X). (A)

p(X, S0, S) :-
q(X, S0, S). (B)

p(A,B,C) :-
q(A,B,C). (C)

If there is more than one non-terminal on the right-hand side, as in (D) the corresponding
input and output arguments are identified, translating into (E):

p(X, Y) --> q(X), r(X, Y), s(Y). (D)

p(X, Y, S0, S) :- (E)
q(X, S0, S1),
r(X, Y, S1, S2),
s(Y, S2, S).

Terminals are translated using the built-in predicate ’C’(S1, X, S2), read as “point S1 is
connected by terminal X to point S2”, and defined by the single clause

’C’([X|S], X, S).

(This predicate is not normally useful in itself; it has been given the name uppercase ‘c’
simply to avoid pre-empting a more useful name.) Then, for instance (F) is translated into
(G):

p(X) --> [go, to], q(X), [stop]. (F)

p(X, S0, S) :- (G)
’C’(S0, go, S1),
’C’(S1, to, S2),
q(X, S2, S3),
’C’(S3, stop, S).

Extra conditions expressed as explicit procedure calls, enclosed in curly braces, naturally
translate into themselves. For example (H) translates to (I):

p(X) --> [X], {integer(X), X > 0}, q(X). (H)

Chapter 8: The Prolog Language 303

p(X, S0, S) :- (I)
’C’(S0, X, S1),
integer(X),
X > 0,
q(X, S1, S).

Similarly, a cut is translated literally.

Terminals on the left-hand side of a rule, enclosed in square brackets, translate into ’C’/3
goals with the first and third arguments reversed. For example, (J) becomes (K):

is(N), [not] --> [aint]. (J)

is(N, S0, S) :- (K)
’C’(S0, aint, S1),
’C’(S, not, S1).

Disjunction has a fairly obvious translation. For example, (L), a rule that equates phrases
like “(sent) a letter to him” and “(sent) him a letter”, translates to (M):

args(X, Y) --> (L)
dir(X), [to], indir(Y) |
indir(Y), dir(X).

args(X, Y, S0, S) :- (M)
(dir(X, S0, S1),

’C’(S1, to, S2),
indir(Y, S2, S)

| indir(Y, S0, S1),
dir(X, S1, S)

).

8.16.4.1 Listing Grammar Rules

In order to look at these translations, declare the grammar rules dynamic and use
listing/[0,1]. However, in a grammar rule like ‘head --> body’, if the functor of head is
foo/n, the dynamic declaration is for foo/n+2. For example, the following declaration for
grammar rule (L) would enable you to list its translation, (M):

:- dynamic(args/4).

8.16.5 Summary of Predicates

• -->/2

• ’C’/3

• expand_term/2

304 Quintus Prolog

• phrase/[2,3]

• term_expansion/2

8.17 On-line Help

8.17.1 Introduction

The documentation for Quintus Prolog is contained in the Quintus Prolog Manual. This
documentation can be accessed on-line by using special built-in predicates, which are de-
scribed below. These predicates view the manual as a single tree structure with nodes
threaded together by cross-references, which you can traverse in order to find the infor-
mation you need. It is easier to use this help system through the Emacs interface or the
Quintus User Interface, but it is possible to do everything without them. For documen-
tation on using the help system for Quintus User Interface see Section 3.6.1 [qui-hlp-hlp],
page 69.

There are two basic ways of getting to information in the help system. The first is via a series
of menus, which corresponds to the hierarchy of parts, chapters, sections and subsections in
the manual. This method of access is analogous to looking through the Table of Contents
sections of the printed document. The second method is by keyword search. This method
is analogous to looking in the Index sections of the printed manual. These access methods
are described in Section 8.17.3.2 [ref-olh-hlp-sum], page 306.

8.17.2 Help Files

8.17.2.1 Overview

The help system is largely based on the Info file format, which GNU Emacs uses for on-
line documentation. When accessed by following a menu entry or a cross reference, the
help system will locate the corresponding Info node. When accessed by keyword search, an
ad-hoc menu will be created instead.

If you are running outside Emacs, the information will be displayed on the terminal, con-
trolled by the environment variable PAGER.

If you are running under Emacs, Emacs will try to use the Info subsystem as far as possible.
If Emacs is unable to find the Info nodes requested, or when displaying an ad-hoc menu,
it displays the information in a buffer where specialized key bindings apply as summarized
in Section 8.17.3 [ref-olh-hlp], page 306. The most important key binding is ‘?’, which will
display the appropriate key-binding summary. After typing a question mark, typing a ‘b’
will get you back to where you were.

Chapter 8: The Prolog Language 305

The organization of the help files corresponds directly to that of the printed manual. Files
that do not begin with a menu correspond to leaf nodes of the manual tree; that is, to sec-
tions of the manual that have no subdivisions. Files that do begin with a menu correspond
to the non-leaf nodes of the tree.

8.17.2.2 Menus

A menu consists of a numbered sequence of choices. Each choice has the form

* {manual(Tag)} Subject

If you are running Prolog without Emacs, you can select a menu choice by typing

| ?- manual(Tag).

where Tag is exactly as shown in the menu. Tags are in general of the form Chapter-Section-
Subsection-. . . where Chapter, Section, and Subsection are abbreviations of a section in
the printed manual.

Under Emacs: you will find that a special mode is entered when you are looking at a menu.
See Section 8.17.3 [ref-olh-hlp], page 306, for more information.

8.17.2.3 Cross-References

Occasionally you will see a cross-reference in the text. Cross-references look like (A) in the
printed manual, and like (B) in the on-line manual:

...see also Section 1.3 [int-dir], page 11 (A)

and

...see also {manual(int-dir)} (B)

If you are not using Emacs, then you should type the following goal in order to follow this
cross-reference.

| ?- manual(int-dir).

Under Emacs: There is a more convenient way to do this: type ‘x’ to move the cursor to
the front of the cross-reference, then type 〈RET〉 to display the cross-referenced text.

8.17.2.4 Displaying help files

The help-system always writes its output to current_output instead of user_output. This
makes it possible to redirect information produced by help/[0,1] or manual/[0,1] to a

306 Quintus Prolog

file. For example, to save the documentation on assert/1 in a file called ‘assert.doc’,
type:

?- tell(’assert.doc’), help(assert), told.

Furthermore, if the current_output is the same as user_output (i.e. the terminal), then
the environment variable PAGER is used, if set, to display the information. If PAGER is not
set, the default pager, more, is used.

Under Emacs: This strategy is not applicable in the Emacs interface, which provides its
own way of saving displayed text, nor in QUI.

8.17.3 Emacs Commands for Using the Help System

8.17.3.1 Emacs Commands

The keys available when viewing a menu file of the help system under Emacs are:

q Quit the help system.

b

l Move Back to the previous help file viewed.

u Move Up to the parent menu in the manual hierarchy.

? Display this manual page.

x Move to the next menu entry.

X Move to the previous menu entry.

〈RET〉 Select the current menu entry.

〈ESC〉 z Scroll the menu one line up.

〈ESC〉 ^z Scroll the menu one line down.

〈SPC〉 Scroll the menu one page up.

〈BSP〉 Scroll the menu one page down.

< Go to the beginning of the buffer.

> Go to the end of the buffer.

Please note: If you are viewing this under Emacs, type b to return to where
you just were.

8.17.3.2 Predicate Summary

help prints the top level menu of the manual set

Chapter 8: The Prolog Language 307

help(Topic)
gives index access to the on-line manual

manual accesses the top level of the on-line manual

manual(X)
accesses the manual section specified by X

user_help
hook; called by help/0

8.18 Access to the Operating System

8.18.1 Overview

The predicate described here, unix/1, provides the most commonly needed access to the
operating system. This minor extension to the Prolog system should be sufficient for most of
your needs. However, you can also extend the Prolog system with additional C code, includ-
ing system calls, using the foreign function interface (see Section 10.3 [fli-p2f], page 375).

The reason for channeling all the interaction with the operating system through a single
built-in predicate, rather than having separate predicates for each function, is simply to
localize the system dependencies. Admittedly, this makes for more cumbersome commands,
so you may wish to put some clauses such as these in your ‘prolog.ini’ file:

cd :- unix(cd).
cd(X) :- unix(cd(X)).

Initialization files are discussed in Section 8.3 [ref-pro], page 186.

8.18.2 Executing Commands from Prolog

8.18.2.1 Changing the Working Directory

unix(cd(+Path)) changes the working directory of Prolog (and of Emacs, if running under
the editor interface) to that specified by Path, which should be an atom corresponding to a
legal directory. If Path is not specified, unix(cd) changes the working directory of Prolog
(and of Emacs if running under the editor interface) to your home directory.

Note that the 〈ESC〉 x cd Path and 〈ESC〉 x cd commands under Emacs have the same effect
as this, except that Emacs also provides filename completion.

308 Quintus Prolog

8.18.2.2 Other Commands

To spawn a command interpreter and execute a command use unix(shell(+Command)).
The reference page for unix/1 contains examples. If Command is an atom, a new shell
process is invoked, and Command is passed to it for execution as a shell command. Un-
der UNIX, the shell invoked depends on your SHELL environment variable. Under Win-
dows, the default shell is used, as determined by the system() C library function. If the
shell returns with a non-zero result (for example, because the command was not found),
unix(shell(Command)) simply fails.

Similarly, a new standard shell process can be invoked by calling unix(system(+Command
)). The standard shell is sh(1) under UNIX and as determined by the system() C library
function under Windows.

8.18.2.3 Spawning an Interactive Shell

unix(shell) starts up an interactive shell. Under UNIX, the shell run depends on your
SHELL environment variable. You can exit from the shell by typing ^d (or your end-of-file
character) unless under Emacs, in which case you should type ^x ^d. The Prolog idiom
end_of_file. will not work in this context. If ignoreeof is set (for example, in your
‘.cshrc’ file), ^d may not work (setting ignoreeof turns off ^d). In this case, you may
type exit to the shell to kill it. The call to unix(shell) fails if a non-zero result is returned
by the shell.

Please note: Under UNIX, invoking the predicate unix(shell) when your
SHELL environment variable is set to a non-standard shell (not csh(1) or sh(1))
may cause echoing problems under the Emacs interface due to the stty settings
of the non-standard shell. If a non-standard shell proves to be a problem, an
alternative is to use either unix(shell(sh)) or unix(shell(csh)) to invoke
the standard shell, respectively.

8.18.3 Accessing Command Line Arguments

To return the arguments that were typed on the command line following the command that
invoked the current Prolog saved state (see Section 8.3 [ref-pro], page 186) use either of the
following:

| ?- unix(argv(ArgList)). % mnemonic; ‘vector’, ‘value’

| ?- unix(args(ArgList)). % mnemonic; ‘string’

Chapter 8: The Prolog Language 309

8.18.3.1 Arguments as Numbers or as Strings

The difference between using ‘argv’ and ‘args’ is evident when Prolog is invoked with
numbers as arguments.

The objects returned by unix(argv(_)) are Prolog objects; that is, if the command line
argument is a number, then it will be returned as a number. Thus:

% prolog 1

.

.

.
| ?- unix(argv([1])).

yes
| ?- unix(argv([’1’])).

no
| ?- unix(args([’1’])).

yes

% prolog 1 6.999999

.

.

.

| ?- unix(argv(X)).

X = [1, 6.9999999E+00]

| ?- unix(args(X)).

X = [’1’, ’6.999999’]

So if your program treats the command line argument as a number, use the form with
‘argv’, but if it is to be treated as a string, use ‘args’. For example if the program is called
with a number and performs some arithmetic operation on the argument then displays the
result, use ‘argv’.

310 Quintus Prolog

| ?- [user].

| runtime_entry(start) :-

unix(argv([A])),

Y is A+1,
display(Y).

| ^D
% user compiled in module user, 0.083 sec 8 bytes

yes
| ?- runtime_entry(start).

46
yes

8.18.3.2 Accessing Prolog’s Arguments from C

The command line arguments passed to Prolog can be accessed from C through QP_argv
and QP_argc. These are similar to argc and argv of the main() API, except that they only
store Prolog’s arguments. In ‘<quintus/quintus.h>’ they are classed as

extern int QP_argc
extern char **QP_argv

8.18.4 Predicate Summary

• unix/1

• QP_initialize()

• toplevel

8.18.5 Library Support

system/1 — from library(strings)

8.19 Errors and Exceptions

8.19.1 Overview

Whenever the Prolog system encounters a situation where it cannot continue execution,
it raises an exception. For example, if a built-in predicate detects an argument of the
wrong type, it raises a type_error exception. The manual page description of each built-in
predicate lists the kinds of exceptions that can be raised by that built-in predicate.

Chapter 8: The Prolog Language 311

The default effect of raising an exception is to terminate the current computation and then
print an error message. After the error message, you are back at Prolog’s top level. For
example, if the goal

X is a/2

is executed somewhere in a program you get

! Type error in argument 2 of is/2
! number expected, but a found
! goal: A is a/2

| ?-

Particular things to notice in this message are:

‘! ’ This character indicates that this is an error message rather than a warning2

or informational message.

‘Type Error’
This is the exception class. Every exception raised by the system is categorized
into one of a small number of classes. The classes are listed in Section 8.19.4
[ref-ere-err], page 313.

‘goal:’ The goal that caused the exception to be raised.

8.19.2 Raising Exceptions

You can raise exceptions from your own code using the built-in predicate

raise_exception(+ExceptionCode)

The argument to this predicate is the exception code; it is an arbitrary non-variable term of
which the principal functor indicates the exception class. You can use the same exception
classes as the system (see Section 8.19.4 [ref-ere-err], page 313), or you can use your own
exception classes.

Error messages like the one shown above are printed using the built-in predicate print_
message/2. One of the arguments to print_message is the exception code. print_message
can be extended, as described in Section 8.20 [ref-msg], page 325, so that you can have
appropriate error messages printed corresponding to your own exception classes.

2 The difference between an error (including exceptions) and a warning: A warning is issued if Prolog
detects a situation that is likely to cause problems, though it is possible that you intended it. An error,
however, indicates that Prolog recognizes a situation where it cannot continue.

312 Quintus Prolog

8.19.3 Handling Exceptions

It is possible to protect a part of a program against abrupt termination in the event of an
exception. There are two ways to do this:

• Trap exceptions to a particular goal by calling on_exception/3 as described in Sec-
tion 8.19.3.1 [ref-ere-hex-pgo], page 312.

• Handle undefined predicates or subsets of them through the hook predicate unknown_
predicate_handler/3; see Section 8.19.3.2 [ref-ere-hex-hup], page 313.

8.19.3.1 Protecting a Particular Goal

The built-in predicate on_exception/3 enables you to handle exceptions to a specific goal:

on_exception(?ExceptionCode, +ProtectedGoal, +Handler)

ProtectedGoal is executed. If all goes well, it will behave just as if you had written Protect-
edGoal without the on_exception/3 wrapper. If an exception is raised while ProtectedGoal
is running, Prolog will abandon ProtectedGoal entirely. Any bindings made by Protected-
Goal will be undone, just as if it had failed. Side-effects, such as asserts and retracts, are
not undone, just as they are not undone when a goal fails. After undoing the bindings,
Prolog tries to unify the exception code raised with the ExceptionCode argument. If this
unification succeeds, Handler will be executed as if you had written

ExceptionCode=<the actual exception code>,
Handler

If this unification fails, Prolog will keep searching up the ancestor list looking for another
exception handler. If it reaches Prolog’s top level (or a break level) without having found a
call to on_exception/3 with a matching ExceptionCode, an appropriate error message is
printed (using print_message/2).

ProtectedGoal need not be determinate. That is, backtracking into ProtectedGoal is possi-
ble, and the exception handler becomes reactivated in this case. However, if ProtectedGoal
is determinate, then the call to on_exception/3 is also determinate.

Setting up an exception handler with on_exception/3 is cheap provided that ProtectedGoal
is an ordinary goal. Some efficiency is lost, in the current implementation, if ProtectedGoal
is of the form (Goal1,Goal2) or (Goal1;Goal2).

The ProtectedGoal is logically inside the on_exception/3 form, but the Handler is not. If
an exception is raised inside the Handler, this on_exception/3 form will not be reactivated.
If you want an exception handler that protects itself, you have to program it, perhaps like
this:

Chapter 8: The Prolog Language 313

recursive_on_exception_handler(Err, Goal, Handler) :-
on_exception(Err, Goal,

recursive_on_exception_handler(Err, Handler, Handler)).

8.19.3.2 Handling Unknown Predicates

Users can write a handler for the specific exception occurring when an undefined predicate is
called by defining clauses for the hook predicate unknown_predicate_handler/3. This can
be thought of as a “global” exception handler for this particular exception, because unlike
on_exception/3, its effect is not limited to a particular goal. Furthermore, the exception
is handled at the point where the undefined predicate is called.

The handler can be written to apply to all unknown predicates, or to a class of them. The
reference page contains an example of constraining the handler to certain predicates.

8.19.4 Error Classes

Exceptions raised by the Prolog system are called errors. The set of exception classes used
by the system has been kept small. Here is a complete list:

Instantiation Error
An input argument is insufficiently instantiated.

Type Error
An input argument is of the type.

Domain Error
An input argument is illegal but of the right type.

Range Error
A value specified for an output argument is illegal.

Representation Error
A computed value cannot be represented.

Existence Error
Something does not exist.

Permission Error
Specified operation is not permitted.

Context Error
Specified operation is not permitted in this context.

Consistency Error
Two otherwise correct values are inconsistent with each other.

Syntax Error
Error in reading a term.

314 Quintus Prolog

Resource Error
Some resource limit has been exceeded.

System Error
An error detected by the operating system.

The exception codes corresponding to these classes are:

• instantiation_error(Goal, ArgNo)

• type_error(Goal, ArgNo, TypeName, Culprit)

• domain_error(Goal, ArgNo, DomainName, Culprit, Message)

• range_error(Goal, ArgNo, TypeName, Culprit)

• representation_error(Goal, ArgNo, Message)

• existence_error(Goal, ArgNo, ObjectType, Culprit, Message)

• permission_error(Goal, Operation, ObjectType, Culprit, Message)

• context_error(Goal, ContextType, CommandType)

• consistency_error(Goal, Culprit1, Culprit2, Message)

• syntax_error(Goal, Position, Message, Left, Right)

• resource_error(Goal, Resource, Message)

• system_error(Message)

Most exception codes include a copy of the Goal that raised the exception.

In general, built-in predicates that cause side-effects, such as the opening of a stream or
asserting a clause into the Prolog database, attempt to do all error checking before the
side-effect is performed. Unless otherwise indicated in the documentation for a particular
predicate or error class, it should be assumed that goals that raise exceptions have not
performed any side-effect.

8.19.4.1 Instantiation Errors

An instantiation error occurs when a predicate or command is called with one of its input
arguments insufficiently instantiated.

The exception code associated with an instantiation error is

instantiation_error(Goal, ArgNo)

ArgNo is a non-negative integer indicating which argument caused the problem. ArgNo=0
means that the problem could not be localized to a single argument. , atom_chars/2,
functor/3 etc., which allow alternative instantiation patterns. Maybe this will be fixed
but lets leave it vague for now. -DLB}

Note that the ArgNoth argument of Goal might well be a non-variable: the error is in that
argument. For example, the goal

Chapter 8: The Prolog Language 315

X is Y+1

where Y is uninstantiated raises the exception

instantiation_error(_2298 is _2301+1,2)

because the second argument to is/2 contains a variable.

8.19.4.2 Type Errors

A type error occurs when an input argument is of the wrong type. In general, a type is
taken to be a class of terms for which there exists a unary type test predicate. Some types
are built-in, such as atom/1 and integer/1. Some are defined in library(types), such as
chars/1.

The type of a term is the sort of thing you can tell just by looking at it, without checking
to see how big it is. So “integer” is a type, but “non-negative integer” is not, and “atom”
is a type, but “atom with 5 letters in its name” and “atom starting with ‘x’” are not.

The point of a type error is that you have obviously passed the wrong sort of argument
to a command; perhaps you have switched two arguments, or perhaps you have called the
wrong predicate, but it isn’t a subtle matter of being off by one.

Most built-in predicates check all their input arguments for type errors.

The exception code associated with a type error is

type_error(Goal, ArgNo, TypeName, Culprit)

ArgNo Culprit occurs somewhere in the ArgNoth argument of Goal.

TypeName
says what sort of term was expected; it should be the name of a unary predicate
that is true of whatever terms would not provoke a type error.
Some TypeNames recognized by the system include:
• 0 — No type name specified
• atom

• atomic

• callable

• db_reference

• integer

• number

Culprit is the actual term being complained about: TypeName(Culprit) should be false.

For example, suppose we had a predicate

316 Quintus Prolog

date_plus(NumberOfDays, Date0, Date)

true when Date0 and Date were date(Y,M,D) records and NumberOfDays was the number
of days between those two dates. You might see an error term such as

type_error(/* Goal */ date_plus(27, date(18,mar,11), _235),
/* Argno */ 2,
/* TypeName */ integer,
/* Culprit */ mar

8.19.4.3 Domain Errors

A domain error occurs when an input argument is of the right type but there is something
wrong with its value. For example, the second argument to open/3 is supposed to be an
atom that represents a valid mode for opening a file, such as read or write. If a number
or a compound term is given instead, that is a type error. If an atom is given that is not a
valid mode, that is a domain error.

The main reason that we distinguish between type errors and domain errors is that they
usually represent different sorts of mistake in your program. A type error usually indicates
that you have passed the wrong argument to a command, whereas a domain error usually
indicates that you passed the argument you meant to check, but you hadn’t checked it
enough.

The exception code associated with a domain error is

domain_error(Goal, ArgNo, DomainName, Culprit, Message)

The arguments correspond to those of the exception code for a type error, except that
DomainName is not in general the name of a unary predicate: it needn’t even be an atom.
For example, if some command requires an argument to be an integer in the range 1..99, it
might use between(1,99) as the DomainName. With respect to the date_plus example
under Type Errors, if the month had been given as 13 it would have passed the type test
but would raise a domain error.

For example, the goal

open(somefile,rread,S)

raises the exception

domain_error(open(somefile,rread,_2490),2,’i/o mode’,rread,’’)

The Message argument is used to provide extra information about the problem.

Some DomainNames recognized by the system include:

• 0 — no domain name specified

Chapter 8: The Prolog Language 317

• atom

• ’atom or list’

• atomic

• between(L,H) — ’something between L and H

• built_in

• callable

• char

• character

• compiled

• directory

• declaration

• db_reference

• foreign

• file

• flag

• imported_predicate

• integer

• interpreted

• list

• module

• number

• one_of(List) — a member of the set List

• pair

• predicate_specification

• procedure

• stream

• term

• value(X) — the value X

• clause

8.19.4.4 Range Errors

A range error occurs when an output argument was supplied with an illegal value. This is
similar to a type error or a domain error, except that it is a hint that a variable would be a
good thing to supply instead; type and domain errors are associated with input arguments,
where a variable would usually not be a good idea.

The exception code associated with a range error is

318 Quintus Prolog

range_error(Goal, ArgNo, TypeName, Culprit)

This has the same arguments as a type error.

Most built-in predicates do not raise any range errors. Instead they fail quietly when an
output argument fails to unify.

8.19.4.5 Representation Errors

A representation error occurs when your program calls for the computation of some well-
defined value that cannot be represented.

Most representation errors are some sort of overflow:

functor(T, f, 1000) % maximum arity is 255
X is 16’7fffffff, Y is X+1 % 32-bit signed integers
atom_chars(X, L) % if length of L > 1024

are all representation errors. Floating-point overflow is a representation error.

The exception code for a representation error is

representation_error(Goal, ArgNo, Message)

ArgNo identifies the argument of the goal that cannot be constructed.

Message further classifies the problem. A message of 0 or ’’ provides no further infor-
mation.

8.19.4.6 Existence Errors

An existence error occurs when a predicate attempts to access something that does not
exist. For example, trying to compile a file that does not exist, erasing a database reference
that has already been erased. A less obvious example: reading past the end of file marker
in a stream is regarded as asking for an object (the next character) that does not exist.

The exception code associated with an existence error is

existence_error(Goal, ArgNo, ObjectType, Culprit, Message)

ArgNo index of argument of Goal where Culprit appears

ObjectType
expected type of non-existent object

Culprit name for the non-existent object

Message the constant 0 or ’’, or

Chapter 8: The Prolog Language 319

some additional information provided by the operating system or other support
system indicating why Culprit is thought not to exist.

For example, ‘see(’../brother/niece’)’ might raise the exception

existence_error(see(’../brother/niece’),
1, file, ’/usr/stella/parent/brother/niece’,
errno(20))

where the Message encodes the system error ENOTDIR (some component of the path is not
a directory).

As a general rule, if Culprit was provided in the goal as some sort of context-sensitive name,
the Prolog system will try to resolve it to an absolute name, as shown here, so that you can
see whether the problem is just that the name was resolved in the wrong context.

8.19.4.7 Permission Errors

A permission error occurs when an operation is attempted that is among the kinds of
operation that the system is in general capable of performing, and among the kinds that
you are in general allowed to request, but this particular time it isn’t permitted. Usually,
the reason for a permission error is that the owner of one of the objects has requested that
the object be protected.

An example of this inside Prolog is attempting to change a predicate that has not been
declared :-dynamic.

File system protection is the main cause of such errors.

The exception code associated with a permission error is

permission_error(Goal, Operation, ObjectType, Culprit, Message)

Operation operation attempted; Operation exists but is not permitted with Culprit.
Some Operations recognized by the system include:
• 0 — no operation specified
• ’find absolute path of’

• ’get the time stamp of’

• ’set prompt on’

• ’use close(filename) on’

• abolish

• change

• check_advice

• clausesaccess clauses of

320 Quintus Prolog

• close

• create

• export

• flush

• load

• nospy

• nocheck_advice

• open

• position

• read

• redefine

• save

• spy

• write

ObjectType
Culprit’s type.

Culprit name of protected object.

Message provides such operating-system-specific additional information as may be avail-
able. A message of 0 or ’’ provides no further information.

8.19.4.8 Context Errors

A context error occurs when a goal or declaration appears in the wrong place. There may
or may not be anything wrong with the goal or declaration as such; the point is that it is
out of place. Calling multifile/1 as a goal is a context error, as is having :-module/2
anywhere but as the first term in a source file.

The exception code associated with a context error is

context_error(Goal, ContextType, CommandType)

ContextType
the context in which the command was attempted.
Some ContextTypes recognized by the system include:
• ’pseudo-file ’’user’’’ — for pseudo-file ’user’

• if — inside an if
• bof — at beginning of file
• bom — at beginning of module
• query — in query
• before — before

Chapter 8: The Prolog Language 321

• ’after clauses’ — after clauses
• ’not multifile and defined’ — for defined, non-multifile procedure
• ’static multifile’ — for static multifile procedure.
• language(L) — for language L.
• file_load — during load of file(s).
• started — started up
• notoplevel — when no top level

CommandType
the type of command that was attempted.
Some CommandTypes recognized by the system include:
• 0 — no commandtype specified
• cut

• clause

• declaration

• ’meta_predicate declaration’

• use_module

• ’multifile assert’

• ’module declaration’

• ’dynamic declaration’

• meta_predicate(M) — meta predicate declaration for M

• argspec(A) — Invalid argument specification A

• foreign_file(File) — foreign_file/2 declaration for File

• foreign(F) — foreign/3 declaration for F

• (initialization) — initialization hook
• abort — call to abort/0

8.19.4.9 Consistency Errors

A consistency error occurs when two otherwise valid values or operations have been specified
that are inconsistent with each other. For example, if two modules each import the same
predicate from the other, that is a consistency error.

The exception code associated with a consistency error is

consistency_error(Goal, Culprit1, Culprit2, Message)

Culprit1 One of the conflicting values/operations.

Culprit2 The other conflicting value/operation..

Message Additional information, or 0, or ’’.

322 Quintus Prolog

8.19.4.10 Syntax Errors

A syntax error occurs when data are read from some external source but have an improper
format or cannot be processed for some other reason. This category mainly applies to
read/1 and its variants.

The exception code associated with a syntax error is

syntax_error(Goal, Position, Message, Left, Right)

where Goal is the goal in question, Position identifies the position in the stream where
reading started, and Message describes the error. Left and right are lists of tokens before
and after the error, respectively.

Note that the Position is where reading started, not where the error is.

read/1 does two things. First, it reads a sequence of characters from the current input
stream up to and including a clause terminator, or the end of file marker, whichever comes
first. Then it attempts to parse the sequence of characters as a Prolog term. If the parse
is unsuccessful, a syntax error occurs. Thus, in the case of syntax errors, read/1 disobeys
the normal rule that predicates should detect and report errors before they perform any
side-effects, because the side-effect of reading the characters has been done.

A syntax error does not necessarily cause an exception to be raised. The behavior can be
controlled via a Prolog flag as follows:

prolog_flag(syntax_errors, quiet)
When a syntax error is detected, nothing is printed, and read/1 just quietly
fails.

prolog_flag(syntax_errors, dec10)
This provides compatibility with DEC-10 Prolog and earlier versions of Quintus
Prolog: when a syntax error is detected, a syntax error message is printed on
user_error, and the read is repeated. This is the default for the sake of
compatibility with earlier releases.

prolog_flag(syntax_errors, fail)
This provides compatibility with C Prolog. When a syntax error is detected, a
syntax error message is printed on user_error, and the read then fails.

prolog_flag(syntax_errors, error)
When a syntax error is detected, an exception is raised.

8.19.4.11 Resource Errors

A resource error occurs when some resource runs out. For example, you can run out of vir-
tual memory, or you can exceed the operating system limit on the number of simultaneously
open files.

Chapter 8: The Prolog Language 323

Often a resource error arises because of a programming mistake: for example, you may
exceed the maximum number of open files because your program doesn’t close files when
it has finished with them. Or, you may run out of virtual memory because you have a
non-terminating recursion in your program.

The exception code for a resource error is

resource_error(Goal, Resource, Message)

Goal A copy of the goal, or 0 if no goal was responsible; for example there is no
particular goal to blame if you run out of virtual memory.

Resource identifies the resource that was exhausted.
Some Resources recognized by the system include:
• 0 — No resource specified
• memory — out of memory
• ’too many open files’

Message an operating-system-specific message. Usually it will be errno(ErrNo).

8.19.4.12 System Errors

System errors are problems that the operating system notices (or causes). Note that many
of the exception indications returned by the operating system (such as “file does not exist”)
are mapped to Prolog exceptions; it is only really unexpected things that show up as system
errors.

The exception code for a system error is

system_error(Message)

where Message is not further specified.

8.19.5 An Example

Suppose you want a routine that is given a filename and a prompt string. This routine is
to open the file if it can; otherwise it is to prompt the user for a replacement name. If the
user enters an empty name, it is to fail. Otherwise, it is to keep asking the user for a name
until something works, and then it is to return the stream that was opened. (There is no
need to return the file name that was finally used. We can get it from the stream.)

324 Quintus Prolog

:- use_module(library(prompt), [
prompted_line/2

]).

open_output(FileName, Prompt, Stream) :-
on_exception(Error,

open(FileName, write, Stream),
(file_error(Error) ->

print_message(warning, Error),
retry_open_output(Prompt, Stream)

; raise_exception(Error)
)).

file_error(domain_error(open(_,_,_), 1, _, _, _)).
file_error(existence_error(open(_,_,_), 1, _, _, _)).
file_error(permission_error(open(_,_,_), _, _, _, _)).

retry_open_output(Prompt, Stream) :-
prompted_line(Prompt, Chars),
atom_chars(FileName, Chars),
FileName \== ’’,
open_output(FileName, Prompt, Stream).

What this example does not catch is as interesting as what it does. All instantiation errors,
type errors, context errors, and range errors are re-raised, as they represent errors in the
program.

As the previous example shows, you generally do not want to catch all exceptions that a
particular goal might raise.

8.19.6 Exceptions and Critical Regions

The point of critical regions in your code is that sometimes you have data-base updates or
other operations that, once started, must be completed in order to avoid an inconsistent
state. In particular, such operations should not be interrupted by a ^C from the keyboard.

In releases of Quintus Prolog prior to release 3.0, library(critical) was provided to
allow critical regions to be specified using the predicates begin_critical/0 and end_
critical/0. These predicates are still provided, but they should be regarded as obsolete
since they do not interact well with exception handling. An exception occurring in between
the begin_critical and the end_critical could cause two problems:

1. the Prolog database could be left in an inconsistent state, and
2. the critical region would never be exited, so interrupts would be left disabled indefi-

nitely.

Chapter 8: The Prolog Language 325

To avoid these problems, you should use the new predicates

critical(Goal)
critical_on_exception(ErrorCode, Goal, Handler)

which library(critical) now provides.

critical/1 runs the specified goal inside a critical region. It solves (2) by catching any
exceptions that are raised and taking care to close the critical region before re-raising the
exception.

critical_on_exception/3 allows you to solve (1) by specifying appropriate clean-up ac-
tions in Handler. If an exception occurs during Goal, and the exception code unifies with
ErrorCode, critical_on_exception/3 acts as if you had written

critical(Handler)

instead. That is, the Handler will still be inside the critical region, and only the first solution
it returns will be taken.

These forms also have the effect of committing to the first solution of Goal. Since the point
of a critical region is to ensure that some operation with side-effects is completed, Goal
should be determinate anyway, so this should be no problem.

8.19.7 Summary of Predicates and Functions

• critical/1

• critical_on_exception/3

• on_exception/3

• raise_exception/3

• QP_error_message()

• QP_exception_term()

• QP_perror()

• print_message/2

8.19.8 Summary of Relevant Libraries

• critical

8.20 Messages

326 Quintus Prolog

8.20.1 Overview

Prolog responds to many situations by displaying messages. These messages fall into five
categories: error, warning, informational, help and silent. Here are examples of a messages
of each category printed without customization:

Error message: (1)

| ?- X is apples + oranges.

! Type error in argument 2 of is/2
! number expected, but apples found
! goal: _2277 is apples+oranges

Informational message: (2)

| ?- debug.

% The debugger will first leap -- showing spypoints (debug)

Warning message: (3)

| ?- spy g.

* There are no predicates with the name g in module user

Help messages (response to a user’s request for information): (4)

| ?- version.

Quintus Prolog Release 3.5 (Sun 4, SunOS 5.5)

Silent messages (nothing is printed for these message, but the users can define a message
hook to catch these messages): (5)

There is a “silent” message every time a top level goal is executed.

Note that each type of message has a characteristic prefix:

‘!’ error

‘%’ informational

‘*’ warning

(none) help

(none) silent

The display of messages such as these can be customized in various ways, including trans-
lation into other languages to facilitate internationalization of applications, adding new
types of messages, most notably exception messages, changing the text or appearance of
the messages as displayed.

Chapter 8: The Prolog Language 327

Furthermore it is possible to extend the programming environment by specifying goals to be
called when specified events occur. These goals would override the straightforward display
of message text. A major type of application here is graphical user interfaces.

Finally, you can control how the system asks for and interprets responses from users.

8.20.2 Implementation: Term-Based Messages

The message facility design is based on transforming message terms to lists of format com-
mands according to definite clause grammars. The format commands are processed by
print_message_lines/3 to become the message text. For information about format/2,
see Section 8.7.6.4 [ref-iou-cou-fou], page 223 in the input/output section of this manual.
Definite clause grammars are described in Section 8.16 [ref-gru], page 298.

This design has the advantage of being able to utilize a relatively small list of message terms,
each of which generates a set of related messages, and it gives the translator or other user
explicit control over the order in which variables are referred to in the translated/customized
message.

In release 3, all output from Prolog is represented internally as terms, called message terms.
These terms consist of a functor that names the message, and arguments that give informa-
tion about the particulars. For example, these message terms underlie the messages given
in the overview:

type_error(is(_, number, apples + oranges), 2, number, apples) (1)

debug_message(leap) (2)

advice(no_preds, ’’, predicate_family(user:f)) (3)

version(3.5, ’Sun-4, SunOS 5.5’) (4)

The message generator is defined in the file:

messages(language(’QU_messages.pl’))

It associates such message terms with the corresponding messages. This is accomplished
by a series of default clauses for generate_message/3 within the module. This section will
explain and exemplify various ways available to customize these messages.

In addition to the message generator, the message facility consists of a set of built-in pred-
icates & hooks. Once an event is correlated with a call to print_message/2, either by
Quintus Prolog or by user code, these procedures can be used as shown in the following
figure to customize system messages, or use the underlying message terms as triggers for
other events.

328 Quintus Prolog

Message Facility Control Flow

The heavy arrows in the diagram trace the default path of a message term through the
message generator.

To print a message, call print_message/2. This may be done explicitly in your code.
Often, however, it is called by the system. For example, an unhandled exception message
E will always be captured at the Prolog top level, where it calls print_message(error, E

).

Chapter 8: The Prolog Language 329

Prolog first tries calling user:generate_message_hook/3 to transform a message term into
textual form. If that fails, it then tries ’QU_messages’:generate_message/3 instead. (If
that also fails the message term will simply be written out as if by write/1.) There is
one exception to this rule. Messages that fall into the silent category do not go through
generate_message_hook/3.

Once the text of the message, represented as a list of format commands, is decided, Pro-
log calls user:message_hook/3. If this succeeds, nothing else is done; otherwise, print_
message_lines/3 is called to print the message. silent messages just go through message_
hook/3 but even if it does not succeed, it is not passed to print_message_lines/3.

8.20.3 Examples of Using the Message Facility

In the Overview we discussed several likely ways this facility might be used. The ways to
accomplish such goals are discussed in the following sections. To sum up, here are some
motivations for customizing messages, with an indication of which procedures should be
used:

1. Add a few new types of messages to the ones supplied; for example, a new exception
type. (Define user:generate_message_hook/3)

2. Change the text of a few existing messages. (Define user:generate_message_hook/3)
3. Customize default ways of printing existing message text, e.g. changing the default pre-

fixes; (use message_hook/3 to override the defaults given by print_message_lines/3).
4. “you name it” as in Figure Section 8.2.2.2 [ref-sem-typ-rpr], page 181.

You can specify an action to replace or augment the default action by defining clauses
for user:message_hook/3. Examples:
• For warning messages, blink a light.
• In a graphical user interface, let warning messages cause a window of a certain

design to pop up and display the message.
• Turn off all informational messages.
• Send all error messages to a certain file.

5. Control how the system asks for and interprets responses from users. (query_hook/6)
6. Translate all the existing messages, with or without customizations, to another lan-

guage. This includes queries and user responses. (redefine generate_message/3; see
Section 8.20.4 [ref-msg-ime], page 332)

8.20.3.1 Adding messages

To add new messages, define clauses for generate_message_hook/3. For instance, to create
a new message term indicating that the world is round, one could choose the message term
round_world and provide the definition:

generate_message_hook(round_world) --> [’The world is round.’-[],nl]

330 Quintus Prolog

Please note: The atom nl is used for breaking the message into lines. Using the
format specification ‘~n’ (new-line) is strongly discouraged, since applications
typically require explicit control over new-lines.

Though this was not obvious from the round_world example, message terms parse to a list
of Control-Args pairs, where Control is a format specification string, and Args is the list of
arguments for the given Control string. To illustrate, if we wanted to say that the world
was flat and wet, we could write

user:generate_message_hook(world(X,Y))-->
[’The world is ~w and ~w.’-[X,Y],nl].

?- print_message(help,world(flat,wet)).

Here is an example of how one might implement a new exception, bad_font, when the File
associated with that font doesn’t exist.

check_font(Font,File):-
(file_exists(File)->true
; raise_exception(bad_font(Font, File))
).

generate_message_hook(bad_font(Font,File)) -->
[’Can’’t find the file ~w corresponding to font ~w’-

[File, Font],nl]).

Instead of using the message facility, you could use an existing error message in this way:

check_font1(Font,File):-
(file_exists(File)->true
; raise_exception(existence_error(check_font1(Font,File),2,

file, File,0))
).

8.20.3.2 Changing message text

Similarly, the text of an existing message may be changed by defining generate_message_
hook/3. For example, the following definition will change the text of a default message (see
messages(language(’QU_messages.pl’)) for original text).

user:generate_message_hook(no_source(Name, Arity))-->
[’~q/~d has no source file’ - [Name, Arity], nl].

Chapter 8: The Prolog Language 331

8.20.3.3 Intercepting the printing of a message

After a message is parsed, but before the message is printed out, print_message/2 calls

user:message_hook(+Message,+Severity,+Lines)

where Lines is of the form [Line1, Line2, . . .], where each Linei is of the form [Control 1-
Args 1,Control 2-Args 2, . . .].

In our example,

message_hook(world(flat,wet),error,
[[’The world is ~w and ~w.’-[flat,wet]]])

would be called.

If the call to user:message_hook/3 succeeds, print_message/2 succeeds without further
processing. Otherwise, the built-in message display is used.

An example of using a hook to redirect output can be seen in the reference page for print_
message_lines/3.

It is often useful for a message hook to execute some code for its effects, and then fail.
This allows other message hooks a chance to run, and allows the printing of the message to
proceed normally.

For example, we might want to ring a bell when printing an error message, and print a
count of error messages seen so far. This could be done as follows:

:- dynamic error_count/1.

user:message_hook(_, error, _) :-
put(7), % ASCII 7 rings bell

(error_count(N) -> true
; N = 1
),
format(’! Error ~w:~n’, [N]),
N1 is N+1,
retractall(error_count(_)),
assert(error_count(N1)),
fail.

8.20.3.4 Interaction

Prolog’s default ways of eliciting keyboard input are enumerated in the clauses for query_
abbreviation/3 in messages(language(’QU_messages.pl’)). These clauses specify valid
abbreviations for a given key word. For example,

332 Quintus Prolog

query_abbreviation(yes_or_no,’(y/n)’,[yes-"yY",no-"nN"]).

A French translator might decide that the letters ‘O’ and ‘o’ are reasonable abbreviations
for ‘oui’ (yes), and therefore write ‘yes-"oO"’. See the reference page for more information
on query_abbreviation/3.

The query hook provides a means of overriding the default interaction. Whenever Prolog
attempts to solicit input from the user, it first looks to see if the application wants to
take control of the query by calling user:query_hook/6 (see the above figure). The various
queries are listed in the manual page for query_hook/6. For example, if Prolog is looking
for a yes-no response, as in the toplevel, this request for input can be captured as follows,
where my_yes_no/2 binds Answer to yes or no:

query_hook(toplevel,_,_,_,_,Answer):-
my_yes_no(’Done?’,Answer).

8.20.4 Internationalization of Quintus Prolog messages

By default, generate_message/3 sends the message term through the English message
generator, messages(’english/QU_messages’). The definite clause grammar (DCG) rules
in this file transform Prolog message terms into English messages. In addition, the message
generator is designed to allow internationalization of the messages printed by the Quintus
Prolog development system. You can translate the output of the rules in the message
generator into any natural language. To do this, you would translate part of the right hand
side of each rule into the target language, e.g. French, to produce messages(’french/QU_
messages’), which generates French messages from the same message terms. This section
explains how to go about providing a translation.

The default ‘QU_messages.pl’ is installed as:

quintus-directory/generic/qplib3.5/embed/english/QU_messages.pl

To have all messages printed in another language, the basic steps are as follows

1. Take a copy of ‘QU_messages.pl’ and translate all the messages.
2. Test the translated ‘QU_messages.pl’ and then install it in the Quintus Prolog directory

hierarchy.
3. Install or re-install Quintus Prolog to get a version that uses the translated messages.

8.20.4.1 Translating the Messages

Each grammar rule in ‘QU_messages.pl’ defines the generation of a message term from an
internal form. For example, in (A) the text that needs to be translated is the quoted text
inside the list ‘[]’ brackets: ‘Type error’. The rest of the rule does not need to be changed.

Chapter 8: The Prolog Language 333

generate_message(type_error(Goal,ArgNo,TypeName,Culprit)) --> (A)
[’Type error’-[]],
head(Goal,ArgNo),
type(TypeName,Culprit),
goal(Goal).

The general form of text components in a list is (B), where control-string and arg-list are
valid for a call such as (C) to the built-in predicate format/2 as exemplified in (D).

control-string-arg list (B)

| ?- format(control-string, arg-list). (C)

| ?- format(’Type error’, []). (D)
Type error
yes

In example (E), when the message is printed, the List will be inserted in place of the ~q.
The ~q means that the List will be printed as if by the built-in predicate writeq/1. See
the documentation of format/[2,3] for full details of what a control-string can do.

typename(one_of(List)) --> [’a member of the set ~q’-[List]]. (E)

In addition to text components of the form (F), it is also possible to have text components
of the form (G), which cause a newline to be output.

control-string-arg list (F)

nl (G)

The format option ‘~n’ should not be used in control strings: any required newlines should
be specified with the nl text components. For example, the list in (H) contains two text
components; in general, a number of text components can be collected into a single list like
this, or they can appear in separate lists, as in (I):

advice(invalid_argument,Type,X) --> (H)
[’Invalid argument to ~w, ~q was ignored.’-[Type,X],nl].

advice(invalid_argument,Type,X) --> (I)
[’Invalid argument to ~w, ~q was ignored.’-[Type,X]], [nl].

All (complete) messages must end with an nl.

In addition to translating messages, it is also possible to change the characters that Prolog
will accept when it requires input from the user. This is done by modifying the definition
of query_abbreviation/2 at the end of ‘QU_messages.pl’. For example, (J) means that
when the Prolog system wants a yes-or-no answer it expects the first character typed to
be a ‘y’ or a ‘n’ and the case does not matter. Since “yes” in French is “oui” a French
translator might change this to (K).

334 Quintus Prolog

query_abbreviation(yes_or_no,[yes-"yY",no-"nN"]). (J)

query_abbreviation(yes_or_no,[yes-"oO",no-"nN"]). (K)

8.20.4.2 Testing and Installing the Translated Messages

A translated version of ‘QU_messages.pl’ can be tested by compiling it into an ordinary
Prolog and seeing how the messages printed by the system look. That is:

% prolog

| ?- compile(’QU_messages’).

Once the new ‘QU_messages.pl’ has been tested, it can be installed in

quintus-directory/generic/qplib3.5/embed/language/QU_messages.pl

The file should be compiled to QOF in that directory:

% cd quintus-directory/generic/qplib3.5/embed/language
% qpc -c QU_messages.pl

8.20.4.3 Building a Version of Prolog using the Translated
Messages

First set the QUINTUS_LANGUAGE environment variable to language. Then re-install Prolog,
following the normal installation instructions.

When using qld to build stand-alone programs users will also need to have the QUINTUS_
LANGUAGE environment variable set. Therefore, all users who wish to use the translated
messages should arrange to set this variable in their ‘.login’ or ‘.cshrc’ files.

qpc is itself a Prolog runtime system. Therefore, if it has been installed with English
messages it will need to be re-built with messages in the preferred language. To do this,
the qpc in the directory (B) should be deleted before re-installation.

quintus-directory/binversion/platform (B)

In multilingual environments it may not always be convenient to have different versions of
executable files for the language spoken by each user. An alternative is for users to put (C)
in their ‘prolog.ini’ files. Provided that they have set the QUINTUS_LANGUAGE environment
variable, this will ensure that the messages in their chosen language are loaded whenever
they start up an executable that was created with messages in some other language.

:- use_module(messages(language(’QU_messages’))). (C)

Chapter 8: The Prolog Language 335

8.20.4.4 Using Kanji characters

To permit the use of Kanji characters in atoms, variable names, predicate names, messages
and comments you need to set the environment variable QUINTUS_KANJI_FLAG to true
before starting Prolog.

When the Kanji flag is set, an 8-bit character codes (that is, a character code between 128
and 255) is assumed to be part of a multi-byte sequence representing a Kanji character.
Such characters are treated, for the purposes of Prolog’s syntax, as if they were lower-
case alphabetic characters. The Kanji flag does not affect character I/O, or the conversion
between atoms and lists of character codes using name/2 or atom_chars/2. In the case
of I/O, two (or more) character codes will need to be read or written for every Kanji
character. Similarly, an atom made up of Kanji characters will be transformed by name/2
or atom_chars/2 into a list of twice (or more than twice) as many 8-bit character codes.

JIS (Japanese Industry Standard) is the Japanese analogue to ASCII. This includes
two standards: JIS-X0201, which defines half-size Katakana characters, repre-
sented in one byte and JIS-X0208 (called “JIS” code) that defines 6349 Kanji
and 453 non-Kanji characters stored in two bytes, using the lower seven bits of
each byte.

SHIFT-JIS
Is JIS code shifted so that the high bit is used (so it doesn’t interfere with some
MSDOS control codes and special characters).

JLE 1.0 EUC
Is Sun’s Japanese Language Environment. For each codeset this defines exactly
one possible character set:

codeset byte(s) representation
0: ASCII 0xxxxxxx
1: JIS-X0208 1xxxxxxx 1xxxxxxx
2: JIS-X0201 10001110 1xxxxxxx
3: Gaiji 10001111 1xxxxxxx 1xxxxxxx

Codeset 1 is JIS code with the hit bits set; Gaiji is a user-defined character set.

DEC This is a standard used by Digital. All I know about this is that character codes
0-127 indicate a one byte ASCII character, and the codes 128-255 indicates a
two byte Kanji character.

8.20.5 Summary of Predicates

• generate_message/3

• query_hook/6

• user:query_abbreviation/3

• print_message/2

• user:message_hook/3

336 Quintus Prolog

• print_message_lines/3

• user:generate_message_hook/3

Chapter 9: Creating Executables 337

9 Creating Executables

9.1 Stand-Alone Programs & Runtime Systems

9.1.1 Basic Concepts

Traditionally, the way to develop Prolog programs has been to compile all the sources into
memory and then to create saved-states for stable portions of the program. The use of saved-
states avoids the need to recompile unchanged code each time that a testing/debugging
session is started. It can also be used as a way of packaging a completed application for
later re-use or for use by others.

This section explains the use of tools that provide an alternative approach to program
development: compiling and linking your sources to build a stand-alone program. This is
very much like the normal way of developing programs written in languages such as C.

9.1.1.1 Terminology

The following terminology is used both here and in Section 9.2 [sap-rge], page 355.

Kernel The code implementing Prolog’s built-in predicates, plus support code such as
memory management needed for running Prolog.

Runtime Kernel
Provides only the core set of built-in predicates.

Extended Runtime Kernel
An add-on product. It provides the core set of built-in predicates, and in
addition allows the compiler and dynamic foreign language interface to be used
in runtime systems.

Development Kernel
Provides the facilities of the Runtime Kernel, plus additional built-in predicates,
the compiler, the debugger, and so on.

runtime system
A Prolog application that has been linked with the Runtime Kernel; intended
for delivery to end-users.

stand-alone program
A Prolog program that has been linked with the Development Kernel; an ex-
tended version of the Development System.

static linking
Linking a Prolog program to either the Development Kernel or the Runtime
Kernel.

338 Quintus Prolog

9.1.1.2 Shared Libraries and Delivering Execuatables

WARNING: An application may depend upon shared libraries, but they are separate from
the executable. So it is necessary to take explicit steps to ensure that they will in fact be
present when the application is run on the target machine. They must be explicitly linked
in to the deliverable as described in Section 9.2.5 [sap-rge-sos], page 359.

9.1.1.3 Stand-Alone Programs

A stand-alone Prolog program is a single, standard, executable file that can be considered to
be an extended version of the Development System, with your Prolog and foreign code being
pre-loaded into it. This approach has several advantages as compared with the saved-state
approach:

1. Since a stand-alone program is a standard executable file, you can use standard source-
level debugging tools such as gdb(1) to debug your foreign code at the source level.

2. Standard tools such as make(1) can be easily used to construct your program, ensuring
that everything is up-to-date. This is particularly useful if you are using a lot of foreign
code.

3. Startup is faster.
4. Your code (except for dynamic predicates) will be loaded into the text segment, so that

it will be shared if the program is to be run by more than one process at a time on a
single machine.

5. Different application programs can share compiled files. The format of compiled files,
“Quintus Object Format” or QOF, is portable across a number of different hardware
types and operating systems.

The disadvantage of linking, in comparison with using a saved state, is that the stand-alone
program will require more disk space than a saved state, since it contains the Development
Kernel and the user’s foreign code.

9.1.1.4 Runtime Systems

Generating a stand-alone program is very much like generating a runtime system with the
Quintus Prolog Runtime Generator. Exactly the same tools are used in each case, and the
use of these tools is described in this section.

The purpose of the Runtime Generator is to provide a convenient and cost-effective way to
distribute application programs to end-users. A runtime system differs from a stand-alone
program in the following ways:

• A runtime system can be moved to another machine without requiring an authorization
code for that machine.

Chapter 9: Creating Executables 339

• A runtime system requires that its entry point be specified by providing a definition for
runtime_entry/1. In contrast, a stand-alone program starts up at the normal Prolog
top level (unless initializations are used; see the reference page for initialization/1).

• Runtime systems do not contain development oriented components of the Develop-
ment System such as the compiler, the debugger, the editor interface, the on-line help
system, the top level, and the foreign language interface. (Runtime systems can, of
course, contain foreign code, but they cannot call load_foreign_executable/1 or
load_foreign_files/2 to load additional foreign code when they are run. However,
they can load QOF files that load foreign code. See Section 9.1.6.6 [sap-srs-eci-ctc],
page 353)

For information on the Runtime Generator see Section 9.2 [sap-rge], page 355.

9.1.1.5 Compiling and Linking

There are two major tools needed to convert a set of source files into a stand-alone program
or a runtime system:

1. the compiler, qpc, which translates Prolog files into QOF files. This is described in
Section 9.1.2 [sap-srs-qpc], page 341.

2. the link editor, qld, which links one or more QOF files together and builds an exe-
cutable file. Often the user will not need to call qld directly because qpc will do this
automatically. The linker is described in Section 9.1.3 [sap-srs-qld], page 343.

It is also possible to build QOF files by saving them directly from a Prolog development
system session, as described in Section 8.5 [ref-sls], page 192. QOF files saved in this way
can then be used directly to build a stand-alone program with qld.

340 Quintus Prolog

Chapter 9: Creating Executables 341

Major steps in creating a stand-alone program

qpc allows independent compilation of the files that make up an application program. The
dotted box in the above figure illustrates this functionality.

The use of qpc and qld correspond to the use of the C compiler and linker as follows:

Quintus Prolog C

sources: ‘a.pl’ ‘a.c’
compiler: qpc compiler
object files: ‘a.qof’ e.g. ‘a.o’
linker: qld linker
executable: ‘a.out’ e.g. ‘a.out’

9.1.1.6 The Runtime Kernel vs. Development Kernel

There is a command-line option, ‘-D’, that can be given to either qpc or qld to indicate
that a stand-alone program rather than a runtime system is desired. This flag determines
whether your program is to be linked with the Development Kernel or the Runtime Kernel.
Each of these kernels consists of a QOF file and an object file, which together supply
all the necessary support code for running Prolog. This support code includes memory
management and the built-in predicates. The Development Kernel additionally contains
support for Prolog development, such as the compiler and the debugger.

9.1.2 Invoking qpc, the Prolog-to-QOF Compiler

There are two main ways to invoke qpc:

% qpc -c P1.pl,...,Pn.pl (A)

% qpc [-D] [-o output-file] P1.pl,...,Pn.pl (B)

(A). Invoking qpc with the ‘-c’ option, means “compile to QOF and stop”; it simply
produces a QOF file for each source file, as shown in the above figure.

(B). Invoking qpc without specifying ‘-c’ compiles all the sources to QOF and then calls qld
to build an executable file corresponding to those sources. ‘-D’ tells qld that the program
is to be linked with the Development Kernel rather than the Runtime Kernel. ‘-o’ specifies
a name for the executable file to be built by qld. Defaults to ‘a.out’. The ‘-D’ and ‘-o
output-file’ options are passed on to qld if they were specified in the qpc command line.

Please note: ‘.pl’ extensions may be omitted in the qpc command line (pro-
vided that there is not another file with the same name and no extension.)
Also, the Prolog files need not have ‘.pl’ extensions. If a Prolog file does not

342 Quintus Prolog

have one, the name of the corresponding object format file is simply the name
of the Prolog source file extended with ‘.qof’. Otherwise, the name of the
corresponding object format file is the name of the Prolog source file with the
‘.pl’ extension replaced by ‘.qof’. Source files may be specified as absolute or
relative filenames; each QOF file goes in the same directory as its source.

Further options allow you to run qpc in a verbose mode, to specify initialization files or
add-ons, to customize the library search path, or make certain predicates invisible to the
debugger.

For a summary of all the options to qpc, see Section 20.1.6 [too-too-qpc], page 1489.

Chapter 9: Creating Executables 343

9.1.3 Invoking qld, the QOF Link eDitor

344 Quintus Prolog

Components of the qld Program

This diagram expands the qld “black box” in the earlier figure. ‘a.qof’ is a temporary
QOF file, and ‘a.o’ is a temporary object file.

9.1.3.1 Implicit invocation via qpc

When qpc is called without the ‘-c’ command-line option, as in invocation (B), above, it
first compiles all the specified Prolog files into QOF and then invokes qld as follows:

% qld [-W] [-D] [-v] [-o output-file] -d qof-files object-files

When qld is called by qpc, it is called in the verbose mode (‘-v’), with the following
additional options:

‘-W’ (Windows only) determines that qld should build a “windowed” executable, which runs
in its own window, as opposed to a console-based one, which runs in a command prompt
window. The properties of the Windows component of an executable built with ‘-W’ can
be controlled with resource files and the environment variable CONSOLE; see Section 20.1.4
[too-too-qld], page 1481.

‘-D’ determines that qld is to be linked with the Development Kernel rather than the
Runtime Kernel. In either case two kernel files, one QOF and one object file, must be
linked in addition to the application files. (See the above figure.)

‘-o’ specifies the name of the executable file that is to be the final product; defaults to
‘a.out’.

‘-d’ tells qld to link in any additional files on which any of the specified QOF files depends.
See Section 9.1.4 [sap-srs-dep], page 345 for more details on file dependencies.

qof-files is a list of QOF files, ‘P1.qof’ ,. . . , ‘Pn.qof’, the output of the qpc call.

object-files is a list of object files built by compiling your foreign-language files with the
appropriate compiler(s). These may include foreign libraries (e.g. qpc -lX11).

In addition to the above arguments, qpc also passes to qld appropriate ‘-f’, ‘-F’ and ‘-L’
options if any non-default file search paths or library directories have been specified. The
‘-f’, ‘-F’ and ‘-L’ options have the same meaning for qld as they do for qpc; they are
only meaningful when the ‘-d’ option is specified, and they tell qld where to look for file
specifications. See Section 9.1.5 [sap-srs-fsp], page 348 for information on how qld makes
use of file search paths and library directories.

9.1.3.2 Explicit Invocation

If you wish to call qld with other options than those described in Section 9.1.3.1 [sap-srs-
qld-iin], page 344, use qpc -c and then call qld explicitly. The ‘-c’ option to qpc causes

Chapter 9: Creating Executables 345

qld to stop after generating an object file, rather than continuing and calling the linker.
The object file will be called ‘a.o’ (UNIX) or ‘a.obj’ (Windows) by default; this can be
overridden with the ‘-o’ option. Then you can make your own call to the linker; this call
must include any needed object-files and libraries.

One reason you might wish to do this is to avoid the use of shared object files and shared
libraries in a runtime system that is to be delivered on a different machine. See Section 9.2.5
[sap-rge-sos], page 359 for more information on this and an example.

The steps taken by qld — as illustrated in the above figure — are as follows:

1. Link all the specified QOF files together with either the Runtime Kernel or Development
Kernel. The result of this phase is a temporary QOF file.

2. “Consolidate” the temporary QOF file into a temporary object file using the subsidiary
program qcon.

3. UNIX: Call the C compiler to build an executable file. The command, which is echoed
to standard output if the ‘-v’ option is specified, resembles:

% cc [-v] [-o output-file] runtime-directory/qprel.o temp.o

object-files runtime-directory/libqp.a

The file ‘runtime-directory/qprel.o’ is the Development Kernel object file. If you
are linking to a Runtime Kernel ‘qprel.o’ will be replaced by ‘qprte.o’ in the above
command. ‘temp.o’ is the output of Step 2. ‘libqp.a’ is the Quintus C library.

4. Windows: Call the C compiler, cl to build an executable file. The form of the link
command, which is echoed to standard output if the ‘-v’ option is specified, resembles:

% link [-v] [-o output-file] temp.obj

runtime-directory/qpeng.lib runtime-directory
/qprel.lib

[runtime-directory/libpl.lib] object-files

runtime-directory/libqp.lib

The file ‘runtime-directory/qprel.lib’ is the Development Kernel object file. If you
are linking to a Runtime Kernel ‘qprel.lib’ will be replaced by ‘qprte.lib’ in the
above command. ‘temp.obj’ is the output of Step 2. ‘libqp.lib’ is the Quintus C
library.

For a complete summary of all the possible options to qld, see Section 20.1 [too-too],
page 1475.

9.1.4 Dependencies of QOF files

Each QOF file contains a record of all the files, including library files, upon which it depends,
that is, for which its source file contains any of the following load commands:

346 Quintus Prolog

:- compile(Files).
:- ensure_loaded(Files).
:- use_module(Files).
:- use_module(File, ImportList).
:- use_module(Module, File, ImportList).
:- [Files].
:- reconsult(Files).
:- load_foreign_executable(File).
:- load_foreign_files(Files, Libraries).
:- load_files (Files).
:- load_files (Files, Options).

Each record is in the form that was used to specify the file in the load command: it may
be a relative or absolute filename, or else it may be a file search path specification, such as:

• library(Name)

• system(Name)

• quintus(Name)

• language(Name)

• mypath(Name)

When the QOF file is passed to qld and the ‘-d’ option is specified, this information will
be used to find all the QOF and object files on which this QOF file depends.

Under Windows, a specification of the form:

• syslib(Name)

has a special meaning: qld looks up the import library ‘Name.lib’ in a directory in the LIB
environment variable.

9.1.4.1 Generating QOF Files and Dependencies

When Prolog files contain embedded commands to compile other files, each Prolog source
file is compiled into a separate QOF file with one exception: if a module-file contains a
command to load a non-module file, then the non-module-file is compiled directly into the
QOF file corresponding to the module-file. That is, there is no separate QOF file for a
non-module-file that is loaded into a module unless it is loaded into the default module
user. Each QOF file is written into the same directory as the corresponding Prolog source
file.

Embedded ensure_loaded/1 and use_module/[1,2,3] commands also cause the speci-
fied files to be compiled unless there is a corresponding QOF file more recent than the
corresponding Prolog source file. For example,

:- ensure_loaded(file).

Chapter 9: Creating Executables 347

causes ‘file.pl’ to be compiled unless there is a ‘file.qof’ more recent than the source.
In the case where the QOF file is more recent than the ‘.pl’ file, then the file is not compiled
again. However, the QOF file’s dependencies are checked and recompiled if not up to date.

9.1.4.2 Example

file.pl

:- ensure_loaded(library(basics)).
:- ensure_loaded(file1).
:- ensure_loaded(file2).

runtime_entry(start) :- go.

file1.pl

< some foreign/[2,3] facts >
< some foreign_file/2 facts >

:- load_foreign_files([system(foreign)],[]).

% qpc file (A)

Given the above files, the command (A) will have these results:

• Compile ‘file.pl’ into !sq’file.qof’
• Cause each of the QOF files in (B) to be produced unless it already exists and is more

recent than its source:
library-directory/basics.qof file1.qof file2.qof (B)

• Records the dependency of ‘file.qof’ on the three QOF files in (B) and records the
dependency of ‘file1.qof’ on ‘foreign.o’ in ‘file1.qof’, so that when qpc then calls
(C) an executable file is built for the entire program.

% qld -d file.qof (C)

If for some reason you didn’t want to use the ‘-d’ option to qld, you could achieve the same
effect as qpc file by the following sequence of commands:

% qpc -c file file1 file2

% qld file.qof library-directory
/basics.qof file1.qof file2.qof foreign.o

Alternatively, these commands would work:

% qpc -c file file1 file2

% qld file.qof "library(basics)" file1.qof file2.qof foreign.o

Note that moving a QOF file from one directory to another may render its dependencies
incorrect, so that the ‘-d’ option cannot be used when loading that file. If relative filenames

348 Quintus Prolog

are used, a set of mutually dependent files can safely be moved around the directory hier-
archy, or to another machine, provided that they retain the same positions relative to one
another. In particular, a set of files that are all in the same directory can safely be moved.
Using file search path specifications (see Section 9.1.5 [sap-srs-fsp], page 348 and Section 8.4
[ref-lod], page 189) enables you to create alterable paths.

9.1.4.3 Using the make(1) utility

The make(1) utility may also be used to ensure that QOF files are up to date. For example,
the following lines can be added to a make file to tell make(1) how to build a QOF file from
a ‘.pl’ file.

Makefile

Quintus Prolog Compiler (qpc) section
.SUFFIXES: .qof .pl

QPC=qpc
QPCFLAGS=

.pl:
${QPC} $(QPCFLAGS) -o $ $<
.pl.qof:
${QPC} $(QPCFLAGS) -cN $<

9.1.5 File Search Paths and qld

When a directive such as (A), below, is encountered by qpc, it notes that the QOF file
being produced has a dependency on ‘basics.qof’ in the library. The dependency is not
stored as an absolute filename, so that when (B) is called (recall that the ‘-d’ option causes
qld to pull in all the dependencies of the specified QOF files), ‘basics.qof’ will be sought
wherever the current libraries are located. These need not be in the same place as at
compilation time; in particular the QOF file may have been moved to a different machine.

:- ensure_loaded(library(basics)). (A)

% qld -d ... (B)

The ‘-L’ option of qpc and qld allow prepending library directory definitions to the already
existing ones. The ‘-f’ and ‘-F’ options perform similar functions but are more flexible
than ‘-L’: ‘-f’ appends a file search path definition to the already existing set, while ‘-F’
prepends a file search path. A ‘-f’ option, as exemplified in (C), corresponds to a file_
search_path/2 call, (D). In such calls, path can itself be a file search path, as in (E).

Chapter 9: Creating Executables 349

-f pathname:path (C)
file_search_path(pathname, path) (D)

-f "mypath:library(mypackage)" (E)

For more detail on these options, see Section 20.1 [too-too], page 1475.

9.1.6 Embedded Commands and Initialization Files

This section discusses some differences that exist between compiling a file into QOF with
qpc and compiling that file into memory using compile/1 under the Development System.
In certain cases, if an application program was developed interactively using the built-in
compiler, some changes may have to be made to the code before using qpc to compile it
and link it with the Development Kernel or Runtime Kernel.

For example, if a file containing the following is compiled into memory, the embedded
command will succeed after writing an ‘x’ and a newline to the current output stream.

f(x).
f(z).

:- f(X), write(X), nl.

Whereas, if the same file is given to qpc, a warning will be printed indicating that the
embedded command failed. The reason for this is that when qpc compiles a Prolog file, it
reads clauses from the source file one after the other and compiles them into a QOF file.
The clauses for f/1 are not kept in memory, and the attempt to access them fails.

You do not need to read this section if both of the following are true.

1. The only embedded commands that you use in your Prolog files are commands to load
other files, that is, commands from the list at the beginning of Section 9.1.4 [sap-srs-
dep], page 345.

2. You do not use term_expansion/2 to transform your source code at compile-time.

9.1.6.1 Compile-time code vs. Runtime code

A Prolog program has up to three types of code in it:

1. code that implements the application;
2. code that helps compile the application, and that is not used during the execution of

the application;
3. code that is necessary to both the execution of the application and its compilation.

The first type of code is the normal case and may be referred to as runtime code, since
it is intended to be executed when the application is run. The second type of code is

350 Quintus Prolog

called compile-time code. Any predicates that are to be called from embedded commands
are examples of compile-time code. The other main use of compile-time code is in the
definition of term_expansion/2, which allows you to specify arbitrary transformations to
be done by the compiler as it reads in clauses. See the reference page for more information
on term_expansion/2.

When using the built-in compiler in the Development System, no distinction has to be
made between the three types of code. They can coexist in one file. Before using qpc on
a program, however, compile-time code must be separated out into its own file (or files).
Then, to each file that needs this new file or files at compile time, add the goal (A) near the
top of the file. This tells qpc to load NewFile directly into qpc before further compiling the
current file. It does not include NewFile as a runtime dependency of the file. If you need
NewFile to be loaded at compile time and also at runtime, use the goal (B) instead. This
approach will work in the Development System as well as qpc.

:- load_files(NewFile, [when(compile_time)]). (A)
:- load_files(NewFile, [when(both)]). (B)

Alternatively, you may omit the use of load_files/2, instead specifying files to be loaded
into qpc with the ‘-i’ option. In this case, when you want to compile this file into the
Development System, remember to first load the file(s) needed at compile time.

It is good programming style to use initialization/1 for goals to be activated at runtime.
Note that predicates called as ‘:- Goal.’ need to be available at compile time, whereas
predicates called as ‘:- initialization(Goal).’ only need to be available at runtime.

9.1.6.2 Initialization Files

qpc is implemented as a normal runtime system. Hence it has its own internal Prolog
database. All compile-time code must be loaded into this database so that qpc can run it.

The ‘-i’ command-line option is used to specify an initialization file. See the reference page
for qpc(1).

9.1.6.3 Side-Effects in Compile-Time Code

One other way to add clauses to qpc’s internal database is to assert them in an embedded
command. For example, the sequence:

:- asserta(f(x)).
:- f(X), write(X), nl.

in a file given to qpc will work just as it would if the file were compiled into the Development
System.

Chapter 9: Creating Executables 351

There are some problems with asserting clauses like this. One problem is that the asserted
clauses will not be available at run-time. If the file had been loaded into the Development
System, they would be available when the program was run.

Another problem arises if the compilation of one file depends on facts that are expected to
be asserted into the database during the compilation of some other file. An approach of
this sort may be useful in the Development System, but it is contradictory to the notion of
independent compilation (see the first figure), which is one of the important features of qpc.
This problem is not specific to asserting clauses; it arises with any compile-time side-effects
that are intended to affect future compilation.

It is possible to avoid using separate compilation, by always recompiling your entire program
every time any part of it is modified. It is still not generally safe to use compile-time side-
effects in one file that affect the compilation of other files. This is because the order in which
files are compiled is different in qpc. When qpc finds a command to compile a file, it looks
in that file immediately to find out whether it is a module-file and if so what are its exports.
But it does not actually compile the file immediately: it puts it on a queue to be compiled
when the current file has been finished with. This is in contrast to compilation in the
Development System, where embedded compile/1 commands are processed immediately
as they are encountered.

Therefore, it is strongly recommended that side-effects in compile-time code be avoided, or
at least restricted so that only the compilation of the current file is affected.

9.1.6.4 Modules and Embedded Commands

Embedded commands are called in the modules in which they are contained. Sometimes
this seems strange, since the module is really a property of the program being compiled into
QOF, and the embedded command is to be interpreted not with respect to that program,
but rather with respect to the internal database of qpc.

9.1.6.5 Predicates Treated in a Special Way

While qpc is compiling Prolog source into QOF, certain built-in predicates are treated in a
special way. Their behavior when used as embedded commands under qpc is different from
their normal behavior. For example, (A) causes the file ‘foo.pl’ to be compiled into ‘.qof’
format, not, as you would expect from its normal meaning, into (qpc’s) memory.

:- compile(foo). (A)

Similarly, if you define (B) in an initialization file, then the command (C) will cause foo to
be compiled into QOF format after whatever goals you specified have been called.

352 Quintus Prolog

my_compile(File) :- (B)
...{some goals}...,
compile(File).

:- my_compile(foo). (C)

The load_files/2 when option can be used to force a file to be loaded into memory at
compile-time if so desired.

Note that the change of meaning of compile/1 etc does not apply during the loading of an
initialization file, only while compilation to ‘.qof’ format is taking place. Thus, if you put

:- my_compile(foo).

in your initialization file (after the definition of my_compile/1), then this would mean
compile ‘foo.pl’ into memory.

The predicates following this behavior are:

compile/1
compile files

consult/1
compile files

load_files/[1,2]
compile files

ensure_loaded/1
compile files

load_foreign_files/2
compile links to foreign code

load_foreign_executable/1
compile links to foreign code"

no_style_check/1
disable style checking

op/3 declare operator(s) (see Section 9.1.7 [sap-srs-ode], page 353)

reconsult/1
compile files

style_check/1
enable style checking

use_module/[1,2,3]
compile module-files

./2 (usually written [Files]) compile files

Note that an embedded command of the form

Chapter 9: Creating Executables 353

:- compile(user).

will cause an error message from qpc. The same is true for specifying ‘user’ in embedded
calls to consult/1 and similar commands, as well as in the command line of qpc. The
reason for this restriction is to avoid possible confusion; under the Development System,
giving ‘user’ as the argument to one of these predicates allows you to enter clauses directly
from the terminal.

Clauses for the predicates foreign/[2,3] and foreign_file/2 are treated specially by
qpc. They are always assumed to be compile-time predicates, to be used by a subsequent
embedded load_foreign_executable/1 or load_foreign_files/2 goal. Therefore they
are consulted into qpc’s internal database rather than being compiled into QOF.

9.1.6.6 Restriction on Compile-Time Code

Since qpc is itself a runtime system, any code to be run at compile-time must obey the
same restrictions as for any other runtime system. In particular, foreign code cannot be
loaded into qpc with load_foreign_executable/1 or load_foreign_files/2. However,
you can load QOF files into qpc, and if the QOF file has object file dependencies, they will
be loaded also. For example, you might compile ‘file.pl’ with qpc to get ‘file.qof’:

file.pl

:- load_foreign_file([prog1], [])
:- load_foreign_executable(prog2)

file.qof

... <dependency on object file prog1> ...

... <dependency on shared object file prog2> ...

In this case, ‘file.pl’ and ‘file.qof’ both depend on the same object files. However, while
a runtime system can load ‘file.qof’, it cannot load ‘file.pl’, because load_foreign_
executable/1 and load_foreign_files/2 are not available in the runtime kernel.

9.1.7 Operator Declarations

An operator declaration is a call to the predicate op/3 in an embedded command. See
Section 8.1.5 [ref-syn-ops], page 165 for more information about operator declarations.

An operator declaration takes effect when it is encountered and remains in force during
compilation of the file and during runtime as in the Development System.

354 Quintus Prolog

9.1.8 Saved-States and QOF files

Saved-states may be created from within a stand-alone program or a runtime system in the
normal way, using save_program/[1,2]. A saved-state may be restored, using the built-
in predicate restore/1, or incrementally loaded using load_files/[1,2]. As discussed
in Section 8.5 [ref-sls], page 192, saved-states are just QOF files, and there is complete
flexibility in how they can be selectively saved and loaded. Saved states, and other selections
of predicates and modules saved into QOF files, can also be directly used with qld to build
a stand-alone program or runtime system.

Note that the restore/1 command is not as useful to load a saved-state (or any QOF
file) into a runtime system as the load_files/[1,2] command. While a restore/1 in a
stand-alone program, just as in the Development System, restarts the running executable
and then loads the argument QOF file, a runtime system only restarts the executable, and
the file, preceded by a ‘+l’ flag, is passed to the application program, which may elect to
parse the arguments and then load the file. Similarly, if a saved-state is created from a
runtime system and then restarted from the command line, the executable will be started,
but the options list need to be parsed and the file loaded by the application program (see
Section 18.3.153 [mpg-ref-restore], page 1266, and Section 8.3.1 [ref-pro-arg], page 186 or
Section 20.1.1 [too-too-prolog], page 1476 for a description of the ‘+l’ option).

9.1.9 Dynamic Foreign Interface

Runtime systems cannot dynamically load (additional) foreign code. However, they can load
QOF files and if those have object file dependencies then the object files will be dynamically
loaded at that time.

It is possible to dynamically load foreign code into a stand-alone program using load_
foreign_executable/1 or load_foreign_files/2.

9.1.10 Linking with QUI

During development of applications involving both Prolog and foreign code, it can be very
useful to build a stand-alone program that includes QUI. This way, you can use the QUI
debugger for stepping through the Prolog code and a standard debugger such as gdb(1) for
stepping through the foreign code.

A good way to do this is to create a file ‘qui.pl’ containing just the one line:

:- ensure_loaded(library(qui)).

This should then be compiled to QOF in the normal way and linked into your application.
For example:

% qpc -D <application files> qui.pl

Chapter 9: Creating Executables 355

Then start up the resulting executable file using a command such as

% gdb a.out

See Section 10.3.11 [fli-p2f-fcr], page 400 for information about using a standard debugger
in conjunction with a Prolog executable file.

Please note: The reason for putting the ensure_loaded command in a file by
itself, rather than including it in your application code, is that it will not work
if executed in an ordinary prolog system that does not include QUI; it is not
possible to load QUI dynamically.

9.2 The Runtime Generator

9.2.1 Introduction

The purpose of the Runtime Generator is to provide a convenient and cost-effective way to
distribute Prolog application programs to end-users. Initially a Prolog application should be
developed using the Development System. The Development System allows the application
developer to load, run, modify and debug programs interactively, without having to leave the
environment. When an application program has been completed, the Runtime Generator
product allows a developer to create a production version of the application, ready to be
shipped to end-users. This version of the application is called a runtime system.

The important points to note about runtime systems are:

1. They can easily be deployed, because they do not require any authorization codes in
order to run.

2. They are smaller than programs built on top of the Development System, since they
do not include program development features such as the compiler, the debugger and
the Emacs interface

The process of building a runtime system is almost identical to the process of building
a stand-alone program with the Development System, and both of these processes are
documented in Section 9.1 [sap-srs], page 337. The compiler qpc is used to compile your
Prolog source files into Quintus Object Format (QOF) files, and these are then linked
together using the link editor qld. Both qpc and qld require a ‘-D’ command-line option
when building a stand-alone program; the default is to build a runtime system.

It is recommended that before turning an application program into a runtime system you
first build it as a stand-alone program. This way, if there are any problems, you will have
the debugger available to help you eliminate them.

356 Quintus Prolog

Once you have built a stand-alone program, it should be very easy to rebuild the application
as a runtime system. This section describes the few points that may need to be considered
in making this transition:

1. Some built-in predicates are not available in runtime systems, since they are intended
for use in program development rather than for use in application programs. See
Section 9.2.2 [sap-rge-dspn], page 356.

2. Runtime systems do not have the normal Prolog top level. Instead, you must specify
a starting point for the program by defining the predicate runtime_entry/1. This
predicate also allows you to specify what is to be done after an abort occurs. See
Section 9.2.3 [sap-rge-pro], page 357.

3. Runtime systems have different default behavior on a ^C interrupt. Instead of giving
the user a set of choices, the system immediately aborts. See Section 9.2.4 [sap-rge-iha],
page 358.

4. If your runtime system contains dependencies on “non-standard” shared libraries, or
on one or more shared object files (specified in calls to load_foreign_executable/1),
then in order to be able to deliver the runtime system to a different machine you will
need either
a. to make the system completely self-contained by replacing the shared object files

and libraries with equivalent archive files when building it; or
b. to ensure that all necessary shared libraries and shared object files are available

on the target machine.

See Section 9.2.5 [sap-rge-sos], page 359 for more information on this issue.

Another difference between runtime systems and programs running under the Development
System is that runtime systems suppress informative error messages, on the basis that such
messages are intended for the application developer, not the application user. For example,
if a runtime system consults a file, no message is printed to the screen to indicate this. If
you wanted some such message to appear at runtime, you would have to program it yourself.

Error messages are not suppressed, however. If you want to suppress the printing of some
(or all) error messages you can do it by providing a definition for the predicate message_
hook/3. See Section 8.20.3.3 [ref-msg-umf-ipm], page 331.

9.2.2 Predicates not supported by the Runtime Kernel

The predicates listed below are not supported by the Runtime Kernel, since their purpose
is to aid the development process rather than to be used in application programs. qld or
qcon will print ‘Undefined’ warning messages if you try to build a runtime system with
calls to any of these predicates. At run time, these calls will raise existence errors in a
runtime system.

debugger: debug/0, nodebug/0, trace/0, notrace/0, spy/1, nospy/1, nospyall/0,
debugging/0, leash/1, add_spypoint/1, current_spypoint/1, remove_
spypoint/1,

Chapter 9: Creating Executables 357

help system:
help/[0,1], manual/[0,1]

advice: add_advice/3,
check_advice/[0,1], current_advice/3, nocheck_advice/[0,1], remove_
advice/3,

program development:
break/0

If you call any of these predicates from compile-time code, such as from an embedded
command or in a definition of term_expansion/2, the call will raise existence errors when
using qpc.

Any use of these predicates should be eliminated from both your run-time and your compile-
time code, unless you can be sure that they won’t be called or you don’t mind them raising
existence errors.

In addition, the predicates load_foreign_files/2 and load_foreign_executable/1 are
not available in the Runtime Kernel but may be used in embedded commands. That is,
you can use them at compile time, in order to link foreign code into your program, but you
cannot use them when the runtime system is running.

Since the compiler is not included in a runtime system, the effect of the load predicates is
altered in a runtime system. Whenever one of these predicates would normally compile a
file into memory, it instead loads that file into memory as dynamic. This is equivalent to

load_files(file, all_dynamic(true)).

This should not normally make any significant difference, except that loading the file is
faster and running it is slower.

The predicate multifile_assertz/1 cannot be used on compiled (static) predicates in
a runtime system. This restriction does not apply to predicates that are loaded by
compile(File) at run time, since such predicates are really loaded as dynamic.

9.2.3 Providing a Starting Point: runtime_entry/1

The application developer must specify what is to happen when the program is started up.
This is done by defining the predicate runtime_entry/1. When the runtime system is run,
the goal (A) is invoked. When that goal terminates, either by succeeding or by failing, the
runtime system terminates.

runtime_entry(start) (A)

Similarly, it is possible to specify what is to be done on an abort. An abort happens when
a call is made either to the built-in predicate abort/0 or to the C routine QP_action(QP_
ABORT). (By default, a call of QP_action(QP_ABORT) happens when a user types ^C— see

358 Quintus Prolog

Section 9.2.4 [sap-rge-iha], page 358). At this point, the current computation is abandoned
and the program is restarted with the goal (B).

runtime_entry(abort) (B)

Effectively this replaces the original call to runtime_entry(start), so that when this
call succeeds or fails, the runtime system terminates For example (C) will obviously loop
indefinitely until you interrupt it with a ^C. At that point it will abort, and since the goal
runtime_entry(abort) will fail, the program will terminate.

If you were to add the clause (D) you would make the program impervious to ^C interrupts
and quite hard to terminate.

runtime_entry(start) :- go. (C)
go :- go.

runtime_entry(abort) :- go. (D)

For this reason, it is recommended that you not write your code as (E) as this will cause
your program to restart on ^C or errors.

Users of the module system should ensure that the predicate runtime_entry/1 is defined
in the module user, that is, not inside any user-defined module. You may use a clause of
the form (F) in a module-file to do this. (see Section 8.13 [ref-mod], page 271).

runtime_entry(_):- ... (E)

user:(runtime_entry(...):-...) (F)

9.2.4 Control-c Interrupt Handling

By default, ^c causes a runtime system to abort its current computation and to restart
with the goal runtime_entry(abort), exactly as if the built-in predicate abort/0 had
been called. This behavior can be modified from C code by means of the system function
signal(2). Such modification is done in exactly the same way as under a Development
System; see the Reference Pages for further information.

Windows Caveats:

• In Windows 95/98, ^C interrupt handling only works in windowed executa-
bles, and only when waiting for input.

• In statically linked executables running under Windows NT, ^C interrupt
handling only works when waiting for input.

Chapter 9: Creating Executables 359

9.2.5 Shared vs. Static Object Files

A runtime system is a single executable program that should be easily transferable to a
different machine. By default, the executable built by qld will use dynamic libraries where
it can, such as the dynamic C library (‘-lc’ under UNIX, ‘/MD’ under Windows). This
requires that a corresponding library exist on the target machine on which the executable
will be run.

Under UNIX, you may encounter problems if libraries included in your executable are
not installed in “standard places” — e.g. in ‘/usr/lib’ — on the target machine. For
example, if you specify ‘-lX11’, but the corresponding file ‘libX11.so.4.2’ resides in
‘/usr/local/lib/X11’. Typically, a user has to set the LD_LIBRARY_PATH environment
variable to find libraries in non-standard places, although another option at installation
time might be to add a call to ldconfig(8) in ‘/etc/rc.local’ to include the directory
containing a shared library into the system-wide list of “standard places” to find shared li-
braries. The ldd(1) command lists the dynamic dependencies of an executable and whether
or not these can be found.

The problem exists under Windows but the details are different. In particular Windows
shared libraries are looked for in the folders specified by the PATH environment variable and
in some further “standard places”. Consult the Windows documentation for details.

In addition to shared libraries, your executable may contain shared object files, specified
in calls to load_foreign_executable/1. qld passes the absolute file paths for these files
to the linker, which results in the dependencies for these shared object files being stored in
the runtime system executable as absolute filenames. Note that this problem can arise even
if you have no foreign code of your own, if you are using the Quintus Prolog library or X
interfaces.

A solution to the shared object files problem is to use the ‘-S’ option with qld, which tries
to substitute archive files for shared object files where they exist. If the shared object files
have dependencies on other shared libraries then those libraries need to be explicitly listed
in the qld command, as qld does not track these dependencies. This makes your executable
file larger, as the library code is stored within the executable rather than linked in at start-
up time. Each shared object file provided in the Quintus libraries has an equivalent archive
file that can be substituted by the ‘qld -S’ command.

For example, under UNIX, building a runtime system from the file in (A) with the command
(B) produces an ‘a.out’ file, which prints the date and time, as in (C).

360 Quintus Prolog

test.pl

:- use_module(library(date)). (A)

runtime_entry(start) :-
datime(X),
portray_date(X),
nl.

% qpc test.pl (B)

% ./a.out (C)
2:10:09 PM 1-Feb-91

This ‘a.out’ file has a dependency on the Prolog library as well as on the C library, as
shown by the ldd(1) command:

% ldd a.out

/usr/local/quintus/generic/qplib3.5/library/sun4-5/libpl.so
libc.so.1 => /usr/lib/libc.so.1.8

Under Windows, the example would be almost the same, with the difference that the de-
fault name of the executable produced by qpc is ‘a.exe’ rather than ‘a.out’. To view
dependencies you can type dumbin /DEPENDENTS a.exe.

Hence this runtime system will not work on a machine where Quintus Prolog is not installed.
To build a runtime system that does not have this dependency, it is necessary to call qld -S

explicitly, rather than just calling qpc test.pl as shown above. Under UNIX, the necessary
command sequence is:

% qpc -c test.pl

% qld -Sd test.qof

That is, qpc is called with the ‘-c’ option so that it stops after producing a ‘.qof’ file, rather
than calling qld. Then qld is called with the ‘-S’ option so that it substitutes ‘libpl.a’
for ‘libpl.so’. The result is an executable that depends only on the C shared library:

% ldd a.out

ilbc.so.1 => /usr/lib/libc.so.1.8

This executable should run without problem on a different machine.

Under Windows, the linker does not automatically add all needed OS libraries. These need
to be added explicitly as follows:

C:\> qpc -c test.pl

C:\> qld -Sd test.qof -LD qpcon-
soles.lib user32.lib gdi32.lib comdlg32.lib

Windows notes:

Chapter 9: Creating Executables 361

1. The ‘-S’ and ‘-W’ flags can be combined.
2. If the ‘-S’ option is used, the ‘-LD’ option must also be used, together with

the library references ‘qpconsoles.lib’, ‘user32.lib’, ‘gdi32.lib’, and
‘comdlg32.lib’.

3. If the Prolog code has a foreign executable dependency on ‘myforeignex’,
a static library ‘myforeignexs.lib’ needs to be created. The trailing
‘s’ is significant (see below); qld assumes this naming convention. Here
is an example of the necessary sequence of commands to create a static
executable ‘myforeignex.exe’:

C:\> cl /c /MD myforeignex.c

C:\> link /lib /OUT:myforeignexs.lib myforeignex.obj

C:\> qpc -c myprog.pl

C:\> qld -Sdvo myprog.exe myprog.qof -LD \

user32.lib comdlg32.lib qpconsoles.lib gdi32.lib

The above command produces an executable that uses the static version
of the Runtime Kernel and has no DLL dependencies. Statically linked
applications can still dynamically load foreign code DLLs, provided these
DLLs do not call any of the Quintus Prolog C API functions.
In order to distinguish static libraries from DLL import libraries in foreign
dependencies, the following naming convention has been chosen. If the ‘-S’
option is used, when processing a library dependency qld will first search
for the library with an ‘s’ appended to its name, for example ‘libqps.lib’
for the Embedding Layer, and if not found it tries the original name.

9.2.6 Building DLLs containing Prolog code

This section is only relevant for Windows.

It is possible to build DLLs containing Prolog code to be linked dynamically into appli-
cations. Packaging your code as a DLL promotes sharing and is also a requirement for
applications where an application needs to dynamically link your code. An example illus-
trating this and other techniques that are useful when embedding Prolog in C is the Visual
Basic interface source code; see ‘quintus-directory\src\vbqp’.

Applications typically look for DLLs in the same directory as the application itself and also
in any directories specified in the PATH environment variable. Applications also look in some
system directories but that is less useful for our purposes.

The easiest way to ensure that the DLL (and the Quintus runtime DLLs) are found is to
put the DLL together with the Quintus runtime DLLs in runtime-directory and then ensure
that the PATH environment variable is set up to include that directory, as described below.

Another method, especially suitable for running on a machine where Quintus Prolog is not
installed, is to put all the DLLs in the same directory as the application. This includes the
DLL built as below and the appropriate Quintus runtime DLLs.

362 Quintus Prolog

See the Microsoft documentation for more information about DLLs.

To build a DLL containing Prolog code, follow these steps:

9.2.6.1 Setting up the environment

Set up your environment variables so that the Quintus binaries can be found. The batch
file ‘runtime-directory\qpvars.bat’ can be run for this purpose.

9.2.6.2 Compiling the Prolog code

Compile your Prolog code, e.g.

C:\> qpc -c vbqp.pl

The option ‘-c’ ensures that only a Quintus object file (QOF) is produced, in this case
‘vbqp.qof’.

9.2.6.3 Compiling the C code

Compile your C code, e.g.

C:\> cl /nologo /c /MD vbqp.c

The option ‘/MD’ ensures that the DLL version of the C runtime libraries are used. The
option ‘/c’ ensures that no linking is performed, only an object file is produced, in this case
‘vbqp.obj’.

9.2.6.4 Linking the DLL

Finally, use qld to link the DLL with the code produced in the previous steps and any
additional libraries, e.g.

C:\> qld -Ydo vbqp.dll vbqp.qof vbqp.obj -LD oleaut32.lib

Please note: qcon will complain that there is no runtime_entry/1. This can
be ignored.

The option ‘-o’ is used to name the resulting DLL, in this case ‘vbqp.dll’. The option ‘-d’
is used to ensure that any dependencies are also linked. The option ‘-LD’ passes the rest
of the command line to the linker, in this case it causes the library ‘oleaut32.lib’ to be
linked with the resulting DLL.

Chapter 9: Creating Executables 363

The option ‘-Y’ (new in this release) tells qld to produce a DLL as opposed to an ordinary
EXE file. A similar effect could be obtained with:

C:\> qld -do vbqp.dll vbqp.qof vbqp.obj -LD /dll oleaut32.lib

9.2.7 Installing an Application: runtime(File)

A runtime system is a single, executable program that can easily be transferred to a different
machine. However, in many cases, application programs require access to some auxiliary
files in the course of their execution. These may be files of Prolog code that are to be
consulted at run time, or they may be data files in any arbitrary format. If your application
requires some such files, you may need to require users of the application to follow some
installation procedure before they can use it.

One approach to this problem is to use the runtime file search path for accessing all your
auxiliary files. The default runtime file search path is the runtime directory where Prolog
executables and objects are located. You can modify this by putting a goal such as the
following in your ‘prolog.ini’ file.

:- retractall(file_search_path(runtime,_)),
assert(file_search_path(runtime,

’/usr/fred/runtime_files’)).

This allows you to use runtime(File) anywhere you need to specify a file, such as in calls
to open/3, see/1, consult/1 or absolute_file_name/2. When you do this, the file will
be sought in the directory ‘/usr/fred/runtime_files’.

When you have built a runtime system, you can change the runtime directory and thus
the runtime file search path by means of the qsetpath utility program (see Section 20.1.8
[too-too-qsetpath], page 1495). This can be changed, perhaps from an installation shell
script to be run by the end user. The appropriate command is:

% qsetpath -rdirectory runtime-system

The program runtime-system will then look in directory for its runtime files. Note that
write permission will be needed on runtime-system for the qsetpath command to work.

There is another utility, qgetpath (see Section 20.1.3 [too-too-qgetpath], page 1480), which
can be used to print the runtime directory of a runtime system. For example,

% qgetpath -r runtime-system

writes the runtime directory to standard output. See the qsetpath and qgetpath Reference
Pages for more information.

364 Quintus Prolog

Chapter 10: Foreign Language Interface 365

10 Foreign Language Interface

10.1 Overview

The Foreign Language Interface is the protocol by which you can call functions written
in other programming languages from Prolog (see Section 10.3 [fli-p2f], page 375), and by
which you can call Prolog predicates from C (see Section 10.4 [fli-ffp], page 413).

In both cases you have to supply declarations in Prolog specifying the argument types
of the function/predicate being called. This is necessary so that the Prolog system can
automatically make the necessary transformations of data as they are passed between the
languages. The declarations are compiled into special abstract machine instructions in order
to minimize the cost of inter-language calls.

It is possible to specify that an argument is a Prolog term. In this case a foreign function
receiving such a term sees it as a special kind of object called a QP term ref. A set of func-
tions is provided that allow foreign functions to manipulate terms via these QP term refs.
Term passing is described in Section 10.3.8 [fli-p2f-trm], page 395 and Section 10.4.4.2 [fli-
ffp-a2s-trm], page 420. The functions for manipulating terms are described in Chapter 19
[cfu], page 1345.

Some kinds of data are not best represented in Prolog. It is better to keep such data in
foreign data structures and just pass pointers to these structures to Prolog. Given such
pointers, Prolog arithmetic predicates such as is/2 and =:=/2 allow access to foreign data;
see Section 8.8.4 [ref-ari-aex], page 235. Foreign data can also be modified directly from
Prolog using assign/2, which is described in Chapter 19 [cfu], page 1345.

Input/Output operations on Prolog streams can be performed in C. Functions, macros and
variables for this purpose are summarized in Section 10.5.8 [fli-ios-bio], page 479. The I/O
system has been designed to make it maximally customizable at the C level. The kinds of
customization that you might want to do are to create a stream to read from or write to a
socket, or to create a stream to read from an encrypted file. The C level of the I/O system
is described in Section 10.5 [fli-ios], page 433.

A number of functions are defined to aid in embedding Prolog programs into other software
systems. These functions all begin with the letters ‘QU’ and they are defined in Section 10.2
[fli-emb], page 365. The source of these functions is provided with the system, and you may
define your own versions to replace them. To do this you will need to link your routines with
the development system to make your own customized version of the development system.
How to do this is described in Chapter 9 [sap], page 337.

10.2 Embedding Prolog Programs

366 Quintus Prolog

10.2.1 Overview

As outlined in Section 1.2 [int-hig], page 4, a constellation of new features greatly extends the
relationship between Quintus Prolog code and foreign language code. It is now possible to
embed Prolog code in a program written in another language without restrictions. Clearly,
the first requirement for embedding Prolog code freely in foreign code is to be able to call
Prolog from foreign code and vice versa. C calling Prolog is a major new feature of release
3 and is discussed in Section 10.4 [fli-ffp], page 413.

A further requirement is that all types of data structures can be passed between Prolog and
the foreign code. Previously it was not possible to pass compound Prolog terms between
Prolog and foreign code. In addition there were serious limitations on passing mathematical
data. release 3 adds

• the ability to access Prolog terms from the foreign language once they are passed to it
and perform Prolog operations on them. (Discussed in detail in Section 10.3 [fli-p2f],
page 375 and Section 10.4 [fli-ffp], page 413, and in the reference pages cited there for
term passing predicates and functions).

• the ability to access data structures in a foreign language from Prolog and to perform
destructive operations on them. (Discussed in Section 10.3.9 [fli-p2f-poi], page 397 and
assign/2 and is/2).

• 32 bit integers and 64 bit floats

With these new features, Quintus Prolog fulfills the full data passing requirement.

The foreign language interface is now fully bidirectional. This in itself is not sufficient for
embeddability in a strong sense. The Prolog portions of the application must in addition
be well-behaved. That is, they must not make any assumptions about how the operating
system will handle such matters as memory and input/output operations. This is where
the embedding layer of Quintus Prolog comes in.

10.2.2 The Embedding Layer

In many cases, the embedding layer will be transparent to the application developer. It
provides a full set of default functions for interaction between Prolog and the host operating
system. Frequently all you will need to do is use the extended FLI and let the defaults
provided by Quintus Prolog take care of the operating system requirements concerning
memory management and I/O. However, Prolog no longer insists on controlling memory
management and input/output operations, should this be impossible or undesirable in your
application. These default interfaces are fully user redefinable.

Memory management: Quintus Prolog release 3 does not have any restrictions on the under-
lying memory. This is a crucial aspect of embeddability. Any good Prolog implementation
will start up with the minimum amount of memory necessary and expand and shrink de-
pending on the memory needed to execute each goal. In previous releases of Quintus Prolog

Chapter 10: Foreign Language Interface 367

(as well as most other Prolog implementations) all the memory that Prolog used had to be
contiguous. So it was possible that if some foreign component of the application allocated
memory from the top, it would disable Prolog from growing any further. With release 3,
Quintus Prolog runs on discontiguous memory. Therefore Prolog can share the process’s
address space with memory allocated to Prolog interspersed with memory allocated by other
components of the application.

The user can replace Quintus Prolog’s low level memory management functions. This is es-
sential if the user has an application that would like to take care of all memory management
and does not want Prolog to directly make system calls to the OS to allocate memory. This
makes it easy to link Prolog with other components that have more rigid restrictions about
its memory allocation. (Discussed further in Section 10.2.3.2 [fli-emb-how-mem], page 373).

Input/Output: The user can create, access and manipulate Prolog I/O streams from foreign
code. This provides a unified way of performing I/O from Prolog as well as foreign code.
It also gives the user the ability to have I/O streams to sockets, pipes or even windows.
Graphical user interfaces have become a natural Prolog component of an application.

The low level I/O functions can also be replaced. This is essential if the user has a large
application and wants to take care of all I/O without any direct calls from Prolog to the
OS to perform I/O. This is elaborated in Section 10.2.3.3 [fli-emb-how-iou], page 374.

Windows caveat: Redefining functions in the Embedding Layer only works in
executables built with ‘-S’; see Section 9.2.5 [sap-rge-sos], page 359.

10.2.2.1 Contrasting Old and New Models

To understand the motivation for the new “embeddability” layer, contrast the model of
foreign language interface that previously held, as illustrated in the two following figures,
with the new model illustrated in the figure “New Model”.

368 Quintus Prolog

Former Prolog interface to foreign code

The Old Model:

Under the one-directional foreign language interface, it was necessary to write a main pro-
gram in Prolog as illustrated in the above figure The foreign language interface was able to
call foreign code from this main. There were basically two components, the Prolog Main,
and the Foreign Program. The foreign program itself could have all sorts of components.
However, from the point where the foreign code began, no more Prolog code could be in-
serted. For instance, if you wanted to add a Prolog component to Module C of the program,
it would be necessary to restructure the program to enable control to return to the Prolog
main, where the new Prolog code could be called, and then reinvoke the foreign code in
Module C.

Another limitation of the old foreign interface was the possibility of conflicts between the
foreign code called by the user’s Prolog code and the foreign code used by the Quintus
Prolog kernel. For example, the Quintus Prolog kernel required total control of all memory
allocation to ensure that the Prolog memory areas were contiguous. Therefore the users code
could not use the system call sbrk(2) to allocate memory, but had to use the malloc(3)
function provided with Quintus Prolog (see the following figure). Now, however, the foreign
functions used by the Quintus Prolog kernel forms the Embedding Layer and it is possible
for the user to redefine these functions to conform to the requirements of his foreign code.

Chapter 10: Foreign Language Interface 369

Prolog Kernel and Application calling Foreign Code

The New Model:

The new model can be represented as in the following figure. The Embedding Layer contains
C functions that establish defaults for memory management and I/O. The user can redefine
any of these modules so as to prevent conflicts between the application’s C calls and the C
calls made by the Quintus Prolog kernel.

370 Quintus Prolog

Chapter 10: Foreign Language Interface 371

New Model

10.2.3 How Embedding Works

The next three sections describe the major areas of Prolog that can be redefined to facilitate
the embedding of Prolog code in foreign language applications:

• Initialization, i.e. main()
• Memory management
• Input/Output

Consider the details presented in these sections in the context of this overview of the process
of creating a program with a Prolog component:

1. Write the foreign code (‘prog.c’) and the Prolog code (‘component.pl’), using the
steps for the C calling Prolog interface described in Section 10.4.1.1 [fli-ffp-bas-sum],
page 414 to call the Prolog predicates. Most likely you will be defining a main()
routine; in this case be sure to call QP_initialize(). An example is found in the
reference page.

2. Determine whether it is necessary to customize any of the API modules for initial-
ization, memory management or input/output. This is discussed in Section 10.2.3.1
[fli-emb-how-mai], page 372, Section 10.2.3.2 [fli-emb-how-mem], page 373, and Sec-
tion 10.2.3.3 [fli-emb-how-iou], page 374.

3. If customization is required, and it seldom will be, rewrite the relevant modules.
4. Produce the executable:

a. Compile ‘component.pl’ using qpc -c component.pl

b. Compile ‘prog.c’ using e.g. cc -c prog.c

c. Link the two using qld. A typical call would be:
% qld -Dd component.qof prog.o -o BigApplication

You may also want to link in QUI in order to be able to use the debugger, as
described in Section 6.2 [dbg-sld], page 121. The process of linking QUI into an
application is discussed in Section 9.1.10 [sap-srs-qui], page 354.

d. Run BigApplication. Debug, using standard debugging tools such as gdb(1) for
C code, and Prolog debugging tools for Prolog code.

Quintus Prolog provides defaults for interfacing the operating system. If customization
is necessary in this area, a user must completely redefine, not just extend, the supplied
functions.

Please note: The default OS interface functions that can be redefined all have
names beginning with the prefix ‘QU_’.

The QU functions are like hooks in the sense that they provide you with a
place to insert code that changes Prolog’s behavior. However, we do not include

372 Quintus Prolog

Prolog hooks such as message_hook/3 in this discussion because the point of
embedding is to call Prolog code from foreign programs. The Prolog hooks are
used independently of embedding.

10.2.3.1 Defining your own main()

Normally, when building an executable with qld the Quintus main() routine is linked in
to the executable, which initializes the Prolog environment and calls QP_toplevel(). QP_
toplevel() will either:

1. Start an interactive top-level, which prompts for a command to be typed; or
2. Call runtime(start) in the case of a runtime system (i.e. if ‘-D’ was omitted in the call

to qld).

However, you are not limited to using this default main(). You can define your main() and
have Prolog as a function call.

This should be done if the Prolog component(s) of your application are such that they may
not be called in a given run of the program. In that case, you would not want to initialize
Prolog unless it became necessary.

An example of this sort of case is a program written in C that utilizes menus. The end user
can select a number of options. One of these options involves further decision making, and
runs an expert system written in Prolog. If the user doesn’t happen to select this menu
option on a given occasion, there is no reason to use the resources involved in initializing
Prolog. So you would write a main() that is dependent upon this menu selection. Once
the user selects this option and thus starts up Prolog, however, subsequent invocations will
recognize that Prolog is already initialized and will not do it again.

Another situation where it makes sense to “redefine” main() is where you already have a
large application written in C or some other foreign language and you wish to extend it with
a module written in Prolog without having to rewrite the top level of the existing program.

If you choose to use a different main(), you should be aware that the default Quintus main()
provides certain functionality, which will have to be included in the user-supplied main():

• Initialize memory, I/O.
• Set up command line arguments.
• Initialize file search paths, file tables and symbol tables.
• Do start up hooks associated with a statically linked component in QOF files.
• Do any necessary restores, and any start up hooks associated with the restored files.

The built-in function QP_initialize() takes care of these tasks. An example of a user-
supplied main() can be found in the reference page for QP_initialize().

Chapter 10: Foreign Language Interface 373

The QP * functions require that Prolog be initialized for memory management, etc. Thus,
whenever main() is redefined, it will be necessary to call QP_initialize(). There is no
harm in calling this routine more than once. So people writing portions of large projects
can safely assume Prolog isn’t initialized, and call QP_initialize().

10.2.3.2 The Embedding Functions for Memory Management

Release 3 of Quintus Prolog makes it possible to run Prolog as an embedded system. In
terms of memory management this means that Prolog does not assume full control of the
address space or that all its memory is going to be contiguous. This makes it possible to
share the same address space between Prolog and other applications. The memory used by
Prolog can be interspersed with the memory used by the application into which Prolog is
embedded.

With Release 3 all of Prolog’s sophisticated memory management can be built on top of
a primitive layer, which users can replace with their own functions. Such replacement is
only required when the application in which the Prolog code is embedded demands full
control of the address space and memory allocation. In general it is not necessary or even
advantageous to do this.

The embedding layer of memory management comprises three primitive functions: QU_
alloc_init_mem(), QU_alloc_mem() and QU_free_mem(). The system has a default im-
plementation of these functions based on sbrk(2) for UNIX and VirtualAlloc() for Win-
dows. If Prolog is to become part of an embedded package that would like to provide its
own memory management routines then the user can redefine these functions and stati-
cally link it with the Prolog system. (Static linking is discussed in Section 9.1 [sap-srs],
page 337.) If the user does not provide these functions, the API functions (in e.g. ‘libqp.a’
or ‘libqps.lib’) will be used by default.

This layer is responsible for allocating memory to Prolog and freeing memory back to the
Operating System. Prolog calls the functions QU_alloc_mem() and QU_free_mem() for
these purposes. QU_init_mem() is called the first time Prolog makes a call to allocate
memory. If the user redefines these functions the redefinition should meet the specifications
for these functions mentioned in the reference pages. An example of defining your own
memory management routines is given in the reference page for QU_alloc_mem().

This layer is also responsible for the environment variables PROLOGINCSIZE and
PROLOGMAXSIZE, which are available for customizing the default memory management rou-
tines. The user can set PROLOGINCSIZE to set the least amount by which Prolog should
expand each time. The user can set PROLOGMAXSIZE to limit the maximum memory used
by Prolog. See Section 8.12.7 [ref-mgc-osi], page 264.

The Prolog system top level supplied by Quintus automatically cleans up Prolog memory
each time it returns to top level. However, when Prolog is called directly from a foreign
function the Quintus top level (or a user-defined equivalent) need not be used. If nothing
else is done (such as calling trimcore/0 in the Prolog code), when a Prolog query returns,

374 Quintus Prolog

the memory allocated to Prolog will stay expanded to whatever was required to compute
the previous solutions.

In the case where it is more convenient to call a C function than a Prolog built-in, QP_
trimcore() is provided to explicitly clean up Prolog memory. It has the same effect as
trimcore/0. Like trimcore/0 it should be used judiciously, as overuse can result in un-
necessary time being spent in memory expansion and contraction. However, when Prolog is
to be dormant for a period, or as much free memory as possible is desired, QP_trimcore()
can be quite useful.

10.2.3.3 The Embedding Functions For Input/Output

Prolog streams are designed by default to be channels for I/O operations to a file or a
terminal. User defined streams enable these operations to be performed on other types of
object: notably, windows or a network channel.

The embedding input/output functions create the default Prolog streams and provide the
user with the default parameters for creating a user-defined stream. It is possible to change
these defaults. However, in general it is not necessary or even advantageous to do this.

Such replacement is only required when the application in which the Prolog code is embed-
ded demands full control of the I/O system and does not want Prolog to make direct calls
to the operating systen to perform I/O. One instance of such usage is to embed a Prolog
program within an application that uses a graphical window-oriented user interface.

The embedding layer for input/output contains four functions:

QU_stream_param()
sets up default field values in a QP_stream structure.

QU_initio()
creates three Prolog initial streams: user input stream, user output stream and
user error stream.

QU_open()
creates streams opened by open/[3,4] and QP_fopen().

QU_fdopen()
creates streams that were already opened by the system function open(2).

Details of each function can be found in the individual reference pages. Any of these
functions can be supplied in linking a Prolog system through qld. If any function is not
supplied, the default version of that function is linked in.

A number of C macros and functions are provided in ‘<quintus/quintus.h>’ and e.g.
‘libqp.a’ to access and manipulate Prolog streams where it is more convenient to access
them from C rather than calling a Prolog builtin. For example, QP_getc() will get a
character from a Prolog stream in the same way as get0/2. These macros and functions
are listed in Section 10.5.8 [fli-ios-bio], page 479.

Chapter 10: Foreign Language Interface 375

10.2.4 Summary of Functions

Detailed information is found in the reference pages for the following:

• QP_initialize()

• QP_toplevel()

• QU_alloc_init_mem()

• QU_alloc_mem()

• QU_fdopen()

• QU_free_mem()

• QU_init_mem()

• QU_initio()

• QU_open()

• QU_stream_param()

10.3 Prolog Calling Foreign Code

10.3.1 Introduction

This section describes how to load and call programs written in C, Pascal, FORTRAN, or
Assembly language. This may be desirable in order to:

• combine Prolog with existing programs and libraries, thereby forming composite sys-
tems;

• interface with the operating system or other system level programs;
• speed up certain critical operations.

Examples showing the correct use of the foreign interface are found in the library direc-
tory. Examples of incrementally loading C, Pascal and FORTRAN code can be found in
Section 10.3.15 [fli-p2f-fex], page 402.

Foreign functions are loaded directly into the Prolog system by using one of the built-in
predicates load_foreign_executable/1 or load_foreign_files/2. These predicates load
executable images or object files into the address space of the running Prolog.

Before calling these predicates, you must prepare facts in the database that describe which
functions may be called by Prolog, the native language of each function, and the argument
types of each function. This information is used to link Prolog predicates and foreign
functions when loading the foreign code.

376 Quintus Prolog

The foreign language interface supports the direct exchange of Prolog’s atomic data types
(atoms, integers and floating-point numbers). The data is automatically converted between
Prolog’s internal representation and the internal representation of the foreign language.

The foreign language interface also supports passing any Prolog term to C and receiving
any Prolog term from C. A set of C functions is provided to type test and access terms
passed to C and to create new Prolog terms in C. For information on these functions see
Chapter 19 [cfu], page 1345.

Prolog procedures that are attached to foreign functions are determinate, in that they
succeed at most once for a given call and are not re-entered on backtracking. This imposes
no serious limitation, since it is always possible to divide a foreign function into the part to
be done on the first call and the part to be redone on backtracking. Backtracking can then
take place at the Prolog level where it is naturally expressed.

10.3.1.1 Summary of steps

Following is a summary of the steps that enable you to call foreign code from a Prolog
predicate:

In the Prolog code:

1. Declare the relevant object file(s), and the names of the functions defined in them, by
defining clauses for foreign_file/2 (see Section 10.3.3 [fli-p2f-lnk], page 380).

2. Specify the argument passing interface for each function by defining clauses for
foreign/3 (see Section 10.3.4 [fli-p2f-api], page 382).

3. Load the foreign files into Prolog by calling load_foreign_executable/1 or load_
foreign_files/2 (see Section 10.3.2 [fli-p2f-uso], page 376).

10.3.2 Using Shared Object Files and Archive Files

By default, foreign code must be packaged as shared object files for use with load_foreign_
executable/1. Archive files are used for statically linking foreign code to executables (see
Section 9.1 [sap-srs], page 337).

A shared object file is constructed from a list of object files (and libraries) using the system
linker. An archive file is constructed from a list of object files using special tools. In both
cases, the object files are generated using the foreign language compiler.

Linkers require special options to construct a shared object file, and may require that the
object files used to generate the shared object files be compiled with position independent
code or other special compiler options. Under Windows, Quintus Prolog also requires a
special compiler option for inclusion into archive files.

Let CC denote the compiler command, let SFLAGS denote the compiler options for shared
object files, let AFLAGS denote the compiler options for archive files, and let LFLAGS

Chapter 10: Foreign Language Interface 377

denote the linker options. The following table gives these options for the supported Quintus
Prolog platforms.

Platform CC AFLAGS SFLAGS LFLAGS

linux gcc (none) ‘-fPIC’ ‘-shared’

alpha cc (none) (none) ‘-taso -shared
-expect_unresolved
’Q?_*’’

hppa cc ‘+DAportable’ ‘+Z
+DAportable’

‘-b’

hppa gcc (none) ‘-fPIC’ ‘-shared’

sgi cc ‘-n32’ ‘-n32’ ‘-n32 -shared’

sgi gcc ‘-mabi=n32’ ‘-mabi=n32
-fPIC’

‘-mabi=n32 -shared’

sun4-5 cc (none) ‘-K pic’ ‘-G’

sun4-5 gcc (none) ‘-fPIC’ ‘-shared’

rs6000 cc (none) (none) ‘-bI:runtime-directory
/prolog.exp -e QP_entry
glue.o’

Windows cl ‘/MD’ ‘/MD’ ‘/dll’

To build a shared object file, say ‘mylib.so’, under UNIX, issue the following:

% CC SFLAGS -c SOURCE1

% ...
% CC SFLAGS -c SOURCEn

% ld -o mylib.so LFLAGS OBJECTS

When you build a shared object file, say ‘mylib.dll’, under Windows, a corresponding
import library will normally also be built. Consult the Windows documentation for details.
Issue the following:

C:\> cl SFLAGS /c SOURCE1

C:\> ...
C:\> cl SFLAGS /c SOURCEn

C:\> link /dll /out:mylib.dll OBJECTS

To build a archive file, say ‘mylib.a’, under UNIX, issue the following:

378 Quintus Prolog

% CC AFLAGS -c SOURCE1

% ...
% CC AFLAGS -c SOURCEn

% ar r mylib.a OBJECTS

% ranlib mylib.a

For archive files under Windows, a special naming convention is used: an extra ‘s’ is
placed before the ‘.lib’ extension, to distinguish archive files from import libraries (see
Section 9.2.5 [sap-rge-sos], page 359). To build an archive file, say ‘mylibs.lib’, issue the
following:

C:\> cl AFLAGS /c SOURCE1

C:\> ...
C:\> cl AFLAGS /c SOURCEn

C:\> link /lib /out:mylibs.lib OBJECTS

Platform specific notes:

alpha Foreign code must be compiled in native mode, i.e. not using the
‘-xtaso_short’ option.

rs6000 You must supply the file ‘glue.o’. See ‘QuintusDir
/generic/qplib3.5/structs/library/rs6000/structs_lnk.c’
for an example.

Windows
If building a DLL that calls any of the Quintus Prolog C API func-
tions exported from the Runtime Kernel DLL (‘qpeng.dll’) or the
Embedding Layer DLL (‘libqp.dll’) then you must also link in
the import libraries for these DLLs, which are named ‘qpeng.lib’
and ‘libqp.lib’ and reside in the directory ‘quintus-directory
\lib\ix86’. This is needed because DLLs must have their exter-
nal references resolved at link time rather than at load time, in
contrast to typical UNIX shared library implementations. Run the
‘qpvars.bat’ file to set-up the environment variables necessary for
the C-compiler and linker to fine the needed Quintus files.
The ‘makefile.win’ file in the Quintus Library directory ‘quintus-
directory\src\library’ contains an example of how to build a
DLL for dynamic loading into Quintus Prolog.

The following two sections describe the use of shared object files in Quintus Prolog:

10.3.2.1 Loading Foreign Executables

The built-in Prolog predicate load_foreign_executable/1 is used to load foreign functions
directly into Prolog from a shared object file and to attach selected functions and routines
in the loaded file to Prolog predicates.

Chapter 10: Foreign Language Interface 379

The example below demonstrates the use of these predicates to load code compiled using
the C compiler.

In the above example, ‘foreign’ (or ‘foreign.pl’) is a file containing facts that describe
how Prolog is to call the foreign functions. If it is given a filename without an extension
then it automatically appends the appropriate extension; thus in the example above, ‘math’
is specified to load ‘math.so’.

The loading process may fail if:

• the facts in the database (see Section 10.3.3 [fli-p2f-lnk], page 380) that describe how
to link foreign functions to Prolog procedures are incomplete;

• the foreign functions specified have already been loaded;
• the shared object file contains undefined symbols that could not be resolved when

loaded.

If the load does not complete successfully then an exception is raised and the call to load_
foreign_executable/1 fails; no change is made to the Prolog state. The load can be
retried once the problem has been corrected.

Once a foreign program is loaded, it cannot be unloaded or replaced, although you can
abolish or redefine any procedure attached to it.

Notes:

1. Any foreign file loaded via a load_foreign_executable/1 command that
is embedded in a file being loaded into Prolog will be sought relative to
the directory from which the file is being loaded. For example, if the file
‘/usr/fred/test.pl’ contains the command

:- load_foreign_executable(test).

then the file to be loaded would be ‘/usr/fred/test.so’.
2. When the linker is given a library such as ‘-lX11’, it will look for a “shared

library” version and if one exists record this library as a dependency in the
shared object file. load_foreign_executable/1 will then automatically
load this library (if not already loaded) when it loads the shared object
file.
If the linker is given a library for which no shared library exists, then
object files from the static library are incorporated into the shared object
file as needed. This means that any routine in a static library that is to be
accessed from Prolog must have some reference to it in one of the object
files being linked into the shared object file.

3. It is better to load one large shared object file than many small ones.
You may have several Prolog files that require routines from one shared
object file — in other words, a shared library. The shared library is only
loaded once, but different functions could be attached to Prolog predicates
in different calls to load_foreign_executable/1. For example, under

380 Quintus Prolog

UNIX, most of the files in the Prolog Library that load foreign code use
the shared library file ‘libpl.so’.

A description of the internal operation of the load_foreign_executable/1 predicate is
given in Section 10.3.12 [fli-p2f-lfe], page 401 to help solve more difficult foreign code loading
problems.

10.3.2.2 Loading Foreign Files

load_foreign_files/2 is an alternative interface to load_foreign_executable/1, which
constructs a shared object file from the list of object files and libraries given as its arguments
and then maps the resulting shared object file into the Prolog address space. In general
it is recommended that you take the responsibility for the construction of a shared object
file and then use load_foreign_executable/1 directly. Using load_foreign_files/2 is
slower because it has to invoke the linker to construct the shared object file everytime the
program is loaded. A further disadvantage is that the linker may not be available at runtime
on all systems.

Example:

% cc -c CFLAGS math.c

% cc -c CFLAGS other.c

% prolog

| ?- compile(foreign).

| ?- load_foreign_files([math,other],[’-lm’]).

Again, the file ‘foreign’ (or ‘foreign.pl’) contains the facts that describe how Prolog is
to call the foreign functions. If the extensions on filenames given in the first argument to
load_foreign_files/2 are omitted, the proper extension is automatically appended to
them.

10.3.3 Linking Foreign Functions to Prolog Procedures

When load_foreign_executable/1 or load_foreign_files/2 is called, it calls the hook
predicates foreign_file/2 and foreign/3 in the current source module. These should
have been previously defined by clauses of the form:

foreign_file(FileName, [Function1,Function2,...,FunctionN]).

foreign(Function1, Language, PredicateSpecification1).
foreign(Function2, Language, PredicateSpecification2).
...
foreign(FunctionN, Language, PredicateSpecificationN).

Chapter 10: Foreign Language Interface 381

Example:

foreign_file(math, [sin,cos,tan]).

foreign(sin, c, sin(+float,[-float])).
foreign(cos, c, cos(+float,[-float])).
foreign(tan, c, tan(+float,[-float])).

Please note: If a Prolog module includes foreign code, all relevant
foreign/[2,3] and foreign_file/2 facts should be loaded into that module
and the load_foreign_executable/1 or load_foreign_files/2 command
should be called from that module.

A foreign_file/2 fact lists the functions that will be provided by the associated (shared)
object file. When using load_foreign_files/2, a fact of this form must be provided for
each file specified in the ListOfFiles argument. The functions specified should be only those
that are to be attached to Prolog procedures. Supporting functions that will not be called
directly from Prolog should not be listed.

Each foreign/3 fact describes how a foreign function is to be attached to a Prolog proce-
dure. PredicateSpecification specifies the Prolog procedure and also the argument passing
interface (described below). A fact of this form must be provided for each function that is
to be attached to a Prolog procedure.

When load_foreign_executable/1 or load_foreign_files/2 is called, the specified files
are loaded into the running Prolog and then all the specified Prolog procedures are abolished
and redefined to be links to the foreign functions. Calling one of the Prolog procedures now
results in a call to a foreign function.

Prolog procedures can be directly linked to library functions. Note, however, that some
functions shown in the library documentation are actually C macros (found in included ‘.h’
files). In this case, the simplest approach is to write a C function that uses the macro and
then link to that function.

You may abolish or redefine (using compile/1) any procedure that has been attached to a
foreign function. This severs the link between the Prolog predicate and the foreign function.
It is not possible to reestablish this link.

The foreign_file/2 and foreign/3 facts must be consistent whenever load_foreign_
executable/1 or load_foreign_files/2 is called. They are, however, not used after this
point and may be abolished, if desired.1.

The load_foreign_executable/1 and load_foreign_files/2 commands can be used any
number of times in a Prolog session to load different foreign programs. For example:

1 See example in the reference page for foreign/[2,3].

382 Quintus Prolog

| ?- compile(f1),

load_foreign_executable(f1),

abolish([foreign/3, foreign_file/2]).

| ?- compile(f2),

load_foreign_executable(f2),

abolish([foreign/3, foreign_file/2]).

Each compile/1 installs a new set of facts describing a set of functions to be loaded by load_
foreign_executable/1. Unless you abolish all foreign/3 and foreign_file/2 facts be-
fore each compilation, Prolog will warn you that foreign/3 and foreign_file/2 have been
previously defined in another file.

A better way to do this is to insert the call to load_foreign_executable into the file
that defines foreign_file/2 and foreign/3 as an embedded command. For example, you
could add the following command to the end of the file ‘f1.pl’:

:- load_foreign_executable(f1),
abolish([foreign/3, foreign_file/2]).

so that compiling ‘f1.pl’ will automatically load ‘f1.so’. This embedded command will also
work when building a stand-alone program, as described in Section 9.1 [sap-srs], page 337.

10.3.4 Specifying the Argument Passing Interface

The argument passing interface is specified by defining facts for foreign/3 of the form:

foreign(+Routine, +Language, +PredicateSpecification)

Routine is an atom that names a foreign code routine and Language is an atom (either c,
pascal, or fortran) that names the language in which the routine is written.

Please note: Assembly code can be loaded if it emulates the exact calling con-
ventions of one of C, FORTRAN, or Pascal. Language is then chosen, accord-
ingly, to be one of c, fortran, or pascal.

PredicateSpecification specifies the Prolog name given to the foreign code routine and how
its arguments will be passed to and from the foreign code routine.

PredicateSpecification is of the form:

PredicateName(ArgSpec1, ArgSpec2, ...ArgSpecN)

where PredicateName is the name of the Prolog predicate (an atom) and each ArgSpec is an
argument specification for each argument of the predicate. An ArgSpec informs the Prolog
system how to pass or receive a Prolog term in the corresponding argument position.

Prolog checks the types of the input arguments; a foreign function call will raise an exception
if any input argument is not of the right type.

Chapter 10: Foreign Language Interface 383

If the argument passed is an atomic object then the interface automatically converts between
Prolog’s representation of the data and the representation expected by the foreign function.
Thus the external function does not need to know how Prolog represents atoms, integers, or
floats in order to communicate with Prolog. This feature simplifies the integration of foreign
code with Prolog; in particular, it makes it easier to interface directly with already-written
functions in libraries and other programs. It also allows for compatibility with later versions
of Quintus Prolog and with versions of Quintus Prolog running on other hardware.

Please note: The only atomic object that cannot be passed directly through
the foreign interface is a db reference. db references can be passed to foreign
code using the general term passing mechanism using +term and -term. You
can take apart and build db references in foreign language using the QP_get_
db_reference() and QP_put_db_reference() functions.

On the other hand, generic Prolog terms passed to a foreign function (using +term) are not
converted to any representation in the foreign language. Instead the foreign function gets a
reference to a Prolog term. A set of functions/macros is provided to type test, access and
create Prolog terms through these references (see Chapter 19 [cfu], page 1345). Similarly
when a generic term is returned (using -term or [-term]) from a foreign function there
is no conversion of any data structures in the foreign language into an equivalent Prolog
representation. The foreign function has to return a reference to a Prolog term, which it
originally got from Prolog or from one of the functions/macros provided to manipulate Pro-
log terms (the QP_put* and QP_cons* families of functions) Further details in Section 10.3.8
[fli-p2f-trm], page 395.

Arguments are passed to foreign functions in the same order as they appear in the Prolog
call, except for the return value. At most one “return value” argument can be specified;
that is, there can be only one [-integer], [-float], [-atom], [-string], [-string(N)],
or [-address(typename)] specification. There need not be any “return value” argument,
in which case the value returned by the function is ignored. Both input and output speci-
fications cause data to be passed to the foreign function (except of course for the “return
value” argument, if present). Each input argument is appropriately converted and passed,
by reference or by value, depending on the language’s calling convention, and each output
argument is passed as a pointer through which the foreign function will send back the result.
Note that for C, input arguments are always passed by value.

Prolog assumes that a foreign function will return output arguments of the specified types;
if it does not, the result is unpredictable. Normally, unbound variables will be supplied in
the Prolog goal for all the output argument positions. However, any value may be supplied
for an output argument; when the foreign function has been completed, its outputs are
unified with the values supplied and a failure to unify results in the failure of the Prolog
goal.

Detailed information about passing particular data types through the foreign interface can
be found in Section 10.3.5 [fli-p2f-int], page 384 through Section 10.3.9 [fli-p2f-poi], page 397.
Examples showing the correct use of the foreign interface are presented in Section 10.3.15
[fli-p2f-fex], page 402.

384 Quintus Prolog

10.3.5 Passing Integers

In previous releases of Quintus Prolog, integers were represented with 29 bits. Since most
languages represent integers using 32 bits, errors could occur when passing very large pos-
itive or negative numbers between Prolog and foreign functions. In release 3 and later
releases of Quintus Prolog the precision of integers has been raised to 32 bits; hence, these
errors no longer occur.

Please note: Quintus Prolog Release 3 uses 32 bit integers and pointers inter-
nally. On 64 bit platforms, long integers and pointers are truncated to 32 bits
when they are passed to Prolog, and sign-extended when passed in the other
direction.

10.3.5.1 Passing an Integer to a Foreign Function

Prolog: +integer
C: long int x
Pascal: x: integer
FORTRAN: integer x

The argument must be instantiated to an integer, otherwise the call will raise an exception.
The Prolog integer is converted to a long integer and passed to the foreign function.

10.3.5.2 Returning an Integer from a Foreign Function

Prolog: -integer
C: long int *x;

*x = ...
Pascal: var x: integer

x := ...
FORTRAN: integer x

x = ...

A pointer to a long integer is passed to the function. It is assumed that the function will
overwrite this integer with its result. When the foreign function returns, the integer being
pointed to is converted to a Prolog integer and unified with the corresponding argument of
the Prolog call. The argument can be of any type; if it cannot be unified with the returned
integer, the call fails. If the foreign function does not overwrite the integer, the result is
undefined.

Chapter 10: Foreign Language Interface 385

10.3.5.3 An Integer Function Return Value

Prolog: [-integer]
C: long int f(...)

{
long int x;
return x;

}
Pascal: function f(...): integer;

var x: integer;
begin
f := x;

end
FORTRAN: integer function f(...)

integer x
f = x

end

No argument is passed to the foreign function. The return value from the function is
assumed to be a long integer. It is converted to a Prolog integer and unified with the
corresponding argument of the Prolog call. The argument can be of any type; if it cannot
be unified with the returned integer, the call fails.

10.3.6 Passing Floats

In previous releases of Quintus Prolog, floating-point numbers had less precision than single-
precision floats in other languages. The result was a loss of precision when floats were passed
between Prolog and foreign functions. In release 3 and later releases of Quintus Prolog the
precision of floating-point numbers has been raised to 64 bits (double precision); hence,
these errors no longer occur.

Quintus Prolog release 3 also supports the passing of floating point numbers explicitly as
doubles or singles.

10.3.6.1 Passing a Float to a Foreign Function

Prolog: +float
C: double x;
Pascal: x: real
FORTRAN: real x

The argument must be instantiated to an integer or a float; otherwise the call will raise
an exception. The Prolog number is converted to a 32-bit single-precision (FORTRAN) or
a 64-bit double-precision (C or Pascal), float and passed to the foreign function. Many C
compilers will allow the parameter declaration to be float instead of double because they
always convert single-precision floating-point arguments to double-precision. However, C

386 Quintus Prolog

compilers conforming to the new ANSI standard will not do this, so it is recommended that
double be used.

Prolog: +single
ANSI C: float x;
FORTRAN: real x

The argument must be instantiated to an integer or a float; otherwise the call will raise an
exception. The Prolog number is converted to a 32-bit single-precision float and passed to
the foreign function. +single can also be used to interface Prolog to any foreign function
where you know that the value passed is going to be picked up as a 32-bit float.

Prolog: +double
C: double x;
Pascal: real x

The argument must be instantiated to an integer or a float; otherwise the call will raise an
exception. The Prolog number is converted to a 64-bit double-precision (C or Pascal) float
and passed to the foreign function. +double can also be used to interface Prolog to any
foreign function where you know that the value passed is going to be picked up as a 64-bit
float.

10.3.6.2 Returning a Float from a Foreign Function

Prolog: -float
C: float *x;

*x = ...
Pascal: var x: real

x := ...
FORTRAN: real x

x = ...

A pointer to a single-precision float is passed to the function. It is assumed that the function
will overwrite this float with its result. When the foreign function returns, the float is
converted to a Prolog float and unified with the corresponding argument of the Prolog call.
The argument can be of any type; if it cannot be unified with the returned float, the call
fails. If the foreign function does not overwrite the float, the result is undefined.

Prolog: -single
C: float *x;

*x = ...
Pascal: var x: real

x := ...
FORTRAN: real x

x = ...

A pointer to a single-precision float is passed to the function. It is assumed that the function
will overwrite this float with its result. When the foreign function returns, the float is

Chapter 10: Foreign Language Interface 387

converted to a Prolog float and unified with the corresponding argument of the Prolog call.
The argument can be of any type; if it cannot be unified with the returned float, the call
fails. If the foreign function does not overwrite the float, the result is undefined.

Prolog: -double
C: double *x;

*x = ...
Pascal: var x: real

x := ...

A pointer to a double-precision float is passed to the function. It is assumed that the
function will overwrite this float with its result. When the foreign function returns, the float
is converted to a Prolog float and unified with the corresponding argument of the Prolog
call. The argument can be of any type; if it cannot be unified with the returned float, the
call fails. If the foreign function does not overwrite the float, the result is undefined.

10.3.6.3 A Floating-point Function Return Value

Prolog: [-float]
C: double f(...)

{
double x;
return x;

}
Pascal: function f(...): real;

var x: real;
begin
f := x;

end
FORTRAN: real function f(...)

real x
f = x

end

No argument is passed to the foreign function. The return value from the function is
assumed to be a single-precision (FORTRAN) or double-precision (C and Pascal) floating
point number. It is converted to a Prolog float and unified with the corresponding argument
of the Prolog call. The argument can be of any type; if it cannot be unified with the returned
float, the call fails.

Many C compilers will allow the function return value to be float instead of double because
they always convert single-precision floating-point arguments to double-precision. However,
C compilers conforming to the new ANSI standard will not do this, so it is recommended
that double be used.

388 Quintus Prolog

Prolog: [-single]
ANSI C: float f(...)

{
float x;
return x;

}
Pascal: function f(...): real;

var x: real;
begin

f := x;
end

FORTRAN: real function f(...)
real x
f = x

end

No argument is passed to the foreign function. The return value from the function is
assumed to be a single-precision (FORTRAN) or double-precision (C and Pascal) floating
point number. It is converted to a Prolog float and unified with the corresponding argument
of the Prolog call. The argument can be of any type; if it cannot be unified with the returned
float, the call fails.

Prolog: [-double]
C: double f(...)

{
double x;
return x;

}
Pascal: function f(...): real;

var x: real;
begin

f := x;
end

FORTRAN: real function f(...)
real x
f = x

end

No argument is passed to the foreign function. The return value from the function is
assumed to be a single-precision (FORTRAN) or double-precision (C and Pascal) floating
point number. It is converted to a Prolog float and unified with the corresponding argument
of the Prolog call. The argument can be of any type; if it cannot be unified with the returned
float, the call fails.

Chapter 10: Foreign Language Interface 389

10.3.7 Passing Atoms

The foreign function interface allows Prolog atoms to be passed to functions either in a
canonical form as unsigned integers, or as pointers to character strings.

For each Prolog atom there is a single canonical representation. Programs can rely on the
property that identical atoms have identical canonical representations. Note, however, that
the canonical form of an atom is not necessarily identical across different invocations of the
program. This means that canonical atom representations should not be used in files or
interprogram communication. For these purposes strings should be used. Foreign functions
can store canonical atoms in data structures and pass them around and then back to Prolog,
but they should not attempt any other operations on them.

Strings passed from Prolog to foreign functions should not be overwritten. Strings passed
back from foreign functions to Prolog are automatically copied by Prolog if necessary. Thus
the foreign program does not have to retain them and can reuse their storage space as
desired.

There are three ways of passing atoms through the foreign interface:

1. as canonical integers (to or from any language): see Section 10.3.7.1 [fli-p2f-atm-cat],
page 389.

2. as null-terminated strings (to or from C): see Section 10.3.7.2 [fli-p2f-atm-spc], page 390.
3. as fixed-length, blank-padded strings (to or from FORTRAN or Pascal): see Sec-

tion 10.3.7.2 [fli-p2f-atm-spc], page 390.

10.3.7.1 Passing Atoms in Canonical Form

This section deals with passing atoms in canonical form, that is, as unsigned integers.

Prolog: +atom
C: QP_atom x;
Pascal: x: integer
FORTRAN: integer x

The argument must be instantiated to an atom, otherwise the call will signal an error. An
unsigned integer representing the Prolog atom is passed to the foreign function. Atoms
can be converted to strings through the functions QP_string_from_atom() or QP_padded_
string_from_atom() (see Section 10.3.7.4 [fli-p2f-atm-a2s], page 393).

390 Quintus Prolog

Prolog: -atom
C: QP_atom *x

*x = ...
Pascal: var x: integer

x := ...
FORTRAN: integer x

x = ...

A pointer to an unsigned integer is passed to the function. It is assumed that the func-
tion will overwrite this unsigned integer with its result. This result should be a canonical
representation of an atom already obtained from Prolog, or one generated through the
function QP_atom_from_string() or the function QP_atom_from_padded_string() (see
Section 10.3.7.4 [fli-p2f-atm-a2s], page 393). Returning an arbitrary integer will have un-
defined results. When the foreign function returns, the atom represented by the unsigned
integer being pointed to is unified with the corresponding argument of the Prolog call. The
argument can be of any type; if it cannot be unified with the returned atom, the call fails.
If the foreign function does not overwrite the unsigned integer, the result is undefined.

Prolog: [-atom]
C: QP_atom f(...)

{
QP_atom x;
return x;

}
Pascal: function f(...): integer;

var x: integer;
begin

f = x;
end

FORTRAN: integer function f(...)
integer x
f = x

end

No argument is passed to the foreign function. The return value from the function is assumed
to be an unsigned integer, which should be a canonical representation of an atom already
obtained from Prolog, or one generated by one of the functions QP_atom_from_string() or
QP_atom_from_padded_string() (see Section 10.3.7.4 [fli-p2f-atm-a2s], page 393). Return-
ing an arbitrary integer will have undefined results. The atom represented by the unsigned
integer is unified with the corresponding argument of the Prolog call. The argument can
be of any type; if it cannot be unified with the returned atom, the call fails.

10.3.7.2 Passing Atoms as Strings between Prolog and C

This section describes passing atoms as pointers to null-terminated character strings. This
is the way to pass atoms as strings between Prolog and C. For FORTRAN and Pascal, the

Chapter 10: Foreign Language Interface 391

specification of string arguments is different than for C; see Section 10.3.7.3 [fli-p2f-atm-spf],
page 392.

Prolog: +string
C: char *x
Pascal: Not supported
FORTRAN: Not supported

The argument must be instantiated to an atom, otherwise the call will signal an error. A
pointer to a null-terminated string of characters is passed to the C function. This string
must not be overwritten by the C function.

Prolog: -string
C: char **x;

*x = ...
Pascal: Not supported
FORTRAN: Not supported

A pointer to a character pointer is passed to the C function. It is assumed that C will
overwrite this character pointer with the result it wishes to return. This result should be a
pointer to a null-terminated string of characters. When the C function returns, the atom
that has the printed representation specified by the string is unified with the corresponding
argument of the Prolog call. The argument can be of any type; if it cannot be unified with
the returned atom, then the call fails. If the C function does not overwrite the character
pointer, then the result is undefined.

Prolog copies the string if required, so that it is not necessary for the C program to worry
about retaining it. Beware, however, that the string must not be an auto, because in this
case its storage may be reclaimed after the foreign function exits but before Prolog has
managed to copy it.

Prolog: [-string]
C char *f(...)

{
char *x;
return x;

}
Pascal: Not supported
FORTRAN: Not supported

No argument is passed to C. The return value from the C function is assumed to be a
character pointer pointing to a null-terminated string of characters. The atom that has the
printed representation specified by the string is unified with the corresponding argument of
the Prolog call. The argument can be of any type; if it cannot be unified with the returned
atom, the call fails.

Prolog copies the string if required, so that it is not necessary for the C program to worry
about retaining it. Beware, however, that the string must not be an auto, because in this

392 Quintus Prolog

case its storage may be reclaimed after the foreign function exits but before Prolog has
managed to copy it.

10.3.7.3 Passing Atoms as Strings to/from Pascal or FORTRAN

This section describes passing atoms as pointers to fixed-length, blank-padded arrays of
characters. This is the way to pass atoms as strings between Prolog and Pascal or FOR-
TRAN. See Section 10.3.7.2 [fli-p2f-atm-spc], page 390 for how to pass atoms as null-
terminated strings between Prolog and C.

Implementation note: The foreign interface makes some assumptions about
how string parameters are handled in Pascal and FORTRAN compilers. If a
given Pascal or FORTRAN compiler has different conventions for the handling
of string parameters, the interface will not work. The conventions are:

• A string result is represented by a pointer to the character array followed
by its size. These two values are passed before all the other arguments.

• Other string parameters are also represented by a pointer to the characters
and a size. In this case the pointer occupies the normal position in the
argument list, and the size is passed after all the other arguments.

Prolog: +string(N)
C: Not supported
Pascal: type stringN = packed array [1..N] of char;

var x: stringN
FORTRAN: character*N

The argument must be instantiated to an atom, otherwise the call will signal an error. A
character array, containing a copy of the characters of the atom, is passed by reference to
the function. The text is truncated on the right or padded on the right with blanks to
length N.

Note that the Pascal parameter is call-by-reference (var), the same as for the -string(N)
case below.

Prolog: -string(N)
C: Not supported
Pascal: type stringN = packed array [1..N] of char;

var x: stringN
FORTRAN: character*N

A pointer to a character array of length N, initialized to all blanks, is passed to the function.
It is assumed that the function will fill in this array. When the function returns, the atom
that has the printed representation specified by the character array is unified with the
corresponding argument of the Prolog call.

Chapter 10: Foreign Language Interface 393

Trailing blanks in the character array are ignored. Thus if the foreign function sets a
character array of length 6 to ‘atom ’, Prolog will convert the result to the atom atom.
Leading blanks are significant: if the foreign function returns ‘ this ’, the resulting atom
is ’ this’.

The argument can be of any type; if it cannot be unified with the returned atom, then the
call fails. If the function does not fill in the character array, then the result is the null atom
’’.

Prolog: [-string(N)]
C: Not supported
Pascal: Not Supported
FORTRAN: character*N function

This argument specification is valid only for FORTRAN. The FORTRAN function result
is initialized to a blank-filled character array of length N. It is assumed that the function
will fill this array. The atom that has the printed representation specified by the character
array is unified with the corresponding argument of the Prolog call.

Trailing blanks in the character array are ignored, as for the -string(N) case above.

The argument can be of any type; if it cannot be unified with the returned atom, then the
call fails. If the function does not fill in the character array, then the result is the null atom
’’.

10.3.7.4 Converting between Atoms and Strings

Four functions are provided to enable foreign functions to translate from one representation
of an atom to another. The first two functions are most useful for C: they convert between
canonical atoms and null-terminated C strings. The other two functions are most useful for
Pascal and FORTRAN: they convert between canonical atoms and blank-padded character
arrays.

QP_string_from_atom(atom)

atom QP_atom (that is, an unsigned integer passed by value)

Returns: Pointer to a null-terminated string of characters (C convention for strings)

Returns a pointer to a string representing atom. This string should not be overwritten by
the foreign function.

QP_atom_from_string(string)

string Pointer to a null-terminated string of characters (C convention for strings)

Returns: QP_atom

394 Quintus Prolog

Returns the canonical representation of the atom whose printed representation is string.
The string is copied, and the foreign function can reuse the string and its space.

QP_padded_string_from_atom(pointer_to_atom, pointer_to_padded_string,
pointer_to_length)

pointer_to_atom
Pointer to a QP_atom (that is, an unsigned integer passed by reference)

pointer_to_padded_string
Pointer to a character array

pointer_to_length
Pointer to an integer (that is, an integer passed by reference)

Returns: integer

Fills in the character array of length *pointer_to_length with the string representation
of the atom. The string is truncated or blank-padded to *pointer_to_length if the length
of the atom is greater than or less than *pointer_to_length, respectively. The length of
the atom (not *pointer_to_length) is returned as the function value.

QP_atom_from_padded_string(pointer_to_atom, pointer_to_padded_string,
pointer_to_length)

pointer_to_atom
Pointer to a QP_atom (that is, an unsigned integer passed by reference)

pointer_to_padded_string
Pointer to a character array

pointer_to_length
Pointer to an integer (that is, an integer passed by reference)

Returns: integer

Sets *pointer_to_atom to the canonical representation of the atom whose printed repre-
sentation is the string (less any trailing blanks) contained in the character array of length
*pointer_to_length. Returns the length of the resulting atom (not *pointer_to_length)
as the function value.

Below are C specifications of these functions. Note that the arguments of the last two
functions are passed by reference. Hence, the last two functions can be called directly from
Pascal or FORTRAN. The first two functions are designed to be called from C, in which
all parameters are passed by value.

Chapter 10: Foreign Language Interface 395

char * QP_string_from_atom(atom)
QP_atom atom;

QP_atom QP_atom_from_string(string)
char *string;

int QP_padded_string_from_atom(atom,string,length)
QP_atom *atom;
char *string;
int *length;

int QP_atom_from_padded_string(atom,string,length)
QP_atom *atom;
char *string;
int *length;

Canonical atoms are particularly useful as constants, to be used in passing back results from
foreign functions. The above functions can be used to initialize tables of such constants.

These functions can only be called from languages other than C if those languages have
a C-compatible calling convention for passing integers and pointers. For example, this is
true for both Pascal and FORTRAN running under UNIX 4.2 BSD. See the appropriate
Quintus Prolog Release Notes for any further details pertaining to your system.

10.3.8 Passing Prolog Terms

This section describes passing Prolog terms to a foreign function and receiving Prolog terms
from a foreign function. For the current release this interface is supported only for C.

There is a difference between passing atomic objects (atoms, floats, db reference and inte-
gers) and generic Prolog terms through the foreign interface. Generic Prolog terms passed
to a C function (using +term) are not converted to any representation in C. Instead the
foreign function in C gets a reference to the Prolog term, which is of type QP_term_ref
(defined in ‘<quintus/quintus.h>’). Similarly when a generic term is returned (using -
term or [-term]) from a foreign function there is no conversion of any data structures in
the foreign language into an equivalent Prolog representation. The foreign function has to
return a reference to a Prolog term, which it originally got from Prolog or from one of the
functions/macros provided to manipulate Prolog terms such as the QP_put* and QP_cons*
families of functions.

When Prolog terms are referred to from C, what the C function holds is an indirect reference
to the Prolog term. There is a reason for this indirection. Prolog terms live in the Prolog
global stack, and migrate when Prolog does garbage collection or stack shifting. If the C
function held onto a direct reference to a Prolog term it would become invalid after one of
these memory management operations. Prolog cannot update and relocate these references

396 Quintus Prolog

that C is holding onto since it is impossible to distinguish between Prolog references and
other integers and pointers that C holds onto.

The C code should also be aware of the scope (or lifetime) of the references to Prolog terms
passed to it. Once you return to Prolog from a call to a foreign function, all the references
to Prolog terms passed to the foreign function are invalid. All references to terms created
by the foreign function are also invalid.

WARNING: You should not store references to prolog terms into global vari-
ables in the foreign language.

The scope of references to terms are more restricted when C calls Prolog. If Prolog returns
a term as a result of a C call to a Prolog predicate, that term is valid only till the call
for the next solution from that Prolog predicate (using QP_next_solution()). This also
holds true for terms created in C. If you create a term after one call to a Prolog predicate
then the reference to that term is only valid till the call for next solution from that Prolog
predicate. .

10.3.8.1 Passing a Prolog term to a Foreign Function

Prolog: +term
C: QP_term_ref

The argument can be any Prolog term. The C function gets an object of type QP_term_
ref (defined in ‘<quintus/quintus.h>’). QP_term_type() and associated functions can
be used to test the type of the term. And the QP_get() functions can be used to access the
value associated with the term. QP_unify() can be used to used to unify terms or subterms
of terms passed to C.

10.3.8.2 Returning a Prolog term from a Foreign Function

Prolog: -term
C: QP_term_ref x;

An initialized QP_term_ref (defined in ‘<quintus/quintus.h>’) is passed to the C function.
It is assumed that the function will assign a term to this QP_term_ref using one of the QP_
put() functions. When the foreign function returns, the term that the QP_term_ref refers
to is unified with the corresponding argument of the Prolog call. The argument can be of
any type; if it cannot be unified with the referred term, the call will fail.

Chapter 10: Foreign Language Interface 397

10.3.8.3 A Prolog term returned as a value of a Foreign Function

Prolog: [-term]
C: QP_term_ref f(...);

{
QP_term_ref ref = QP_new_term_ref();
return ref;

}

No argument is passed to the foreign function. The return value from the function is assumed
to be a reference to a Prolog term of type QP_term_ref. The term that the QP_term_ref
refers to is unified with the corresponding argument of the Prolog call. The argument can
be of any type; if it cannot be unified with the referred term, the call will fail.

10.3.9 Passing Pointers

Pointers should be passed through the foreign interface using the specification

address(typename)

They could also be passed as integers, but there are two added advantages for using the
address specification. The first is that a stand-alone tool could check for consistency be-
tween the foreign declarations and the foreign code. The second advantage is for possible
optimizations on platforms whose pointers require more than 29 bits.

The typename is there so that a stand-alone tool could know what kind of argument to pass
or what kind of result to demand and typename should be the name used in the foreign
language to identify the type of object named by the pointer. It is sufficiently important to
be able to check the foreign/3 declarations that Prolog will issue a warning if the typename
is not an atom, but it makes no other use of the typename. The typename can even be
omitted entirely, using address as an argument specification.

is the argument type desired.]

Note that programs should not rely on numeric relations between foreign language pointers
being true of the Prolog integers to which they are converted.

See Section 10.3.15.4 [fli-p2f-fex-poi], page 410 for an example of passing pointers through
the foreign interface. For further examples, see library(charsio) and library(vectors).

Prolog: +address(typename)
C: typename *x
Pascal: type ptr = ^typename;

x: ptr
FORTRAN: typename x(*)

The argument must be instantiated to an integer, otherwise the call fails. If the argument
is 0, the foreign function will receive the NULL pointer. Otherwise the argument will be

398 Quintus Prolog

converted to a pointer. The coding is system-dependent. All you can rely on is that NULL
and “malloc() pointers” can be passed from the foreign language to Prolog and that Prolog
can then pass the same pointers back to the foreign language.

FORTRAN programmers will note that +address(integer) and +address(float) param-
eters are useful for passing arrays to FORTRAN, but since FORTRAN has no pointer data
type (and no equivalent of malloc(3)), address results are not possible. Therefore arrays
cannot be constructed in FORTRAN and then passed to Prolog; they must be constructed
in C or Pascal. Section 10.3.15.4 [fli-p2f-fex-poi], page 410 gives an example where arrays
are constructed in C and later passed to a FORTRAN routine.

The typename must be an atom, but is otherwise ignored by Prolog. It is present for the
benefit of stand-alone tools, which could check

that your Prolog foreign/3 facts are compatible with your C source files.

Prolog: -address(typename)
C: typename **x;

*x = ...
Pascal: type ptr = ^typename;

var x: ptr;
x = ...

FORTRAN: Not supported

A pointer to a pointer is passed to the foreign function. It is assumed that the function will
overwrite this variable with the result it wishes to return. This result should be either the
NULL pointer or a malloc() pointer. When the function returns, the result is converted to
a Prolog integer, which is then unified with the corresponding argument of the Prolog call.
The argument can be of any type; if it cannot be unified with the returned integer, the call
fails. If the foreign function does not set the result, the result is undefined.

The typename must be an atom, but is otherwise ignored by Prolog. It is present for the
benefit of stand-alone tools, which could check

that your Prolog foreign/3 facts are compatible with your C source files.

Chapter 10: Foreign Language Interface 399

Prolog: [-address(typename)]
C: typename *f(...)

{
typename *x;
return x;

}
Pascal: type ptr = ^typename;

function f(...): ptr;
var x: ptr;
begin

f := x;
end

FORTRAN: Not supported

No argument is passed to the foreign function. The return value from the foreign function
is assumed to be a pointer to an object of the type indicated by typename. This pointer
should be either NULL or a malloc() pointer. It is converted to a Prolog integer, which is
then unified with the corresponding argument of the Prolog call. The argument can be of
any type; if it cannot be unified with the returned integer, the call fails.

The typename must be an atom, but is otherwise ignored by Prolog. It is present for the
benefit of stand-alone tools, which could check

that your Prolog foreign/3 facts are compatible with your C source files.

Prolog: +address
C: char *x
Pascal: type charp = ^char;

x: charp
FORTRAN: Not supported

This is equivalent to +address(char) (see +address(typename) above). Note that
+address(char) is not useful in FORTRAN because FORTRAN will not accept a pointer
to a character array as representing that array. Therefore +address is not allowed in FOR-
TRAN. To pass a character array to FORTRAN use the +string(N) argument type as
described in Section 10.3.7.3 [fli-p2f-atm-spf], page 392.

Prolog: -address
C: char **x

*x = ...
Pascal: type charp = ^char;

var x: charp;
x = ...

FORTRAN: Not supported

This is equivalent to -address(char) (see -address(typename) above).

400 Quintus Prolog

Prolog: [-address]
C: char *f(...)

{
char *x;
return x;

}
Pascal: type charp = ^char;

function f(...): charp;
var x: charp;
begin

f := x;
end

FORTRAN: Not supported

This is equivalent to [-address(char)] (see [-address(typename)] above).

10.3.10 Important Prolog Assumptions

For information about memory allocation, see the discussion of PROLOGINITSIZE,
PROLOGMAXSIZE and PROLOGINCSIZE in Section 8.12 [ref-mgc], page 256.

10.3.11 Debugging Foreign Code Routines

In order to debug foreign code in conjunction with Prolog code, it is necessary to statically
link your program together with the Development Kernel as discussed in Section 9.1 [sap-
srs], page 337. The resulting executable can then be debugged using any standard debugger,
such as gdb(1).

Note that it is often useful for debugging purposes to build an application that is linked
with QUI, since then both the Prolog and the non-Prolog parts of the application can be
debugged simultaneously, using the QUI debugger and the standard debugger respectively.
See Section 9.1.10 [sap-srs-qui], page 354 for how to do this. If you do this, you may find
that the standard debugger gets affected by the way that QUI uses the SIGIO signal. Most
standard debuggers provide a way of ignoring specified signals, which is what is needed here.
For example, under gdb(1) the command ‘handle SIGIO noprint nostop pass’ should be
issued before starting up the QUI with the ‘run’ command.

WARNING: Under source-level debuggers such as gdb(1), single stepping out
of a function that was called from Prolog does not work properly. You should
always ‘continue’ in such a situation.

Chapter 10: Foreign Language Interface 401

10.3.12 Implementation of load_foreign_executable/1

This section gives some information on the implementation of load_foreign_
executable/1, which may help in solving more difficult foreign code loading problems.
This information applies when the foreign code is being loaded dynamically on top of the
Development System. Refer to Section 9.1 [sap-srs], page 337 for information on how foreign
code is linked into a stand-alone program.

load_foreign_executable/1 loads a shared object file by calling the library function
dlopen(3) (UNIX) or LoadLibrary() (Windows). This automatically loads any shared
libraries that are stored as dependencies in the file.

10.3.13 Implementation of load_foreign_files/2

load_foreign_files/2 is implemented by constructing a shared object file and then using
the same mechanism to load the shared object file as for load_foreign_executable/1.
Under UNIX, the shared object file is constructed by the linker with a command similar to:

% ld -G -o /tmp/qpnnnn.so LinkFile ListOfFiles ListOfLibraries -lc

Under Windows, the command is similar to:

C:\> link -dll -out:C:\tmp\qpnnnn.dll LinkFile ListOfFiles
ListOfLibraries qpeng.lib libqp.lib -defaultlib:msvcrt

If any libraries are specified in ListOfLibraries then a LinkFile is generated that references
all routines to be accessed by Prolog so that, if any of the specified libraries are static
libraries, all the relevant object files will be included in the shared object file. In many
cases no additional libraries are required and so ListOfLibraries = [] and no LinkFile is
generated.

Note that when using languages other than C, various specific libraries may need to be
included (such as ‘-lpc’ or ‘-lF77’).

10.3.14 Library support for linking foreign code

The Structs and Objects packages (see Chapter 13 [str], page 655 and Chapter 14 [obj],
page 665) allow Prolog to hold pointers to C data structures and arrays and access and
store into fields in those data structures in a very efficient way.

Support for translating between Prolog terms and C data structures is provided by
library(terms) and lists can be mapped to C arrays with library(vectors). These
are useful when you want to pass a complete copy of the data structure over to the other
language. If you only want to access parts of a structure then the Structs and Objects
packages are recommended.

402 Quintus Prolog

10.3.15 Foreign Code Examples: UNIX

This section presents examples of incrementally loading C, Pascal and FORTRAN code into
Prolog, using the foreign language interface under UNIX.

10.3.15.1 C Interface

If the C file ‘c.c’ is compiled as shown below, then loading the Prolog file as shown will
produce the indicated results.

Chapter 10: Foreign Language Interface 403

c.c

/* c1(+integer, [-integer]) */
long int c1(a)
long int a;
{

return(a+9);
}

/* c2(-integer) */
void c2(a)
long int *a;
{

*a = 99;
}

/* c11(+atom, [-atom]) */
QP_atom c11(a)
QP_atom a;
{

return(a);
}

/* c21(+atom, -atom) */
void c21(a,b)
QP_atom a;
QP_atom *b;
{

*b = a;
}

/* c3(+float, [-float]) */
double c3(a)
double a;
{

return(a+9.0);
}
/* c4(-float) */
void c4(a)
float *a;
{

*a = 9.9;
}
/* c5(string, [-string]) */
char * c5(a)
char * a;
{

return(a);
}
/* c6(-string) */
void c6(a)
char * *a;
{

*a = "99";
}

404 Quintus Prolog

At the command level:

% cc -c c.c

Produces the object file.

c.pl

foreign_file(c, [c1, c2, c11, c21, c3, c4, c5, c6]).

foreign(c1, c, c1(+integer, [-integer])).
foreign(c2, c, c2(-integer)).
foreign(c11, c, c11(+atom, [-atom])).
foreign(c21, c, c21(+atom, -atom)).
foreign(c3, c, c3(+float, [-float])).
foreign(c4, c, c4(-float)).
foreign(c5, c, c5(+string,[-string])).
foreign(c6, c, c6(-string)).

:- load_foreign_files([c], []),
abolish(foreign_file,2),
abolish(foreign,3).

Loading the Prolog file (see the reference pages for foreign/3, foreign_file/2 and load_
foreign_files/2) into Prolog and invoking the following query gives the following results:

| ?- c1(1,X1), c2(X2), c11(foo,X11), c21(foo,X21), c3(1.5,X3), c4(X4),

c5(foo,X5), c6(X6).

X1 = 10,
X2 = 99,
X11 = X21 = X5 = foo,
X3 = 10.5,
X4 = 9.89999,
X6 = ’99’ ;

no

10.3.15.2 Pascal Interface

If the Pascal file ‘p.p’ is compiled as shown below, then loading the Prolog file as shown
will produce the indicated results.

Chapter 10: Foreign Language Interface 405

p.p

type
alfa = packed array[1..10] of char;

(* p1(+integer, [-integer]) *)
function p1(a: integer32): integer32;
begin

p1 := a + 9;
end;

(* p2(-integer) *)
procedure p2(var a: integer32);
begin

a := 99;
end;

(* p11(+atom, [-atom]) *)
function p11(a: integer32) : integer32;
begin

p11 := a;
end;

(* p21(+atom, -atom) *)
procedure p21(a: integer32; var b: integer32);
begin

b := a;
end;

(* p3(+float, [-float]) *)
function p3(a: real) : real;
begin

p3 := a + 9.0;
end;

(* p4(-float) *)
procedure p4(var a: real);
begin

a := 9.9;
end;

(* p5(+string(10), -string(10)) *)
procedure p5(var s: alfa; var t: alfa);
begin

t := s;
end;

(* p6(-string(10)) *)
procedure p6(var s: alfa);
begin

s := ’output’;
end;

406 Quintus Prolog

At the command level:

% pc -c p.p

Produces the object file.

p.pl

foreign_file(p, [p1, p2, p11, p21, p3, p4, p5, p6]).

foreign(p1, pascal, p1(+integer, [-integer])).
foreign(p2, pascal, p2(-integer)).
foreign(p11, pascal, p11(+atom, [-atom])).
foreign(p21, pascal, p21(+atom, -atom)).
foreign(p3, pascal, p3(+float, [-float])).
foreign(p4, pascal, p4(-float)).
foreign(p6, pascal, p5(+string(10),-string(10))).
foreign(p5, pascal, p6(-string(10))).

:- load_foreign_files([p], [’-lpc’]),
abolish(foreign_file,2),
abolish(foreign,3).

Loading the Prolog file (see foreign/3) into Prolog and invoking the following query gives
the following results:

| ?- p1(1,X1), p2(X2), p11(foo,X11), p21(foo,X21), p3(1.5,X3), p4(X4),

p5(’parameter’,X5), p6(X6).

X1 = 10,
X2 = 99,
X11 = X21 = foo,
X3 = 10.5,
X4 = 9.89999,
X5 = parameter,
X6 = output ;

no

Notes:

1. Passing of unsized strings (i.e. use of the string argument specification in a foreign/3
fact) is not supported in this interface since pc does not have a convention for passing
variable length arrays. Instead, padded strings (the string(N) argument specification)
must be used. Notice that the corresponding parameter of +string(N) declaration is
actually a call by reference parameter in Pascal procedures.

2. The linker option ‘-lpc’ must be included in the call to load_foreign_files/2 so
that the foreign code routine will have access to the standard Pascal library.

Chapter 10: Foreign Language Interface 407

10.3.15.3 FORTRAN Interface

If the FORTRAN file ‘f.f’ is compiled as shown below, then loading the Prolog file as
shown will produce the indicated results.

408 Quintus Prolog

f.f

C f1(+integer, [-integer])
integer function f1(a)

integer a
f1 = a + 9
return

end

C f2(-integer)
subroutine f2(a)

integer a
a = 99
return

end

C f11(+atom, [-atom])
integer function f11(a)

integer a
f11 = a
return

end

C f21(+atom, -atom)
subroutine f21(a,b)

integer a
integer b
b = a
return

end

C f3(+float, [-float])
real function f3(a)

real a
f3 = a + 9.0
return

end

C f4(-float)
subroutine f4(a)

real a
a = 9.9
return

end

C f5(+string(10), [-string(10)])
character*10 function f5(s)
character*10 s

f5 = s
return

end

C f6(-string(10))
subroutine f6(s)
character*10 s

s = ’output’
return

end

Chapter 10: Foreign Language Interface 409

At the command level:

% f77 -c f.f

Produces the object file.

f.pl

foreign_file(f, [f1_, f2_, f11_, f21_, f3_, f4_, f5_, f6_]).

foreign(f1_, fortran, f1(+integer, [-integer])).
foreign(f2_, fortran, f2(-integer)).
foreign(f11_, fortran, f11(+atom, [-atom])).
foreign(f21_, fortran, f21(+atom, -atom)).
foreign(f3_, fortran, f3(+float, [-float])).
foreign(f4_, fortran, f4(-float)).
foreign(f5_, fortran, f5(+string(10),[-string(10)])).
foreign(f6_, fortran, f6(-string(10))).

:- load_foreign_files([f], [’-lF77’]),
abolish(foreign_file,2),
abolish(foreign,3).

Loading the Prolog file (see foreign/3) into Prolog and invoking the following query gives
the following results:

| ?- f1(1,X1), f2(X2), f11(foo,X11), f21(foo,X21), f3(1.5,X3), f4(X4),

f5(’parameter’,X5), f6(X6).

X1 = 10,
X2 = 99,
X11 = X21 = foo,
X3 = 10.5,
X4 = 9.89999 ;
X5 = parameter ;
X6 = output ;

no

When you load FORTRAN code into a C program, you must ensure that any necessary
FORTRAN run-time support code is loaded as well. The FORTRAN run-time library is
divided into three parts in UNIX systems based on 4.2BSD:

• ‘/usr/lib/libF77.a’ — this contains “mathematical” functions such as sin() and
catan(), bit-handling functions, and support for character operations such as character
assignment, concatenation, and comparison. You will almost always need to load this
library file.

• ‘/usr/lib/libI77.a’ — this contains the support routines for FORTRAN in-

410 Quintus Prolog

put/output operations. If you are loading subroutines that do not perform FORTRAN
input/output, you will not need to load this file. Note that there is currently no way
of attaching a Prolog stream to a FORTRAN channel. We recommend that any FOR-
TRAN subroutines to be loaded into Quintus Prolog perform input/output by calling
C functions.

• ‘/usr/lib/libU77.a’ — this contains interface routines that provide access to UNIX
system calls. They are needed because the UNIX system calls expect strings in C
format, which differs from FORTRAN format. If you are not calling any of the UNIX
system calls from FORTRAN, you will not need to load this file.

UNIX systems based on System V have ‘libF77.a’ and ‘libI77.a’ but not ‘libU77.a’.

To ensure that these libraries will be loaded, use the linker options ‘-lF77’, ‘-lI77’, or
‘-lU77’ respectively.

You should check your FORTRAN documentation for advice about combining FORTRAN
subroutines with a C main program.

Notes:

1. Passing of unsized strings (for example, use of the string argument specification in
a foreign/3 fact) is not supported in this interface. Instead, padded strings (the
string(N) argument specification) must be used.

2. The names of subroutines passed to the predicates foreign_file/2 and foreign/3
must end with an underscore (‘_’) to comply with the way in which f77 generates
external symbols.

3. The FORTRAN run-time library has been seen documented as ‘-lf77’. As case is
significant in loader options, be sure to load this library using ‘-lF77’.

10.3.15.4 Passing pointers between Prolog and Foreign Code

Suppose we have a FORTRAN subroutine that multiplies a 3-element vector by a 3-by-3
matrix, returning a 3-element vector. This situation is then represented by the following
code:

Chapter 10: Foreign Language Interface 411

C code

typedef double vec_3[3];
typedef double mat_3_3[3][3];

vec_3 *make_vec(a, b, c)
double a, b, c;
{

register vec_3 *x;

x = (vec_3*)malloc(sizeof(vec_3));
(*x)[0] = a, (*x)[1] = b, (*x)[2] = c;
return x;

}

mat_3_3 *make_mat(a0, a1, a2, b0, b1, b2, c0, c1, c2)
double a0, a1, a2, b0, b1, b2, c0, c1, c2;
{

register mat_3_3 *x;

x = (mat_3_3*)malloc(sizeof(mat_3_3));
(*x)[0][0] = a0, (*x)[0][1] = a1, (*x)[0][2] = a2,
(*x)[1][0] = b0, (*x)[1][1] = b1, (*x)[1][2] = b2,
(*x)[2][0] = c0, (*x)[2][1] = c1, (*x)[2][2] = c2;
return x;

}

FORTRAN code

subroutine matvec(mat, vec, ans)
real mat(3,3), vec(3), ans(3)

ans(1) = mat(1,1)*vec(1)+mat(2,1)*vec(2)+mat(3,1)*vec(3)
ans(2) = mat(1,2)*vec(2)+mat(2,2)*vec(2)+mat(3,2)*vec(3)
ans(3) = mat(1,3)*vec(3)+mat(2,3)*vec(2)+mat(3,3)*vec(3)
return

end

412 Quintus Prolog

Prolog Code:

foreign(make_vec, c, make_vec(+float,+float,+float,
[-address(vec_3)])).

foreign(make_mat, c, make_mat(+float,+float,+float,
+float,+float,+float,
+float,+float,+float,
[-address(mat_3_3)])).

foreign(matvec_, fortran, matvec(+address(float),+address(float),
+address(float))). % note all +!

make_vec([A,B,C], X) :-
make_vec(A, B, C, X).

make_mat([[A0,A1,A2],[B0,B1,B2],[C0,C1,C2]], X) :-
make_mat(A0,A1,A2, B0,B1,B2, C0,C1,C2, X).

do_matvec(Vec, Mat, AnsObj) :-
make_vec(Vec, VecObj),
make_mat(Mat, MatObj),
make_vec(0.0, 0.0, 0.0, AnsObj),
matvec(VecObj, MatObj, AnsObj).

10.3.16 Summary of Predicates and Functions

Reference pages (in Chapter 18 [mpg], page 985) for the following provide further detail on
the material in this section.

• QP_atom_from_padded_string()

• QP_get*()

• QP_is*()

• QP_next_solution()

• QP_put*()

• QP_string_from_padded_atom()

• QP_term_type()

• QP_unify()

• foreign/3

• foreign_file/2

• load_foreign_executable/1

• load_foreign_files/2

10.3.17 Library Support

•

Chapter 10: Foreign Language Interface 413

• library(vectors)

• library(terms)

10.4 Foreign Functions Calling Prolog

10.4.1 Introduction

Quintus Prolog provides tools making it possible to call Prolog predicates from foreign
languages. This is useful for a number of reasons.

• In the simplest case, a foreign function may want to get at information that is contained
in the Prolog database. It might be inconvenient or unnatural for the foreign function
to return to Prolog, Prolog to query its database and reinvoke foreign code.

• Foreign functions might also want to make use of Prolog’s inferencing capabilities, again
without having to contort algorithms.

• When Quintus Prolog is embedded in another application, that application invokes
Prolog by calling it from foreign functions. This aspect of calling Prolog from foreign
functions will be handled fully in the section on embedding Prolog (see Section 10.2
[fli-emb], page 365).

To take advantage of Quintus Prolog’s ability to be called from foreign functions, you must
first know how to do either of the following:

• load foreign code into Quintus Prolog; see Section 10.3 [fli-p2f], page 375
• embed Quintus Prolog in another application; see Section 10.2 [fli-emb], page 365

Currently, only functions written in C can call Prolog predicates directly; this restriction
may be lifted in future releases of Quintus Prolog. However, other languages such as Pascal
and FORTRAN can call Prolog by virtue of their ability to call C. foreign code!) calls
Prolog. The FORTRAN and Pascal stuff will then help users call the C functions. It just
wasn’t making sense writing all of this in terms of generic “foreign languages”, because
I knew full well I’d have to eventually do something different for FORTRAN and Pascal.
While this should be more clear for release 3, it may as a result require more rewriting in
case we ever do make Prolog directly callable from FORTRAN and Pascal.}

The interface between C and Prolog supports direct exchange of Prolog’s atomic data types
(atoms, integers or database reference). The data is automatically converted between Pro-
log’s internal representation and the internal representation of the foreign language. The
interface also supports passing any Prolog term from C and returning any Prolog term to
C.

414 Quintus Prolog

10.4.1.1 Summary of steps

Following is a summary of the steps that enable you to call a Prolog predicate from a C
function:

IN THE PROLOG CODE:
1. Use extern/1 to declare the predicate callable from foreign functions, es-

tablishing an argument passing interface (see Section 10.4.2 [fli-ffp-ppc],
page 414).

IN THE C CODE:
1. Look up the Prolog predicate by calling one of the functions QP_

predicate() or QP_pred(). This provides C with a “handle” on the Pro-
log predicate that is used to make the actual call. (see Section 10.4.5.1
[fli-ffp-ccp-lcp], page 422).

2. If only a single solution is required, the predicate handle, together with
C variables for input and output parameters, is passed to QP_query(). If
QP_query() returns successfully, output results will have been left in C
variables according to the specified interface.

3. If more than one solution is required, the predicate handle and C variables
for input and output parameters are passed to QP_open_query(). This
function initiates a query, returning a query identifier, which is passed
to QP_next_solution(), which is called once for each solution requested.
When a solution is returned, output results are left in C variables according
to the specified interface. When sufficient solutions have been returned, or
there are no more solutions, the query identifier is passed to either QP_
cut_query() or QP_close_query() to terminate the query.

10.4.2 Making Prolog Procedures Callable by Foreign Functions

Any Prolog predicate can be made callable from foreign functions using the declaration
extern/1. This includes built-in predicates, as well as predicates that are currently unde-
fined and dynamic predicates that currently have no clauses.

An extern/1 declaration not only makes the predicate known to foreign languages, but
also specifies how arguments will be passed to and from it. When a predicate is declared
callable using extern/1 declaration, it becomes available to foreign functions as soon as the
declaration is loaded. This is equally true of extern/1 declarations occurring in files that
are loaded from source form, pre-compiled QOF files whose source files contained extern/1
declarations, and certain QOF files (e.g. those created using save_program/1) that retain
callability information (see Section 8.5.4 [ref-sls-sst], page 196).

A Prolog predicate that has been made callable from foreign functions is not otherwise
changed in any way. It can still be abolished or redefined just like any other predicate.
There is no performance penalty associated with making a predicate callable from foreign
functions. A predicate can be redeclared by loading a new or modified extern/1 declaration.

Chapter 10: Foreign Language Interface 415

When a predicate is made callable from foreign code, a new and closely related Prolog
predicate called an interface predicate is created in the module in which extern/1 was
declared. The interface predicate has the same arity as the callable predicate, and its name
is the name of the declared predicate with an underscore prepended to it. The interface
predicate provides the link between foreign languages and its Prolog predicate. It can be
abolished or saved just as any other predicate, but because they can only be created using
an extern/1 declaration, valid interface predicates cannot be made dynamic or multifile.

The purpose of the interface predicate is to supply an entry point into Prolog for foreign
functions, and a handle on the property of callability of Prolog procedures for manipulation
in Prolog. It is possible to call an interface predicate from Prolog, but the call will simply
fail.

10.4.2.1 Specifying the Argument Passing Interface: extern/1

An extern/1 declaration has the form

:- extern(+CallSpecification)

CallSpecification is a Prolog term specifying how calls from C will pass arguments to and
receive arguments from the Prolog predicate. Handling arguments passed from other lan-
guages is discussed in Section 10.4.7 [fli-ffp-ppl], page 433.

CallSpecification is of the form:

PredicateName(ArgSpec, ArgSpec, ...)

where PredicateName is the name of the Prolog predicate and each ArgSpec is an argument
specification for the corresponding argument of the predicate. ArgSpec must be one of the
following list

+integer +float +single +double +atom +string +term +address(T)
-integer -float -single -double -atom -string -term -address(T)

where T is a foreign type name. The argument type address can always be used instead
of address(T).

Argument specifications used when declaring Prolog predicates callable from C are equiva-
lent to those used when specifying an interface for C functions that are to be callable from
Prolog.

Here are some example extern/1 declarations:

Examples:

:- extern(write(+integer)).
:- extern(call(+term)).
:- extern(my_proc(+atom,+integer,-term,-integer)).

416 Quintus Prolog

10.4.3 Passing Data to and from Prolog

The foreign function interface automatically converts between C’s representation of data
and the representation of atomic data types expected by Prolog. Thus the calling function
does not need to know how Prolog represents atoms, integers, floats or addresses in order
to communicate with Prolog. This feature simplifies the integration of Prolog with foreign
code; in particular, it makes it easier to interface directly with already-written functions in
libraries and other programs. It also allows for compatibility with later versions of Quintus
Prolog and with versions of Quintus Prolog running on other hardware.

Asymmetry note: When C calls Prolog, in contrast to Prolog calling foreign
code, there is no Prolog datum passed as the function return value. Instead,
the return value supplies the calling function with information as to whether
the Prolog call succeeded or failed, or whether there was an exception raised.

Arguments are passed from C functions to Prolog predicates in the same order as they
appear in the Prolog call. Prolog assumes that C functions will call Prolog predicates with
the number and type of arguments as declared by the extern/1 declarations; if it does not,
the results are unpredictable. Certain types of inputs (for example, atoms) can be checked
for validity when the query to Prolog is made, and an error value is returned if the type
is incorrect. Outputs are passed to Prolog as pointers to storage for results. Prolog will
internally create unbound variables with which to calculate the results. The outputs will
then be automatically converted and written into the C storage according to the calling
specification. If the result Prolog computes is inconsistent with the specified output type,
an exception is signaled.

Asymmetry note: When Prolog calls foreign code, outputs are unified with
items supplied by the calling function; with C calling Prolog, assignment is
used instead.

10.4.3.1 Passing Integers

Prolog: +integer
C: long int x;

The C long int is converted to a 32-bit Prolog integer, which is passed to the Prolog call.
If the C integer contains garbage when it is passed, Prolog will receive that garbage as an
integer.

Prolog: -integer
C: long int *x;

A pointer to a C long int is passed to the foreign interface. When Prolog returns a solution,
a Prolog integer is expected in the corresponding argument of the call. The foreign interface
converts that integer into a C long int and writes it at the location supplied. The previous
contents of the location are destroyed. If the Prolog call does not return an integer in the
appropriate position, a type error is raised and the contents of the location is unchanged.

Chapter 10: Foreign Language Interface 417

10.4.3.2 Passing Floats

Prolog: +float
C: double x;

The C double-precision float is converted to a Prolog float, which is passed to the Prolog
call. If the C double contains garbage, Prolog will receive that garbage as a double-precision
floating-point number. Many C compilers will allow the parameter declaration to be float
instead of double because they always convert single-precision floating-point arguments to
double-precision. However, C compilers conforming to the new ANSI standard will not do
this, so it is recommended that double be used.

Prolog: +single
ANSI C: float x;

The C single-precision float is converted to a Prolog float, which is passed to the Prolog
call. If the C float contains garbage, Prolog will receive that garbage as a single-precision
floating-point number.

Normally, this type of argument is not used; however, C compilers conforming to the new
ANSI standard can pass single precision floats to Prolog without first converting them to
double. It is not recommended that floats be passed as single until you have verified that
your C compiler behaves as desired.

Prolog: +double
C: double x;

The C double-precision float is converted to a Prolog float, which is passed to the Prolog
call. If the C float contains garbage, Prolog will receive that garbage as a double-precision
floating-point number.

Prolog: -float
C: float *x;

A pointer to a C float is passed to the foreign interface. When Prolog returns a solution,
a Prolog floating-point number is expected in the corresponding argument of the call. The
foreign interface converts that number into a C float and writes it at the location supplied.
The previous contents of the location are destroyed. If the Prolog call does not return a
floating-point number in the appropriate position, a type error is raised and the contents
of the location is unchanged.

Prolog: -single
C: float *x;

A pointer to a C float is passed to the foreign interface. When Prolog returns a solution,
a Prolog floating-point number is expected in the corresponding argument of the call. The
foreign interface converts that number into a C float and writes it at the location supplied.
The previous contents of the location are destroyed. If the Prolog call does not return a

418 Quintus Prolog

floating-point number in the appropriate position, a type error is raised and the contents
of the location is unchanged.

When the foreign language calling Prolog is C, this type of argument is not normally used;
however, C compilers conforming to the new ANSI standard can return single precision
floats from Prolog without first converting them to double. It is not recommended that
floats be passed as single until you have verified that your C compiler behaves as desired.

Prolog: -double
C: double *x;

A pointer to a C double is passed to the foreign interface. When Prolog returns a solution,
a Prolog floating-point number is expected in the corresponding argument of the call. The
foreign interface converts that number into a C double and writes it at the location supplied.
The previous contents of the location will be destroyed. If the Prolog call does not return a
floating-point number in the appropriate position, a type error is signaled and the contents
of the location is unchanged.

It is assumed that the interface will overwrite this float with Prolog’s result. When Prolog
returns, its floating-point number is converted to double-precision and written onto the
space for the foreign double. The previous contents of the C double will be lost. If the
Prolog call does not return a floating-point number, a type error is raised and the result is
unchanged.

10.4.3.3 Passing Atoms in Canonical Form

The foreign function interface allows Prolog atoms to be passed from C functions to Prolog
either in a canonical form as unsigned integers, or as pointers to character strings.

This section describes passing atoms in canonical form. For each Prolog atom there is
a single canonical representation. Programs can rely on the property that identical atoms
have identical canonical representations. Note, however, that the canonical form of an atom
is not necessarily identical across different invocations of the program. This means that
canonical atom representations should not be used in files or interprogram communication.
For these purposes strings should be used (see Section 10.4.4.1 [fli-ffp-a2s-str], page 419).
Foreign functions can store canonical atoms in data structures, pass them around, access
their strings using QP_string_from_atom() and pass them back to Prolog, but they should
not attempt any other operations on them.

Prolog: +atom
C: QP_atom x;

The QP_atom must be a valid Prolog atom, otherwise the function attempting to pass the
atom parameter (QP_query() or QP_open_query()) will return QP_ERROR. The C QP_atom
is passed to Prolog, where it will appear as a normal Prolog atom. Atoms can be converted to
strings using the functions QP_string_from_atom() or QP_atom_from_padded_string()
(see Section 10.3.7.4 [fli-p2f-atm-a2s], page 393).

Chapter 10: Foreign Language Interface 419

Prolog: -atom
C: QP_atom *x

A pointer to a C QP_atom is passed to the foreign interface. When Prolog returns a solution,
a Prolog atom is expected in the corresponding argument of the call. This atom might be
one obtained from Prolog, or one generated through the function QP_atom_from_string()
or QP_atom_from_padded_string() (see Section 10.3.7.4 [fli-p2f-atm-a2s], page 393). The
foreign interface simply writes that atom at the location supplied. The previous contents
of the location are destroyed. If the Prolog call does not return an atom in the appropriate
position, a type error is raised and the contents of the location is unchanged.

Also see Section 10.4.4 [fli-ffp-a2s], page 419 for discussion of conversion between atoms and
strings.

10.4.4 Converting Between Atoms and Strings

10.4.4.1 Passing Atoms as Strings

The foreign function interface allows Prolog atoms to be passed from C functions to Prolog
either in a canonical form as unsigned integers, or as pointers to character strings.

This section describes passing atoms as pointers to null-terminated character strings.
Strings are always identical across different invocations of a program, so are the correct
atom representation to use when writing to files or using interprogram communication. For
other uses, atoms in the canonical form may be appropriate (see Section 10.4.3.3 [fli-ffp-
dat-cat], page 418).

If, in a later release of Quintus Prolog, it is possible to call Prolog directly from FORTRAN
or Pascal, it will additionally be possible to pass atoms as fixed-length, blank-padded strings
(as when Prolog calls FORTRAN or Pascal).

Prolog: +string
C: char *x

The argument passed from the C function is a null-terminated character string. The foreign
interface automatically converts the string to a Prolog atom, and passes it to the Prolog
predicate.

Prolog: -string
C: char **x;

A pointer to a C string pointer is passed to the foreign interface. When Prolog returns
a solution, a Prolog atom is expected in the corresponding argument of the call. This
atom might be one obtained from Prolog, or one generated through the function QP_atom_
from_string() or QP_atom_from_padded_string() (see Section 10.3.7.4 [fli-p2f-atm-a2s],
page 393). The foreign interface writes a pointer to the string for that atom at the location

420 Quintus Prolog

supplied. The previous contents of the location are destroyed. This string must not be
overwritten by the C function. If the Prolog call does not return an atom in the appropriate
position, a type error is raised and the contents of the location is unchanged.

See also Section 10.4.4 [fli-ffp-a2s], page 419 for discussion of conversion between atoms and
strings.

10.4.4.2 Passing Terms

The foreign function interface allows Prolog terms to be passed from C functions. Like most
of the simple data types that may be passed to and from Prolog, terms to be passed can
originate either in Prolog or in C (see Section 10.3.8 [fli-p2f-trm], page 395). Like terms in
Prolog, terms that are passed to C are automatically made safe from damage by operations
that might change their absolute position in Prolog memory, like stack shifting and garbage
collection.

Prolog: +term
C: QP_term_ref

The argument passed from the C function is a QP_term_ref initialized to a Prolog term. If
something other than a term reference is passed to Prolog, the results are undefined.

Prolog: -term
C: QP_term_ref

A QP_term_ref is passed to the foreign interface. When Prolog returns a solution, the
foreign interface writes a reference to the Prolog term in the corresponding argument of
the call into the QP_term_ref. The previous contents of the QP_term_ref are destroyed.
Unlike the other passing types, there are no associated type errors when passing terms.

Note that the output term, as well as the input term is represented in the C code by a
QP_term_ref. This contrasts with other output types, which are usually represented in C
as pointers to the corresponding input type.

10.4.4.3 Passing Addresses

Previous releases of Quintus Prolog had the restriction that integers of greater than 29
bits could not be represented as Prolog integers. Certain platforms, however, have pointers
that use some of the four most significant bits; for these machines, pointers could not be
represented as Prolog integers. This problem motivated the address, which could be treated
specially, as a distinct data type that can be passed through the foreign interface.

With release 3 the restriction of integers to 29 bits has been lifted; however, the internal
representation of integers of more than 29 bits is more bulky and somewhat slower to
manipulate than that of smaller integers. While this is not a problem in normal programs,
it could penalize programs that manipulate pointers in Prolog on certain platforms whose

Chapter 10: Foreign Language Interface 421

pointers require more than 29 bits. We have chosen to retain the address data type in
release 3 so that such penalties can be avoided where possible, as well as for backward
compatibility. Addresses can be passed both to and from Prolog from foreign functions,
and to and from foreign functions from Prolog. (See Section 10.3.9 [fli-p2f-poi], page 397.)

As when calling foreign code from Prolog, pointers should be passed through the interface
using the type specification

address(typename)

as described in more detail below. typename should be the name used in the foreign language
to identify the type of object named by the pointer.

Prolog: +address(typename)
C: typename *x;

The C pointer is converted to a 32-bit Prolog integer, which is passed to the Prolog call.
If the C pointer contains garbage when it is passed, Prolog will receive that garbage as an
integer.

Prolog: -address(typename)
C: typename **x;

A pointer to a C pointer is passed to the foreign interface. When Prolog returns a solution,
a Prolog integer is expected in the corresponding argument of the call. If the argument is
0, the foreign function writes the NULL pointer at the location supplied. Otherwise, the
foreign interface converts the integer into a C pointer and writes it at the location. The
previous contents of the location will be destroyed. If the Prolog call does not return an
integer in the appropriate position, a type error is signaled and the contents of the location
is undefined.

Prolog: +address
C: char *x

This is equivalent to +address(char).

Prolog: -address
C: char **x

This is equivalent to -address(char).

Using +address in place of +address(typename), or -address in place of -
address(typename), has no effect on the execution of the program; however, doing so
can reduce the readability of the program and compromise program checking tools.

422 Quintus Prolog

10.4.5 Invoking a Callable Predicate from C

A Prolog predicate that has been made callable from foreign code can be invoked in two
ways: determinately or nondeterminately. A determinate query asks for the first solution
and the first solution only. A nondeterminate query allows Prolog to backtrack, possibly
returning multiple solutions to the calling foreign function.

Note that the terms determinate and nondeterminate do not refer to the Prolog predicate
being called, but rather to the query. It is perfectly reasonable to ask for only the first
solution of a Prolog predicate that is nondeterminate, or to attempt to return all solutions
to a predicate that in fact has just one. Multiple solutions, if any, are returned in the Prolog
solution order. When only a single solution is desired a determinate call is preferred, as it
is more efficient and concise.

10.4.5.1 Looking Up a Callable Prolog Predicate

Before a Prolog predicate can be called from a foreign language it must be looked up. The
C functions QP_predicate() and QP_pred() perform this function. The lookup step could
have been folded into the functions that make the query, but if a predicate was to be called
many times the redundant, if hidden, predicate lookup would be a source of unnecessary
overhead. Instead, QP_predicate() or QP_pred() can be called just once per predicate.
The result can then be stored in a variable and used as necessary.

Both QP_predicate() and QP_pred return a QP_pred_ref, which represents a Prolog pred-
icate. The type definition for QP_pred_ref is found in ‘<quintus/quintus.h>’.

QP_pred_ref QP_predicate(name_string, arity, module_string)
char *name_string;
long int arity;
char *module_string;

QP_predicate() is the most convenient way of looking up a callable Prolog predicate. It
is simply passed the name and module of the predicate to be called as strings, the arity as
an integer, and returns a QP_pred_ref, which is used to make the actual call to Prolog.

QP_predicate() can only be used to look up predicates that have been declared callable
from foreign code. If some other predicate is looked up, QP_ERROR is returned. Checking
the return value protects you from attempting to call a predicate that isn’t yet ready to be
called.

QP_pred_ref QP_pred(name_atom, arity, module_atom)
QP_atom name_atom;
long int arity;
QP_atom module_atom;

Chapter 10: Foreign Language Interface 423

QP_pred() is a less convenient, but faster, means of looking up a callable Prolog predi-
cate. Unlike QP_predicate(), it has its name and module arguments passed as Prolog
atoms. These may have been returned to C from Prolog, or may have been built in the for-
eign language using QP_atom_from_string(). One additional difference is that the name
passed is not the name of the Prolog predicate to be called, but rather the name of the
interface predicate constructed when the Prolog predicate was made callable from foreign
code Section 10.4.2 [fli-ffp-ppc], page 414. Much of the cost of QP_predicate() is from
having to look up Prolog atoms for its name and module arguments. By avoiding doing this
unnecessarily, what QP_pred() gives up in convenience is returned in performance. Like
QP_predicate(), QP_pred() returns a QP_pred_ref, which is used to make the actual call
to Prolog. If a predicate that is not an interface predicate is looked up, QP_pred() returns
QP_ERROR.

QP_pred() can only be used to look up predicates that have been declared callable from
foreign code. If some other predicate, or a predicate that does not exist, is looked up,
QP_ERROR is returned. This protects you from attempting to call a predicate that isn’t yet
ready to be called.

10.4.5.2 Making a Determinate Prolog Query

A determinate query can be made in a single C function call using QP_query. The first
argument passed to QP_query() is a QP_pred_ref for the predicate to be called. Any
arguments after the first represent parameters to be passed to and from the Prolog predicate.

The foreign language interface will interpret arguments passed to the Prolog predicate
according to the call specification given when the predicate was made callable. Hence, it
is important that the arguments to be passed to and from the Prolog predicate should
correspond to that call specification. For certain parameter types (passing Prolog atoms in
canonical form) it is possible to detect inconsistencies between data supplied to QP_query()
and the call specification, but for the most part this is impossible. Calls that are inconsistent
with their call specifications will produce undefined results.

QP_query() returns one of three values: QP_SUCCESS, indicating that the query was made
and a solution to the query was computed; QP_FAILURE, meaning that the query was made
but no solution could be found; and QP_ERROR, which says that either the query could not
be made, or that an exception was signaled from Prolog but not caught. In this case, see
the reference page for QP_exception_term(). Only when the return value is QP_SUCCESS
should the values in variables passed as outputs from Prolog be considered valid. Otherwise,
their contents are undefined.

It is important that a valid QP_pred_ref is passed to QP_query(); in particular, it is
advisable to check for an error return from QP_predicate() or QP_pred() before calling
QP_query().

424 Quintus Prolog

10.4.5.3 Initiating a Nondeterminate Prolog Query

For a nondeterminate query, multiple solutions to the query may be successively returned
to the calling foreign function. Nondeterminate queries are made in three steps: the query
is first initiated, or “opened”, using QP_open_query(). Solutions are then requested using
QP_next_solution(). When all desired solutions have been returned, or there are no more
solutions, the query must be terminated by calling QP_cut_query() or QP_close_query().

The C function QP_open_query() is used to initiate a nondeterminate Prolog query. The
arguments passed to QP_open_query() are identical to those that would be passed to QP_
query(); however, QP_open_query() does not compute a solution to the query. Its effect
is to prepare Prolog for the computation of solutions to the query, which are requested
by calls to the function QP_next_solution(). For consistency checking, QP_open_query()
returns a QP_qid, which represents the Prolog query. The type definition for QP_qid is found
in ‘<quintus/quintus.h>’. The QP_qid returned by a call to QP_open_query() must be
passed to each call to QP_next_solution() for that query, as well as to QP_cut_query()
or QP_close_query() when terminating the query. If an invalid QP_qid is passed to one of
these functions, the function has no effect except to return QP_ERROR.

When requesting solutions from an open nondeterminate query, input and output param-
eters are not passed. The effect of QP_open_query() is to pass inputs to Prolog, which
subsequently maintains them. It also tells Prolog where storage for outputs has been re-
served. This storage will be written later, when solutions are returned.

If an error occurs when attempting to open a query, QP_ERROR is returned and the query is
automatically terminated.

It is important that a valid QP_pred_ref is passed to QP_open_query(); in particular, it
is advisable to check for an error return from QP_predicate() or QP_pred() before calling
QP_open_query().

10.4.5.4 Requesting a Solution to a Nondeterminate Prolog Query

The function QP_next_solution() is used to return a solution from an open nondetermi-
nate Prolog query. Solutions are computed on demand, and multiple solutions are returned
in the normal Prolog order. QP_next_solution() is passed the QP_qid returned by QP_
open_query() when the nondeterminate query was opened. No additional input or output
parameters are passed: after a call to QP_open_query(), Prolog manages inputs itself, and
has been told where storage for outputs has been reserved. Each time QP_next_solution()
computes a new solution it writes it on the output storage for the foreign function to use as
it likes. Each new solution overwrites the old memory, destroying the previous solution, so
it is important that the foreign function copies solutions elsewhere if it wants to accumulate
them.

Important restriction: only the innermost, i.e. the most recent, open query can be asked
to compute a solution. A new query can be made at any point whether or not other

Chapter 10: Foreign Language Interface 425

nondeterminate queries are open; however, while the new query remains open only it will
be able to return solutions.

10.4.5.5 Terminating a Nondeterminate Prolog Query

QP_close_query() and QP_cut_query() are functions that are used to terminate an open
nondeterminate Prolog query. They differ only in their effect on the Prolog heap, which
can be reflected in the solutions Prolog has returned to C.

The difference between QP_close_query() and QP_cut_query() can best be understood
with reference to Prolog’s control flow. QP_close_query() is equivalent to the Prolog call
‘!, fail’. The cut renders the current computation determinate, removing the possibility
of future backtracking. The following call to fail/0 then initiates backtracking to the next
previous parent goal with outstanding alternatives. In doing so it pops the Prolog heap to
its state when the parent goal succeeded, in effect throwing away any terms created since
that parent goal.

In contrast, just calling ‘!’ in Prolog renders the computation determinate without initiating
backtracking. Any terms created since the parent goal are retained.

In the context of calling Prolog from foreign languages, terminating a query using QP_close_
query() generally means throwing away the most recent solution that was calculated, unless
that solution has been copied into a more permanent place. (Of course, any previous
solutions must also be assumed to have been overwritten by subsequent solutions unless
copied elsewhere!) The converse of this behavior is that closing a query using QP_close_
query() automatically frees up the Prolog memory that holds the last solution.

Terminating a query using QP_cut_query() renders the computation determinate, but as
it is not failed over the Prolog heap is not popped. Thus when terminating a query using
QP_cut_query() more space is retained, but so is the most recent solution.

10.4.6 Examples

10.4.6.1 Calling Arbitrary Prolog Goals from C

Any Prolog predicate can be made callable from foreign code, including system built-ins. An
especially useful case of this generally useful ability is making the built-in call/1 callable.
call/1 is declared callable like any other predicate, and is passed the Prolog term to be
called. The term may have originated in Prolog, or may have been constructed in C using
the supplied term manipulation functions (see Section 10.3.8 [fli-p2f-trm], page 395).

In this particular example, we pass a term from Prolog to C, then C calls call/1 with that
term. This lets us concentrate on the calling rather than on the construction of the term
to be called.

426 Quintus Prolog

On the Prolog side of the interface, the following declaration is loaded:

:- extern(call(+term)).

On the C side, the following function is defined, compiled and either loaded into Prolog
using the dynamic foreign interface or statically linked with Prolog:

#include <quintus/quintus.h>

call_prolog(t)
QP_term_ref t;
{

QP_pred_ref call = QP_predicate("call", 1, "user");
QP_query(call, t);

}

This done, any goal that can be called from Prolog can also be called from C by passing it
to call_prolog/1.

10.4.6.2 Generating Fibonacci Numbers

Prolog and foreign languages are generally intercallable in Quintus Prolog; in particular,
arbitrarily nested calling is permitted. The following example uses recursive calling between
Prolog and C to generate Fibonacci numbers:

Chapter 10: Foreign Language Interface 427

fib.pl

fib :-
int(I),
fib(I, F),
write(fib(I,F)), nl,
fail.

int(I) :- int(0, I).

int(I, I).
int(I, K) :-

J is I+1,
int(J, K).

fib(N, F) :-
(N =< 1 ->

F = 1.0
; N1 is N-1,

N2 is N-2,
c_fib(N1, F1),
c_fib(N2, F2),
F is F1+F2

).

:- extern(fib(+integer, -float)).

foreign(c_fib, c_fib(+integer, [-float])).
foreign_file(fib, [c_fib]).

:- load_foreign_files(fib, []).

428 Quintus Prolog

fib.c

#include <quintus/quintus.h>

double c_fib(i)
long int i;
{

float f1, f2;
QP_pred_ref fib = QP_predicate("fib", 2, "user");

if (i <= 1) {
return 1.0;

} else {
QP_query(fib, i-1, &f1);
QP_query(fib, i-2, &f2);
return f1+f2;

}
}

10.4.6.3 Calling a Nondeterminate Predicate

This example shows how a nondeterminate query can be made from C. It also shows how
you can get at the exception terms raised from a Prolog query from C.

brothers.pl

foreign(brothers, c, brothers).
foreign_file(brothers, [brothers]).
:- load_foreign_files(brothers, []),

abolish([foreign/3, foreign_file/2]).

:- extern(write(+term)). % Make write/1 callable from C
:- extern(karamazov(-atom)). % Make karamazov/1 callable from C

karamazov(’Fyodor’).
karamazov(’Dmitri’).
karamazov(’Ivan’).
karamazov(’Alyosha’).

Chapter 10: Foreign Language Interface 429

brothers.c

#include <quintus/quintus.h>

/* lookup_predicate() is just a wrapper around QP_predicate()
that prints an error message if QP_predicate() fails.
It returns 1 if QP_predicate() succeeds and 0 if
QP_predicate() fails

*/
int lookup_predicate(name, arity, module, predref)

char * name;
int arity;
char * module;
QP_pred_ref * predref;
{

*predref = QP_predicate(name, arity, module);

if (*predref == QP_BAD_PREDREF) {
printf("%s:%s/%-d is not callable from C\n",

module, name, arity);
return 0;

} else {
return 1;

}
}

430 Quintus Prolog

brothers.c

void brothers() /* brothers() is called from Prolog */
{

QP_pred_ref karam, write;
QP_qid query;
QP_atom bro;
int status;

if (!lookup_predicate("karamazov", 1, "user", &karam)) {
return;

}

if ((query = QP_open_query(karam, &bro)) == QP_BAD_QID) {
printf("Cannot open query\n");
return;

}

/* Get solutions one at a time */
while ((status = QP_next_solution(query)) == QP_SUCCESS) {

printf("%10s is a Karamazov\n",
QP_string_from_atom(bro));

}

QP_close_query(query);

if (status == QP_ERROR) {
/* Query raised an exception */
QP_term_ref error = QP_new_term_ref();

printf("Query signalled an exception\n");
if (QP_exception_term(error) == QP_ERROR) {

printf("Could not get at exception term\n");
return;

}

if (lookup_predicate("write", 1, "user", &write)) {
/* Call Prolog builtin write/1 to print the

exception term */
if (QP_query(write, error) != QP_SUCCESS) {

printf("Couldnt write exception term\n");
} else {

return;
}

}
}

}

Chapter 10: Foreign Language Interface 431

To test the QP_exception_term() part of this example add a clause for karamazov/1 like:

karamazov(_) :- raise_exception(karamazov(error)).

10.4.6.4 Nested Prolog Queries

This example demonstrates how you can have nested queries to Prolog from C. For brevity
sake, we don’t check the statuses returned by all the calls to QP_next_solution() for
error values. This is not advised in real applications. This example also shows the use of
QP_cut_query().

books.pl

foreign(print_books, c, print_books).
foreign_file(books, [print_books]).
:- load_foreign_files(books, []),

abolish([foreign/3, foreign_file/2]).

:- extern(author(-atom)).
:- extern(book(+atom,-atom)).

author(hesse).
author(kafka).
author(dostoyevski).

book(dostoyevski, idiot).
book(dostoyevski, gambler).
book(hesse, steppenwolf).
book(hesse, sidhdhartha).
book(hesse, demian).
book(kafka, america).
book(kafka, trial).
book(kafka, castle).
book(kafka, metamorphosis).

432 Quintus Prolog

books.c

#include <quintus/quintus.h>

#define MAX_BOOKS 3

void print_books()
{

QP_pred_ref author, book;
QP_qid q1, q2;
QP_atom a, b;
int count;

if (!(lookup_predicate("author", 1, "user", &author)))
return;

if (!(lookup_predicate("book", 2, "user", &book)))
return;

if ((q1 = QP_open_query(author, &a)) == QP_BAD_QID) {
printf("Cant open outer query\n");
return;

}

while (QP_next_solution(q1) == QP_SUCCESS) {
/* For each solution returned by author(X) do */
if ((q2 = QP_open_query(book, a, &b)) == QP_BAD_QID) {

printf("Cant open inner query\n");
break;

}
printf("Books by %s:\n", QP_string_from_atom(a));

count = 0;
while ((count < MAX_BOOKS) &&

(QP_next_solution(q2) == QP_SUCCESS)) {
/* Find atmost MAX_BOOKS solns for books(X,Y) */
printf("\t\t%s\n",QP_string_from_atom(b));
count++;

}
QP_close_query(q2);

}
QP_close_query(q1);

}

Chapter 10: Foreign Language Interface 433

10.4.7 Calling Prolog from Pascal and FORTRAN

It is possible to call Prolog predicates from Pascal and FORTRAN using C as an interme-
diary language. Your Pascal or FORTRAN manual will tell you how to make your code call
C. Then call Prolog from C using the procedures described in this section.

10.4.8 Summary of Predicates and Functions

Reference pages for the following provide further detail on the material in this section.

• extern/1

• QP_close_query()

• QP_cut_query()

• QP_next_solution()

• QP_open_query()

• QP_pred()

• QP_predicate()

• QP_query()

10.4.9 Library Support

•
• library(vectors)

• library(terms)

10.5 Quintus Prolog Input / Output System

This section describes how Prolog streams are represented as C data structures, how streams
can be configured to handle various file formats and how to create a customized Prolog
stream in C.

10.5.1 Overview

The Quintus Prolog input/output system is designed to handle various file formats, device-
dependent I/O, and in particular, it enables you to create customized Prolog streams in
C. File-related input/output operations of a Prolog program can be coded to be portable
among different operating systems and the underlying formats of files.

A Prolog stream is an object storing the information about how to complete input/output
operations to a file, device or other form of I/O channel. All Prolog input/output operations
are performed through Prolog streams.

434 Quintus Prolog

The embedding (“bottom”) layer of the Quintus Prolog system provides a set of default
functions for handling normal Prolog streams. However, user defined streams can be defined
at runtime in such a way that Prolog built-in I/O operations work on other types of Prolog
stream. Examples of user-defined streams include:

• a stream to inter-process communication
• a stream to a window in a graphic environment

There are three streams opened by the embedding layer I/O initialization functions when
a Prolog process starts:

• user input stream: normal input channel
• user output stream: normal output channel
• user error stream: normal error message channel

Prolog also keeps track of two current streams,

• current input stream
• current output stream

A Prolog input/output built-in predicate or function that takes no stream argument is
performed on the current input or current output stream.

In this section, we outline the Quintus Prolog input/output model and describe the Prolog
stream structure, defining the different formats and options that can be associated with a
stream. Then we discuss the method of creating a user-defined stream.

We also list a number of functions that enable Prolog streams to be manipulated in foreign
code. Finally we discuss some compatability issues with the I/O system in previous versions
of Quintus Prolog.

Please note: The terms record and line have the same meaning in this section.
A line terminated with 〈LFD〉 is just a type of record. However, a record (line)
is not always terminated by 〈LFD〉.

10.5.2 Input/Output Model

There are three layers of input/output operations visible in the Prolog system as illustrated
in the figure “Input/Output Model”.

The top layer is character based. It supports reading a character, writing a character and
testing the state of a Prolog stream. get0/[1,2] and put/[1,2] are examples of the first
layer operation.

The middle layer is record based. Its primary function is to keep the integrity of a record,
through such operations as trimming a record, padding a record and handling output over-
flow. This layer is not visible to the user and cannot be changed by the user.

Chapter 10: Foreign Language Interface 435

The bottom layer is buffer based. It performs the actual input from or output to the
underlying device of a Prolog stream. The bottom layer is a collection of five functions
associated with a stream: read, write, flush, seek and close functions. Typically the read
function reads data from the underlying device into a buffer that it maintains and then
passes this data up to the middle layer a record at a time. The write function provides
buffer space for a record to be received from the middle layer and writes out the buffer to
the underlying device.

The embedding open function QU_open() assigns the appropriate bottom layer functions
for a stream created by open/[3,4]. A user-defined Prolog stream must supply its own
bottom layer functions for the stream. Bottom layer functions are described in Section 10.5.6
[fli-ios-bot], page 451.

436 Quintus Prolog

Chapter 10: Foreign Language Interface 437

Input/Output Model

Writing to a QP_DELIM_LF record file stream demonstrates how the three layers work to-
gether. Each put/2 call on the stream simply stores a character in the record buffer of
the stream. When the top layer predicate, nl/1, is called on the stream, the middle layer
output function is called. The middle layer function stores a 〈LFD〉 in the record buffer and
updates some counters for the stream. It then calls the bottom layer function of the stream.
The bottom layer writes out the record to the output file.

Please note: In addition, the top layer contains predicates and C functions to
perform seek, flush output and close operations on a stream. There are no
middle layer functions for these operations.

10.5.3 Stream Structure

The Prolog representation of a Prolog stream provides a way of retrieving information
from its corresponding C stream structure. It is currently represented as a Prolog term
in the form of ’$stream’(N) where N is an integer to identify the stream. However, a
user application should not explicitly create such a Prolog term as a Prolog stream, it
should only be obtained through open/[3,4], open_null_stream/1, or stream_code/2.
In C code, a Prolog stream is represented as a pointer to structure of type QP_stream.
The formatting information along with bottom layer functions of a stream is stored in its
QP_stream structure. A stream behavior depends on the values of fields in its QP_stream
structure. The options specified in open/4 are converted and stored in the QP_stream
structure created for the stream.

Selected fields in QP_stream that can be accessed and modified by an application are de-
scribed in the remainder of the section. Most of these fields are option fields, which can be
specified in open/4.

10.5.3.1 Filename of A Stream

open/[3,4]: 1st argument
QP_stream: char *filename

The filename of a stream is recorded in the stream structure. If a stream does not have a
filename, (e.g. a data communication channel), the filename field should be an empty string.
After a stream is created, the Prolog system accesses this field only to get the corresponding
filename of a stream.

10.5.3.2 Mode of A Stream

open/[3,4]: 2nd argument
QP_stream: unsigned char mode

438 Quintus Prolog

This field indicates whether the stream is created for input or output mode. The mode field
is QP_READ for an input (read only) stream, QP_WRITE or QP_APPEND for an output stream.
This field should not be changed for the lifetime of a stream.

10.5.3.3 Format of A Stream

open/4 option: format(Format)
QP_stream: unsigned char format

This field indicates the format of a stream. The format tells the middle layer functions how
to wrap (unwrap) a record. Possible formats are:

QP_VAR_LEN
specified as format(variable) in open/4. Each record in the file has its own
length. The middle layer input function trims the trailing blank characters in
each record if trimming is turned on for the stream.
The input/output system does not alter any character in each record for a
QP_VAR_LEN format stream with no trimming and no line border code.

QP_DELIM_LF
specified as format(delimited(lf)) in open/4. From an application pro-
gram’s point of view, each record in the file is terminated with a single 〈LFD〉.
Under Windows, however, what’s actually stored in the file is the sequence
〈RET〉〈LFD〉.

QP_DELIM_TTY
specified as format(delimited(tty)) in open/4. The file stream is a terminal
device or a terminal emulator. What characters delimit each record depends on
the host operating system. The Prolog input/output system treats this format
like QP_DELIM_LF as far as record termination is concerned.
The Prolog input/output system also automatically provides special services for
streams with QP_DELIM_TTY format (see Section 10.5.4 [fli-ios-tty], page 444).

For a delimited record format stream, the middle layer input function removes the delimiting
character at the end of each record and the line border code for the stream is returned to
a top layer input predicate (function) when the end of a record is reached. The middle
output layer output function adds the delimited character at the end of each record before
the record is passed to the bottom layer write function.

The format field may be set to QP_FMT_UNKNOWN when a stream structure is created if the
format to be used is not known yet, for example, because the underlying device is not yet
opened. This format field must be set to a proper format before any I/O takes place on the
stream.

An example of this is when opening a Prolog stream through open/[3,4] or QP_fopen()
without specifying the format. The embedding open function, QU_open() is given the stream
format QP_FMT_UNKNOWN and thus chooses an appropriate format for the stream based on
the filename and options of the stream.

Chapter 10: Foreign Language Interface 439

Depending on the host operating system, some formats may be used more frequently than
others. QP_DELIM_LF and QP_DELIM_TTY are the most frequently used formats for a Prolog
system running under UNIX or Windows. QP_VAR_LEN is more frequently used under VMS.

10.5.3.4 Maximum Record Length

open/4 option: record(MaxRecLen)
QP_stream: int max_reclen

This field indicates the maximum record length of the stream. It is usually also the buffer
length of the stream. The value in this field is not changed once the stream is created. The
maximum record length can be bigger than the value store in the max_reclen field for some
operating systems allowing reading or writing partial records, such as the UNIX operating
system.

To create an unbuffered output stream, the value in max_reclen must be set to 0. The
bottom layer write function is then called for each character placed in the output stream.
To create an unbuffered input stream, the value in max_reclen can be either 0 or 1.

10.5.3.5 Line Border Code

open/4 option: end_of_line(LineBorder)
QP_stream: int line_border

The line_border field can be any integer greater than or equal to QP_NOLB (-1). If the
value is QP_NOLB, there is no line border code for the stream.

For an input stream, the line border code is the value to be returned in getting a character
when a stream is positioned at the end of a record. (Notice that if the stream is a delimited
record format stream, the delimited character has already been removed.) If there is no
line border code, the first character in the next record is returned at the end of a record.
Writing the line border code (i.e. with put/[1,2]) to an output stream signals the end of
the current record. Instead of writing out the line border code, the record is appropriately
wrapped up based on the format of the stream, and the wrapped record is handed to the
bottom layer write function of the stream. This is just like a new line operation on the
stream (e.g. nl/[0,1] or QP_newln()).

10.5.3.6 File Border Code

open/4 option: end_of_file(FileBorder)
QP_stream: int file_border

This is the code to be returned on reading at the end of file for an input stream. This
field is not used for an output stream. The value in file_border field can be any integer
greater than or equal to QP_NOFB (-2). If the value is QP_NOFB, there is no file border code
for the stream. If the file_border field is QP_NOFB, reading at the end of file is the same
as reading past the end of file.

440 Quintus Prolog

10.5.3.7 Reading Past End Of File

open/4 option: eof_action(Action)
QP_stream: unsigned char peof_act

This field is only used for an input stream. There are three states for an input stream,
normal, end of file, and past end of file. An input stream is in normal state until it reaches
end of file, where the state is switched to end of file state. If there is no file border code or
the file border code is consumed, the input stream is switched to past end of file state. The
field peof_act specifies which action to take for reading from a stream at past end of file
state. The value of peof_act can be one of the following.

QP_SEEK_ERROR
specified as seek(error) in open/4. An error for any type of seeking in the
stream.

QP_PASTEOF_ERROR
specified as eof_action(error) in open/4. The errno field of the stream is
set to QP_E_EXHAUSTED, and the read call fails.

QP_PASTEOF_EOFCODE
specified as eof_action(eof_code) in open/4. Retuns the file border code for
reading at the past end of file state. The state of the input stream does not
change. If there is no file border code for the input stream, it is the same as
setting the field to QP_PASTEOF_ERROR.

QP_PASTEOF_RESET
specified as eof_action(reset) in open/4. Resets the state of an input stream
to normal state and calls the bottom layer read function to get the input record
for reading at past end of file state. Setting the field to this value may be useful
for the stream with QP_DELIM_TTY format. It is possible to get more records
from a tty device after the end of file character is typed.

Once an input stream reaches end of file state, its bottom layer read function will not be
called unless the peof_act field is QP_PASTEOF_RESET.

10.5.3.8 Prompt String

QP_stream: char *prompt

A prompt string is a character string that will be written out when a tty stream (a stream
with QP_DELIM_TTY format) reads input at the beginning of a line. The prompt string is
stored in this field. This field is only used for an input tty stream. The prompt string will
not be written out if there are no output tty streams connected to the same tty as the input
tty stream (see Section 10.5.4 [fli-ios-tty], page 444). A prompt string of a stream may be
changed after the stream is created through prompt/[2,3] or by assigning a new character
string to this field directly.

Chapter 10: Foreign Language Interface 441

10.5.3.9 Record Trimming

open/4 option: trim
QP_stream: unsigned char trim

A non-zero value in trim field indicates trimming should be performed on each record of
an input stream with

QP_VAR_LEN format. The trailing blank characters in each of the records are removed in the
trimming operation. This field has no impact on an input stream with other formats or for
any output stream.

10.5.3.10 Seek Type

open/4 option: seek(SeekType)
QP_stream: unsigned char seek_type

This field specifies which type of seeking can be performed on the stream. The possible
values for seek_type are:

QP_SEEK_ERROR
specified as seek(error) in open/4. It is an error to perform any type of
seeking operation on the stream. Any call to seek/4, stream_position/3,
QP_seek() or QP_setpos() is an error.

QP_SEEK_PREVIOUS
specified as seek(previous) in open/4. The stream only seeks back to a pre-
vious read or written position. The previous position must be saved through
QP_getpos() or stream_position/[2,3]. The seeking can only be performed
through stream_position/3 or QP_setpos().

QP_SEEK_BYTE
specified as seek(byte) in open/4. The stream can seek to any arbitrary byte
offset in the file or to any previously saved position. In addition to the seek-
ing method described in QP_SEEK_PREVIOUS, the stream can also seek through
seek/4 or QP_seek().

QP_SEEK_RECORD
specified as seek(record) in open/4. The stream can seek to an arbitrary
record number in the file or to any previously saved position.

The seek function must be supplied for a user-defined stream with seek_type set to any
value other than QP_SEEK_ERROR.

10.5.3.11 Flushing An Output Stream

open/4 option: flush(FlushType)
QP_stream: unsigned char flush_type

442 Quintus Prolog

This field specifies whether or not the characters buffered in an output stream can be written
out immediately as a partial record. It is not used for an input stream. Characters written
to an output stream are buffered until the current record is terminated or the output buffer
overflows. When an output record is terminated, it is passed to the bottom layer of the
write function of the stream. The completed record is either written to the associated device
of the stream or further buffered by the bottom layer write function. If the output buffer
overflows, or flush_output/1 is called, buffered characters may be forced out through
flushing the output stream. The possible values for flush_type are:

QP_FLUSH_ERROR
specified as flush(error) in open/4. It is an error to flush the output stream.
Any call to flush_output/1 or QP_flush() is an error.

QP_FLUSH_FLUSH
specified as flush(flush) in open/4. Write out any characters in the output
buffer to the associated device of the stream. The host system must permit
writing out of partial records to support this option. The bottom layer flush
function must be supplied for the output stream.

10.5.3.12 Output Stream Buffer Overflow

open/4 option: overflow(OverFlowAction)
QP_stream: unsigned char overflow

Written characters are stored in the buffer of an output stream by the middle layer out-
put function until the current record is terminated, through a newline operation (such as
nl/[0,1] or QP_newln()) or by writing the line border code of the stream. If a charac-
ter is written when the buffer of an output stream is full, it overflows the output buffer.
The overflow field specifies the action that the middle layer function should take if this
happens. The possible values for overflow are:

QP_OV_ERROR
specified as overflow(error) in open/4. It is an error when output stream
buffer overflows.

QP_OV_TRUNCATE
specified as overflow(truncate) in open/4. Keeps the characters in the buffer
and throws away the current character that overflows the output buffer.

QP_OV_FLUSH
specified as overflow(flush) in open/4. Pass the current buffer storing a
partial record of the output stream to the bottom layer flush function to write
out the buffer. The host operating system must support writing of partial
records for the device associated with the stream.

Note that if an output stream is unbuffered (i.e. max_reclen is 0) then the middle layer
function ignores the overflow field and calls the write function for each character written
to the stream.

Chapter 10: Foreign Language Interface 443

10.5.3.13 Storing Error Condition Of A Stream

QP_stream: int errno;

An error code is stored in the errno field of a stream structure when an error is detected
in any of the three layers of input/output functions. The top layer QP functions set the
error code to QP_errno when an error occurs in the call to the functions. The error code
stored in this field may not last more than two QP input/output functions calls since middle
layer functions and some QP functions clear out this field before they call the bottom layer
function. If an error is detected in the bottom layer function, the errno field should be given
an appropriate error code before the function returns. The error code stored in errno field
can be any of the host operating system error numbers, QP error numbers or user-defined
error numbers.

10.5.3.14 System-Dependent Address In A File Stream

QP_stream: union QP_cookie magic;

The system-dependent address of the current position in a stream is stored in the magic field
of the stream structure. It is only used when there is any kind of seek to be performed on the
stream. This field is a C type union cookie, which is defined in ‘<quintus/quintus.h>’
as follows:

union QP_cookie {
struct RFA {

int BlockNumber;
short Offset;

} vms_rfa;
int mvs_rrn;
int cms_recno;
off_t byteno;
int user_defined[2];

} magic;

Depending on the host operating system, different field names of union cookie are used to
store the position address of the stream depending on the host operating system. Under
UNIX, magic.byteno is used to record the current location of the file pointer as an absolute
byte offset from the beginning of the stream; magic.vms_rfa is used on VMS; magic.mvs_
rrn is used on MVS; magic.cms_recno is used on CMS. magic.user_defined is used for
a user’s specific method of recording the current location of a stream. These values must
be maintained in the bottom layer functions of a stream with seek permission.

10.5.3.15 Bottom Layer Functions

QP_stream: int (*read)(), (*write)(), (*flush)(),
(*seek)(), (*close)();

444 Quintus Prolog

These fields store the address of the corresponding bottom layer functions of the stream.
See Section 10.5.6 [fli-ios-bot], page 451 for description about how to define these functions.

10.5.4 TTY Stream

A Prolog stream is a tty stream if the format of the stream is QP_DELIM_TTY. A tty stream is
normally associated with a terminal device, a pseudo-terminal device or a terminal emulator.
A set of tty streams can be grouped together through a distinct character string key for
each group of tty streams. All the tty streams from the same tty device (emulator) should
normally be grouped together. A tty stream registers itself to a tty stream group by calling
QP_add_tty() with the specific character string key for the group.

There are two services provided automatically by Prolog I/O system to each tty stream
group. When a tty stream is closed, it is automatically removed from its tty group.

Prompt Handling
There must be at least one output stream in the tty stream group in order to
write out the prompt string of an input stream in the group. When an input tty
stream reads at the beginning of a line, the middle layer input function writes
out the prompt of the input stream to the latest registered output stream in
the tty group before the bottom layer of the read function of the input stream
is called.

Stream Position
Character count, line count and line position for each stream in the tty group
are automatically adjusted for each tty group. When the buffer of an output
stream is written out (such as the output line is terminated, the buffer overflows,
or the stream output is flushed), the counts of all the output streams in the
tty group are brought up to date. When an input streams reads input to its
buffer, the counts of all the streams in its tty group are updated to the current
counts. Linking the counts of tty streams in the tty group makes the count of
a tty stream correspond to its physical appearance on the tty device.

A sample Prolog session demonstrates the special services performed for tty streams. The
default open/[3,4] automatically registers tty streams to the tty group using filename as
the key. After writing ‘write\n’ to Output1, the counts for Output1 and Output2 are
brought up to date. The counts in Input1 is not changed since counts in input stream are
only updated when reading from the input stream. After reading from Input1, the counts
for all the three streams are updated. The prompt ‘INPUT>> ’ is written out either through
Output1 or Output2, so it is included in the counts. The count in Input1 is different from
Output1 and Output2 since only character ‘r’ is consumed in the input of ‘read\n’.

Chapter 10: Foreign Language Interface 445

| ?- compile(user).

| write_count(Input, Output1, Output2) :-

character_count(Input, C0), line_count(Input, L0),

line_position(Input, P0),

character_count(Output1, C1), line_count(Output1, L1),

line_position(Output1, P1),

character_count(Output2, C2), line_count(Output2, L2),

line_position(Output2, P2),

format(’input : ~d, ~d, ~d~n’, [C0, L0, P0]),

format(’output1 : ~d, ~d, ~d~n’, [C1, L1, P1]),

format(’output2 : ~d, ~d, ~d~n’, [C2, L2, P2]).

| ^D
% user compiled in module user, 0.216 sec 384 bytes

yes
| ?- open(’/dev/tty’, read, Input), prompt(Input, _, ’INPUT>> ’),

open(’/dev/tty’, write, Output1),

open(’/dev/tty’, write, Output2),

format(Output1, ’write~n’, []),

write_count(Input, Output1, Output2),

get0(Input, _), write_count(Input, Output1, Output2).

write
input : 0, 1, 0
output1 : 6, 2, 0
output2 : 6, 2, 0
INPUT>> read
input : 15, 2, 9
output1 : 19, 3, 0
output2 : 19, 3, 0

Notice that the I/O in the user_input and user_output are not included in the counts
although both streams are connected to the same tty. The three default streams (user_
input, user_output and user_error) are put into a different tty group in the embedding
initialization function, QU_initio().

10.5.5 Defining A Customized Prolog Stream

In addition to calling default open predicates or functions — such as open/[3,4] or QP_
fopen() to create a stream, a user can define a stream through the method described in this
section. A common reason to do this is to create a stream, which is not supported directly
by the Prolog input/output system, such as a stream for inter-process communication. The
created stream can be passed as the stream argument to all the input/output related Prolog
predicates and functions. This section presupposes Section 10.5.3 [fli-ios-sst], page 437 on
stream structure.

446 Quintus Prolog

10.5.5.1 Summary of Steps

The following steps are required to create a user-defined stream in foreign code, such as
C. The stream is represented in C as a pointer to a QP_stream structure. It can then be
converted back to Prolog stream representation through stream_code/2. The predicate
stream_code/2 converts, in either direction, between Prolog and C representations of a
stream.

1. Define the user-defined stream structure, containing fields required to operate the
stream. (see Section 10.5.5.2 [fli-ios-cps-sst], page 446)

2. Prepare creation of the user-defined stream. This usually requires a function to perform
the following steps:
a. Open the I/O channel, e.g. open a file or set up inter-process communication. (see

Section 10.5.5.3 [fli-ios-cps-opn], page 447)
b. Allocate memory for the user-defined stream and set values in the fields of the

allocated user-defined stream. (see Section 10.5.5.4 [fli-ios-cps-all], page 448)
c. Set up the default values for the QP_stream part of the user-defined stream through

QU_stream_param() and modify these values as necessary. (see Section 10.5.5.5
[fli-ios-cps-sqs], page 449)

d. Initialize the remaining fields of QP_stream structure used internally by the Prolog
system through QP_prepare_stream() and register the created stream through
QP_register_stream(). (see Section 10.5.5.6 [fli-ios-cps-ire], page 450)

e. If the stream is a tty stream, register the stream to its tty group through QP_add_
tty(). (see Section 10.5.5.7 [fli-ios-cps-tty], page 451)

3. Implement the bottom layer functions to be used for the stream. These may include
read, write, flush, seek and close functions. (see Section 10.5.6 [fli-ios-bot], page 451)

These steps are described in more detail in the remainder of this section. An example of
creating a stream for a binary file in one of read, write or append modes is discussed. The
example is written in C although it can also be written in other languages, such as Pascal
or Fortran.

The example opens a file as a binary stream. The characters input from or output to
the stream are exactly the same as stored in file. Seeking to a random byte position and
flushing output are permitted in the stream. The first example lists complete source code
(see Section 10.5.7 [fli-ios-uds], page 457). Note that binary streams are in fact supported
in the system.

10.5.5.2 Defining a Stream Structure

The first field of the user-defined stream structure must be of type QP_stream. Other fields
in the user-defined stream structure can be anything that is required to operate on the user-
defined stream. The Prolog input/output system passes a QP_stream pointer as the first
argument to the bottom layer functions; casting this to the user-defined stream structure

Chapter 10: Foreign Language Interface 447

enables other fields in the user-defined stream to be accessed. The example below declares
a binary stream structure as:

typedef struct
{

QP_stream qpinfo;
int fd; /* UNIX file descriptor */
int last_rdsize; /* size of last returned record */
unsigned char buffer[Buffer_Size]; /* I/O buffer */

} BinStream;

#define CoerceBinStream(x) ((BinStream *)(x))

The field qpinfo stores information about the binary stream known to the Prolog in-
put/output system. There is a buffer field in the structure since the I/O buffer is allocated
by the user. The macro CoerceBinStream is used to convert a pointer to QP_stream into
a pointer to BinStream. We use this macro to convert the pointer so that fields in the
BinStream structure can be accessed.

10.5.5.3 Opening The User-Defined Stream

Depending on the specific user-defined stream, there are different operations needed for the
stream. A stream that operates on a file needs to open the file; a stream that operates for
inter-process communication needs to build the connection to different process. Our example
stream operates on files, so we just open the file to get file descriptor. The parameters of
our function and local variables in the function are also listed.

448 Quintus Prolog

QP_stream *
open_bin(filename, modename, error_num)

char *filename, *modename;
int *error_num;
{

BinStream *stream;
QP_stream *option;
int fd, mode;

switch (*modename) {
case ’r’: mode = QP_READ;

fd = open(filename, O_RDONLY, 0000);
break;

case ’w’: mode = QP_APPEND;
fd = open(filename, O_WRONLY|O_CREAT|O_TRUNC,

0666);
break;

case ’a’: mode = QP_APPEND;
fd = open(filename, O_WRONLY|O_CREAT, 0666);
break;

default: *error_num = QP_E_BAD_MODE;
return QP_NULL_STREAM;

}
if (fd < 0) {

*error_num = errno;
return QP_NULL_STREAM;

}

...... allocate space and set user-stream fields

...... set up QP_stream structure fields

...... register the created QP_stream

return &stream->qpinfo;
}

This function can be called from Prolog using the Prolog calling C interface described in
Section 10.3 [fli-p2f], page 375. The address returned by this function is converted into the
Prolog representation of a stream using stream_code/2.

10.5.5.4 Allocating Space And Setting Field Values For the User-
Defined Stream

The memory space for a user-defined stream structure and its buffer are controlled by the
user application. It is recommended to use QP_malloc() to allocate the space for more
efficient memory utilization in the Prolog system. In our example, the buffer is a field in

Chapter 10: Foreign Language Interface 449

the BinStream structure so that only one QP_malloc() call allocates both buffer and stream
space.

After memory is allocated, the fields in the stream structure are set appropriately. The
fields of QP_stream part in the stream structure is set up in the next step.

if ((stream = (BinStream *) QP_malloc(sizeof(*stream)))
== ((BinStream *) 0)) {

(void) close(fd);
*error_num = QP_errno;
return QP_NULL_STREAM;

}
stream->fd = fd;
stream->last_rdsize = 0;

10.5.5.5 Setting Up The QP stream Structure

The default values in the fields of QP_stream part of the user-defined stream are set through
the QU_stream_param() function. The declaration of QU_stream_param() is given as:

void QU_stream_param(filename, mode, format, option)
char *filename;
int mode;
int format;
QP_stream *option;

If the stream does not have a filename, the empty string "" should be used. The parameter
mode can be one of QP_READ, QP_WRITE or QP_APPEND. The parameter format can be one
of the format types listed in Section 10.5.3.3 [fli-ios-sst-fmt], page 438. The default version
of QU_stream_param() source code is shipped with Quintus Prolog (see Section 19.3.77
[cfu-ref-QU stream param], page 1472 also lists the source).

The fields in the QP_stream structure can then be modified based on the desired features
of the user-defined stream. All the fields described in the Stream Structure section can be
modified (see Section 10.5.3 [fli-ios-sst], page 437), but often the only modified fields are
max_reclen, seek_type and bottom layer function fields.

In our example, the format QP_VAR_LEN is chosen for non-tty files, and the line_border
field is reset so that the middle layer functions do not alter any of the input/output records.
The fields max_reclen and seek_type are set to the right values for our stream. The
bottom layer function fields are set based on the mode and the seek_type of the stream.
If the stream is opened for append, the file pointer of the stream is moved to the end of file
and the magic field is updated (magic.byteno is used since it is a UNIX file).

450 Quintus Prolog

option = &stream->qpinfo;
QU_stream_param(filename, mode, QP_VAR_LEN, option);
option->max_reclen = Buffer_Size;
option->line_border = QP_NOLB;
if (isatty(fd)) {

option->format = QP_DELIM_TTY;
option->seek_type = QP_SEEK_ERROR;

} else {
option->seek_type = QP_SEEK_BYTE;
option->seek = bin_seek;

}
if (mode != QP_READ) {

option->write = bin_write;
option->flush = bin_write;

} else
option->read = bin_read;

if (option->mode == QP_APPEND &&
option->format != QP_DELIM_TTY) {

if ((option->magic.byteno=lseek(fd,0L,L_XTND)) < 0) {
(void) close(fd);
*error_num = errno;
return QP_NULL_STREAM;

}
}
option->close = bin_close;

10.5.5.6 Initialize and Register The Created Stream

The fields of QP_stream structure used internally by the Prolog system are initialized
through QP_prepare_stream(). It should be called after other fields in QP_stream are
properly set up. QP_prepare_stream() takes a pointer to QP_stream as its first parameter
and the address of the input/output buffer for the stream as its second parameter.

QP_register_stream() is then called to register the user-defined stream so that the stream
can be used in Prolog code. In our example, if the registration fails the bottom layer function
is used to close the opened file and deallocate the memory space for the created stream and
a null stream is returned.

QP_prepare_stream(&stream->qpinfo, stream->buffer);
if (QP_register_stream(&stream->qpinfo) == QP_ERROR)
{ (void) stream->qpinfo.close(&stream->qpinfo);

*error_num = QP_errno;
return QP_NULL_STREAM;

}

Chapter 10: Foreign Language Interface 451

10.5.5.7 TTY Group For TTY Stream

This is an optional step only for tty streams. A tty stream needs to register to its group
for special tty service (see Section 10.5.4 [fli-ios-tty], page 444).

Finally the pointer to the created stream is returned to Prolog, and converted to Prolog
stream representation through stream_code/2. In our example, we use the filename of the
stream as the key to register into its group.

if (option->format == QP_DELIM_TTY)
(void) QP_add_tty(&stream->qpinfo, filename);

return &stream->qpinfo;

10.5.6 The Bottom Layer Functions

There are five bottom layer functions for a stream: read, write, flush, seek and close.
However, not all of these functions are needed for every stream:

• The seek function is not required when the seek_type is QP_SEEK_ERROR.
• The read function is only required for an input stream.
• The write function is only required for an output stream.
• The flush function is not required when the flush_type is QP_FLUSH_ERROR.
• The close function should be supplied for every stream.

These functions usually only operate on the specific fields of a particular user-defined stream.
(i.e. Fields other than the first field in a user-defined stream structure.) The errno field and
magic field in QP_stream part may also be maintained by the bottom layer functions. The
mode field and max_reclen field are also typically accessed by the bottom layer functions.

Except for the read function, all the bottom layer functions return QP_SUCCESS upon success,
and return QP_ERROR and assign an error code to the errno field upon failure. These
functions are described further in subsequent sub-sections.

10.5.6.1 The Bottom Layer Read Function

int <read function>(qpstream, bufptr, sizeptr)
QP_stream *qpstream;
unsigned char **bufptr;
size_t *sizeptr;

Return Values: QP_FULL : a complete record is read
QP_PART : a partial record is read
QP_EOF : end of file is reached
QP_ERROR : a partial record is read

452 Quintus Prolog

The bottom layer read function returns a record of input to its caller. The returned record
is buffered. The buffer address is returned through *bufptr parameter and the size of the
returned record is stored in *sizeptr parameter. The magic field in qpstream should be up-
dated to the system-dependent file address (see Section 10.5.3.14 [fli-ios-sst-sda], page 443)
for the beginning of the returned record. If there is no seek permission for the stream, the
magic field may be ignored. The errno field in QP_stream stores the error code if an error
is detected in the function.

In our example, the read function does not return QP_PART since any length of input is
chosen as a complete record.

static int
bin_read(qpstream, bufptr, sizeptr)

QP_stream *qpstream;
unsigned char **bufptr;
size_t *sizeptr;
{

int n;
register BinStream *stream = CoerceBinStream(qpstream);

qpstream->magic.byteno += stream->last_rdsize;
stream->last_rdsize = 0;
n = read(stream->fd, (char*) stream->buffer,

(int) qpstream->max_reclen);
if (n > 0) {

*bufptr = stream->buffer;
*sizeptr = n;
stream->last_rdsize = n;
return QP_FULL;

} else if (n == 0) {
*sizeptr = 0;
return QP_EOF;

} else {
qpstream->errno = errno;
return QP_ERROR;

}
}

10.5.6.2 The Bottom Layer Write Function

int <write function>(qpstream, bufptr, sizeptr)
QP_stream *qpstream;
unsigned char **bufptr;
size_t *sizeptr;

Return Values: QP_SUCCESS
QP_ERROR

Chapter 10: Foreign Language Interface 453

The bottom layer write function writes out a record from buffer address stored in *bufptr
and the size of the record stored in *sizeptr. Upon successful return, *sizeptr stores
the maximum record size and *bufptr stores the address of the beginning of the buffer for
the next output record. The magic field in qpstream should be updated to the system-
dependent file address (see Section 10.5.3.14 [fli-ios-sst-sda], page 443) for the beginning of
the next output record. If there is no seek permission for the stream, the magic field may
be ignored. The errno field in QP_stream stores the error code if an error is detected in the
function and QP_ERROR is returned. The output record passed into the write function may
be a partial record if output record overflows the output buffer for a stream that permits
overflow.

static int
bin_write(qpstream, bufptr, sizeptr)

QP_stream *qpstream;
unsigned char **bufptr;
size_t *sizeptr;
{

BinStream *stream = CoerceBinStream(qpstream);
int n, len=(int) *sizeptr;
char *buf = (char *) *bufptr;

while ((n = write(stream->fd, buf, len)) > 0 && n < len) {
buf += n;
len -= n;

}
if (n >= 0) {

qpstream->magic.byteno += *sizeptr;
*sizeptr = qpstream->max_reclen;
*bufptr = stream->buffer;
return QP_SUCCESS;

} else {
qpstream->errno = errno;
return QP_ERROR;

}
}

10.5.6.3 The Bottom Layer Flush Function

int <flush function>(qpstream, bufptr, sizeptr)
QP_stream *qpstream;
unsigned char **bufptr;
size_t *sizeptr;

Return Values: QP_SUCCESS
QP_ERROR

454 Quintus Prolog

The parameters and the return values of the flush function have the same syntax and the
same meaning as the write function. The write function may buffer the output record
without writing the record out. The flush function should write out the output record
immediately when it is called. The middle layer function will not call the write function
with an empty record (*sizeptr is zero), but the flush function may be called with an
empty record passed in. In general, the flush function can be the same as write function
unless the write function buffers output records. An output stream needs a bottom layer
flush function only if flush_type of the stream is not FLUSH_ERROR.

In our example, the bottom layer write function does not buffer output record and it can
also handle writing an empty record, so the bottom layer flush function is the same as the
write function.

10.5.6.4 The Bottom Layer Seek Function

int <seek function>(qpstream, qpmagic, whence, bufptr, sizeptr)
QP_stream *qpstream;
union QP_cookie *qpmagic;
int whence;
unsigned char **bufptr;
size_t *sizeptr;

Return Values: QP_SUCCESS
QP_ERROR

The bottom layer seek function sets the stream qpstream to a new position based on the
method whence and the system-dependent file address qpmagic specified in the parameters.
The output parameter *bufptr stores the beginning of the buffer and *sizeptr stores the
size of record. When the bottom layer seek function is called, the magic field of qpstream
is the current stream position known to the user of the stream. (It does not include the
unconsumed characters in the buffer.) Upon success, the seek function should return QP_
SUCCESS and the magic field of qpstream should be updated to the new position. Upon
failure, it returns QP_ERROR and suitable error code should be assigned to error field of
qpstream.

The stream is set to a new position based on the whence value and qpmagic values. (see
Section 10.5.3.14 [fli-ios-sst-sda], page 443)

• If whence is QP_BEGINNING, the magic field is the system-dependent address to be
positioned from the beginning of the stream. If the seek_type of the stream is QP_
SEEK_PREVIOUS, the whence value is always QP_BEGINNING.

• If whence is QP_CURRENT, seeking is to be performed from the current position. For
instance, if byteno is used for magic field of qpstream, the stream should be set to
the current position (qpstream->magic.byteno) plus the offset specified in qpmagic-
>byteno.

• If whence is QP_END, seeking is to be performed from the end of file position associated
with qpstream. For instance, if byteno is used for magic field of qpstream, the stream

Chapter 10: Foreign Language Interface 455

should be set to the size of the file associated with qpstream plus the offset specified
in qpmagic->byteno.

Due to the buffering mechanism of a stream, the magic field in qpstream might be different
from the actual position for the file (or other devices) associated with the stream. For
example, if the current record of an input stream has a size of 10 and there are only 5
characters consumed, the magic field indicates the position at the sixth character rather
than the 11th character of the current record. In short, the value in magic field of qpstream
does not count any characters in the buffer that are not consumed in an input stream. For
an output stream, the caller of the bottom layer seek function will call flush function to
flush output prior to calling this function if qpstream permits flushing (flush_type is not
QP_FLUSH_ERROR). The caller of this function does not permit any seeking in an output
stream with no flush permission if there are characters in the current record (line position is
not zero in the output stream). However, if the bottom layer of an output stream without
flushing permission buffers more than one output record, it is possible for the bottom layer
seek function to be called with records in the buffer. (This would be the case that there are
no characters in the current record.) The bottom layer seek function should write out the
records in the buffer for this case.

One effect of seeking is to clear out the buffer of a stream. This should be adhered to in
implementing the bottom layer seek function. If qpstream is an input stream, bufptr and
sizeptr have the same meaning as in the bottom layer read function. If qpstream is an
output stream, bufptr and sizeptr have the same meaning as in the bottom layer write
function. So for most of cases, *bufptr should be set to the beginning of the buffer of the
stream and *sizeptr should be set as follows:

*sizeptr = (qpstream->mode == QP_READ) ? 0 : qpstream->max_reclen;

The bottom layer seek function for our example stream:

456 Quintus Prolog

static int
bin_seek(qpstream, qpmagic, whence, bufptr, sizeptr)

QP_stream *qpstream;
union QP_cookie *qpmagic;
int whence;
unsigned char **bufptr;
size_t *sizeptr;
{

BinStream *stream = CoerceBinStream(qpstream);
off_t new_offset;

switch (whence) {
case QP_BEGINNING:

new_offset = lseek(stream->fd,qpmagic->byteno,L_SET);
break;

case QP_CURRENT:
/* The current location of file pointer is different

from what the user thinks it is due to buffering.
The magic field has been brought up to date by the
caller of this function already, so just seek to
that position first. */

if (lseek(stream->fd, qpstream->magic.byteno, L_SET)
== -1) {

qpstream->errno = errno;
return QP_ERROR;

}
new_offset = lseek(stream->fd,qpmagic->byteno,L_INCR);
break;

case QP_END:
new_offset = lseek(stream->fd,qpmagic->byteno,L_XTND);
break;

default:
qpstream->errno = QP_E_INVAL;
return QP_ERROR;

}
if (new_offset == -1) { /* error in seeking */

qpstream->errno = errno;
return QP_ERROR;

}

qpstream->magic.byteno = new_offset;
*bufptr = stream->buffer;
*sizeptr = (qpstream->mode == QP_READ) ? 0

: qpstream->max_reclen;
stream->last_rdsize = 0;
return QP_SUCCESS;

}

Chapter 10: Foreign Language Interface 457

10.5.6.5 The Bottom Layer Close Function

int <close function>(qpstream)
QP_stream *qpstream;

Return Value: QP_SUCCESS
QP_ERROR

The bottom layer close function performs the specific close operation of a user-defined
stream and deallocates the memory space for the stream. It returns QP_ERROR and assigns
an appropriate error code to the errno field of QP_stream if an error occurs in the function.
In our example, we use QP_free() to deallocate memory space since the memory is allocated
by QP_malloc().

static int
bin_close(qpstream)

QP_stream *qpstream;
{

BinStream *stream = CoerceBinStream(qpstream);
int fd = stream->fd;

if (close(fd) < 0) {
qpstream->errno = errno;
return QP_ERROR;

}
(void) QP_free(qpstream);
return QP_SUCCESS;

}

10.5.7 Examples Of User-Defined Streams

Three examples of creating a user-defined stream are listed in this section. The foreign code
examples are written in C language under UNIX operating system.

10.5.7.1 Creating A Binary Stream

This example creates a binary stream. All the characters read from the stream are exactly
the same as the characters stored in the file of the stream. All the characters stored in the
file of the stream are the same as the characters written to the stream. The stream permits
flushing output and random seek to arbitrary byte position in the file. By choosing QP_
VAR_LEN as the format of the stream and using the full buffer as a record to communicate
between middle layer and bottom layer functions, a line is actually a full buffer of the
stream. A newline operation does not output a 〈LFD〉 either so that the line count of the
stream is not based on the number of 〈LFD〉 characters.

458 Quintus Prolog

bin.pl

foreign(open_bin, c, open_bin(+string, +string, -integer, [-address])).
foreign_file(’bin’, [open_bin]).

:- load_foreign_files([’bin’],[]).

open_bin_file(FileName, ModeName, Stream) :-
open_bin(FileName, ModeName, ErrorNum, CStream),
(CStream =:= 0 ->

raise_exception(existence_error(
open_bin_file(FileName, ModeName, Stream),
1, file, FileName, errno(ErrorNum)))

; stream_code(Stream, CStream)
).

Chapter 10: Foreign Language Interface 459

bin.c

#include <fcntl.h>
#include <errno.h>
#include <sys/file.h> /* for seek */

#ifndef L_SET
#define L_SET 0
#endif
#ifndef L_INCR
#define L_INCR 1
#endif
#ifndef L_XTND
#define L_XTND 2
#endif

#include <quintus/quintus.h>

extern char *QP_malloc();

/* The following three functions support UNIX I/O on files
without breaking things into records. All the characters
read from or written to the file are kept exactly the same.

*/

#define Buffer_Size 8192

typedef struct
{

QP_stream qpinfo;
int fd; /* UNIX file descriptor */
int last_rdsize; /* size of last returned line */
unsigned char buffer[Buffer_Size]; /* I/O buffer */

} BinStream;

#define CoerceBinStream(x) ((BinStream *)(x))

460 Quintus Prolog

bin.c

static int
bin_read(qpstream, bufptr, sizeptr)

QP_stream *qpstream;
unsigned char **bufptr;
size_t *sizeptr;
{

int n;
register BinStream *stream = CoerceBinStream(qpstream);

qpstream->magic.byteno += stream->last_rdsize;
stream->last_rdsize = 0;
n = read(stream->fd, (char*)stream->buffer,

(int) qpstream->max_reclen);
if (n > 0) {

*bufptr = stream->buffer;
*sizeptr = n;
stream->last_rdsize = n;
return QP_FULL;

} else if (n == 0) {
*sizeptr = 0;
return QP_EOF;

} else {
qpstream->errno = errno;
return QP_ERROR;

}
}

static int
bin_write(qpstream, bufptr, sizeptr)

QP_stream *qpstream;
unsigned char **bufptr;
size_t *sizeptr;
{

BinStream *stream = CoerceBinStream(qpstream);
int n, len=(int) *sizeptr;
char *buf = (char *) *bufptr;

while ((n = write(stream->fd, buf, len)) > 0 && n < len) {
buf += n;
len -= n;

}
if (n >= 0) {

qpstream->magic.byteno += *sizeptr;
*sizeptr = qpstream->max_reclen;
*bufptr = stream->buffer;
return QP_SUCCESS;

} else {
qpstream->errno = errno;
return QP_ERROR;

}
}

Chapter 10: Foreign Language Interface 461

bin.c

static int
bin_seek(qpstream, qpmagic, whence, bufptr, sizeptr)

QP_stream *qpstream;
union QP_cookie *qpmagic;
int whence;
unsigned char **bufptr;
size_t *sizeptr;
{

BinStream *stream = CoerceBinStream(qpstream);
off_t new_offset;

switch (whence) {
case QP_BEGINNING:

new_offset = lseek(stream->fd,qpmagic->byteno,L_SET);
break;

case QP_CURRENT:
/* The current location of file pointer is different from

what the user thinks it is due to buffering. The magic
field has been brought up to date by the caller of this
function, so just seek to that position first. */
if (lseek(stream->fd, qpstream->magic.byteno, L_SET)

== -1) {
qpstream->errno = errno;
return QP_ERROR;

}
new_offset = lseek(stream->fd,qpmagic->byteno,L_INCR);
break;

case QP_END:
new_offset = lseek(stream->fd,qpmagic->byteno,L_XTND);
break;

default:
qpstream->errno = QP_E_INVAL;
return QP_ERROR;

}
if (new_offset == -1) { /* error in seeking */

qpstream->errno = errno;
return QP_ERROR;

}
qpstream->magic.byteno = new_offset;
*bufptr = stream->buffer;
*sizeptr = (qpstream->mode == QP_READ) ? 0

: qpstream->max_reclen;
stream->last_rdsize = 0;
return QP_SUCCESS;

}

462 Quintus Prolog

bin.c

static int
bin_close(qpstream)

QP_stream *qpstream;
{

BinStream *stream = CoerceBinStream(qpstream);
int fd = stream->fd;

if (close(fd) < 0) {
qpstream->errno = errno;
return QP_ERROR;

}
(void) QP_free(qpstream);
return QP_SUCCESS;

}

Chapter 10: Foreign Language Interface 463

bin.c

QP_stream *
open_bin(filename, modename, error_num)

char *filename, *modename;
int *error_num;
{

BinStream *stream;
QP_stream *option;
int fd, mode;

switch (*modename) {
case ’r’: mode = QP_READ;

fd = open(filename, O_RDONLY, 0000);
break;

case ’w’: mode = QP_APPEND;
fd = open(filename, O_WRONLY|O_CREAT|O_TRUNC,

0666);
break;

case ’a’: mode = QP_APPEND;
fd = open(filename, O_WRONLY|O_CREAT, 0666);
break;

default: *error_num = QP_E_BAD_MODE;
return QP_NULL_STREAM;

}
if (fd < 0) {

*error_num = errno;
return QP_NULL_STREAM;

}
if ((stream = (BinStream *) QP_malloc(sizeof(*stream)))

== ((BinStream *) 0)) {
(void) close(fd);
*error_num = QP_errno;
return QP_NULL_STREAM;

}
stream->fd = fd;
stream->last_rdsize = 0;

464 Quintus Prolog

bin.c

/* obtain default values in QP_stream structure */
/* and modified fields for this stream */

option = &stream->qpinfo;
QU_stream_param(filename, mode, QP_VAR_LEN, option);
option->max_reclen = Buffer_Size;
option->line_border = QP_NOLB;
if (isatty(fd)) {

option->format = QP_DELIM_TTY;
option->seek_type = QP_SEEK_ERROR;

} else {
option->seek_type = QP_SEEK_BYTE;
option->seek = bin_seek;

}
if (mode != QP_READ) {

option->write = bin_write;
option->flush = bin_write;

} else
option->read = bin_read;

if (option->mode == QP_APPEND
&& option->format != QP_DELIM_TTY) {

if ((option->magic.byteno=lseek(fd,0L,L_XTND)) < 0) {
(void) close(fd);
*error_num = errno;
return QP_NULL_STREAM;

}
}
option->close = bin_close;

QP_prepare_stream(&stream->qpinfo, stream->buffer);
if (QP_register_stream(&stream->qpinfo) == QP_ERROR) {

(void) stream->qpinfo.close(&stream->qpinfo);
*error_num = QP_errno;
return QP_NULL_STREAM;

}

/* Use filename to register tty stream to its group */
if (option->format == QP_DELIM_TTY)

(void) QP_add_tty(&stream->qpinfo, filename);

return &stream->qpinfo;
}

Chapter 10: Foreign Language Interface 465

10.5.7.2 Creating A Stream To Read An Encrypted File

This example creates an input stream to read from a file encrypted using a simple encryption
algorithm. The key is stored in the first byte of the file. A character code stored in the file
is the result of a logical exclusive-or operation of the output character and the key. The
decryption of the input file is done in the bottom layer read function.

The input stream created only permits seeking to a previous read position. Notice the
bottom layer read function defined (decrypt_read()) buffers more than one record. By
doing this, the Prolog input/output system will maintain a correct line count and line
position based on the new line character (‘\n’). There are also two user-defined error
numbers used in this example (DECRYPT_NO_KEY and DECRYPT_TTY_FILE).

decrypt.pl

foreign(open_decrypt, c, open_decrypt(+string, -integer,
[-address])).

foreign_file(’decrypt’, [open_decrypt]).

:- load_foreign_files([’decrypt’],[’-lc’]).

open_decrypt_stream(FileName, PrologStream) :-
open_decrypt(FileName, ErrorNum, CStream),
(CStream =:= 0 ->

raise_exception(existence_error(
open_decrypt_stream(FileName, PrologStream),
1, file, FileName, errno(ErrorNum)))

; stream_code(PrologStream, CStream)
).

466 Quintus Prolog

decrypt.c

#include <fcntl.h>
#include <quintus/quintus.h>
extern int errno;

#define Buffer_Size 8192

typedef unsigned char Key_Type;

typedef struct
{

QP_stream qpinfo;
int fd; /* file descriptor */
int last_rdsize; /* size of last record */
int left_size; /* char. left unread */
unsigned char *left_ptr; /* pointer to the unread */
unsigned char buffer[Buffer_Size+3];
Key_Type key; /* decryption key */

} DecryptStream;

#define CoerceDecryptStream(qpstream) \
((DecryptStream *)(qpstream))

/* define user-defined error number */
#define DECRYPT_NO_KEY QP_END_ECODE+1
#define DECRYPT_TTY_FILE QP_END_ECODE+2

Chapter 10: Foreign Language Interface 467

decrypt.c

/*
To enable the Prolog system to maintain correct line count
and line position, a whole buffer is read but only a line
in the buffer is returned every time.
The characters in the buffer are decrypted at once.

The buffer is maintained as follows:

<- left_size ->
+---------------+-------------+--+-------+
| has been read | to be read |\n| empty |
+---------------+-------------+--+-------+

^ left_ptr ^ <pad ’\n’ character>
*/
static int
decrypt_read(qpstream, bufptr, sizeptr)

QP_stream *qpstream;
unsigned char **bufptr;
size_t *sizeptr;
{

register DecryptStream *stream =
CoerceDecryptStream(qpstream);

register int n;
register unsigned char *s, *s1;

/* magic is the beginning byte offset of return record */
qpstream->magic.byteno += stream->last_rdsize;

if (stream->left_size <= 0) {
register Key_Type *kp, *kq, key;

/* read a new buffer of input and decrypt characters*/
n = read(stream->fd, (char *) stream->buffer,

Buffer_Size);

if (n > 0) {
kp=(Key_Type *) stream->buffer;
kq=(Key_Type *) &stream->buffer[n];
for (key = stream->key; kp < kq ;) /* decrypt */

*kp++ ^= key;
stream->left_size = n;
stream->left_ptr = stream->buffer;

} else if (n == 0) {
stream->last_rdsize = stream->left_size = 0;
*bufptr = stream->left_ptr = stream->buffer;
*sizeptr = stream->last_rdsize = 0;
return QP_EOF;

} else {
qpstream->errno = errno;
stream->last_rdsize = stream->left_size = 0;
return QP_ERROR;

}
}

468 Quintus Prolog

Chapter 10: Foreign Language Interface 469

decrypt.c

/* make next line of data available */
s = stream->left_ptr;
se = s + stream->left_size;
while (s < se) {

if (*s++ == ’\n’) { /* found end of record */
break;

}
}

*bufptr = stream->left_ptr;
*sizeptr = stream->last_rdsize = s - stream->left_ptr;
stream->left_ptr = s;
stream->left_size = se - s;
return (*--s == ’\n’) ? QP_FULL : QP_PART;

}

/* Only QP_SEEK_PREVIOUS is allowed for the file, so ’whence’
specified can only be QP_BEGINNING. ’*sizeptr’ should always
be set to 0 since there is only input stream.

*/
static int
decrypt_seek(qpstream, qpmagic, whence, bufptr, sizeptr)

QP_stream *qpstream;
union QP_cookie *qpmagic;
int whence;
unsigned char **bufptr;
size_t *sizeptr;
{

DecryptStream *stream = CoerceDecryptStream(qpstream);
off_t offset;

switch (whence) {
case QP_BEGINNING:

if ((offset = lseek(stream->fd,qpmagic->byteno,L_SET))
== -1) {

qpstream->errno = errno;
return QP_ERROR;

}
qpstream->magic.byteno = offset;
*bufptr = stream->buffer;
*sizeptr = 0;
stream->left_ptr = stream->buffer;
stream->left_size = stream->last_rdsize = 0;
return QP_SUCCESS;

case QP_CURRENT:
case QP_END:
default:

qpstream->errno = QP_E_INVAL;
return QP_ERROR;

}
}

470 Quintus Prolog

decrypt.c

static int
decrypt_close(qpstream)

QP_stream *qpstream;
{

DecryptStream *stream = CoerceDecryptStream(qpstream);
int fd = stream->fd;

QP_free((char *)stream);
if (close(fd) < 0) {

qpstream->errno = errno;
return QP_ERROR;

}
return QP_SUCCESS;

}

Chapter 10: Foreign Language Interface 471

decrypt.c

/* open_crypt_stream: open the specified non-tty ’filename’ for
reading. The file is a simple crypted file with the first
byte as the key. It is crypted by logical exclusive-or
operation of the key with every character in the file.
Upon success, the opened stream is returned.
Upon failure, QP_NULL_STREAM is returned and the error code
is stored in the parameter ’error_num’.

*/
QP_stream *
open_decrypt(filename, error_num)

char *filename;
int *error_num;
{

int fd;
Key_Type key;
DecryptStream *stream;
QP_stream *option;

if ((fd = open(filename, O_RDONLY)) < 0) {
*error_num = errno;
return QP_NULL_STREAM;

}
if (isatty(fd)) { /* tty file is not accepted */

(void) close(fd);
*error_num = DECRYPT_TTY_FILE;

}

switch (read(fd, (char *) &key, sizeof(key))) {
case sizeof(key):

break;
case 0:

*error_num = DECRYPT_NO_KEY;
(void) close(fd);
return QP_NULL_STREAM;;

default:
*error_num = errno;
(void) close(fd);
return QP_NULL_STREAM;

}

472 Quintus Prolog

decrypt.c

if (! (stream = (DecryptStream *)
QP_malloc(sizeof(*stream)))) {

(void) close(fd);
*error_num = QP_errno;
return QP_NULL_STREAM;

}

stream->fd = fd;
stream->last_rdsize = 0;
stream->left_size = 0;
stream->key = key;

option = &stream->qpinfo;
QU_stream_param(filename, QP_READ, QP_DELIM_LF, option);

option->max_reclen = Buffer_Size;
/* Record the current byte offset in the file */

option->magic.byteno = sizeof(key);
option->read = decrypt_read;
option->seek = decrypt_seek;
option->close = decrypt_close;

QP_prepare_stream(&stream->qpinfo, stream->buffer);
if (QP_register_stream(&stream->qpinfo) == QP_ERROR) {

(void) stream->qpinfo.close(&stream->qpinfo);
*error_num = QP_errno;
return QP_NULL_STREAM;

}
return (QP_stream *) stream;

}

10.5.7.3 Creating A Stream Based On C Standard I/O Library

This example demonstrates creating a stream based on standard I/O library package. The
stream is created as unbuffered for the Prolog I/O system (It is still buffered in the standard
I/O package). By making the stream unbuffered, mixed I/O operations between Prolog code
and C code using standard I/O library functions will work appropriately. In this case, line
counts and character counts will be maintained for Prolog I/O predicates and QP functions
only.

Chapter 10: Foreign Language Interface 473

stdio.pl

foreign(open_stdio, c, open_stdio(+string, +string, -integer,
[-address])).

foreign_file(’stdio’, [open_stdio]).

:- load_foreign_files([’stdio’],[’-lc’]).

open_stdio_file(FileName, ModeName, Stream) :-
valid_open_mode(ModeName, Mode),
open_stdio(FileName, Mode, ErrorNum, CStream),
(CStream =:= 0 ->

raise_exception(existence_error(
open_stdio_file(FileName, ModeName, Stream),
1, file, FileName, errno(ErrorNum)))

; stream_code(Stream, CStream)
).

valid_open_mode(read, r).
valid_open_mode(write, w).
valid_open_mode(append, a).

474 Quintus Prolog

stdio.c

#include <stdio.h>
#include <quintus/quintus.h>

/* Create a stream based on UNIX standard I/O library.
This stream is created as an unbuffered stream so that
mixed calls of Quintus Prolog I/O predicates (functions)
and standard I/O on the stream will read/write the same
sequence of bytes of the stream */

typedef struct
{

QP_stream qpinfo;
FILE *fp;
unsigned char buffer[4];

} StdioStream;

#define CoerceStdioStream(stream) ((StdioStream *) stream)

extern int errno;

static int
stdio_read(qpstream, bufptr, sizeptr)

QP_stream *qpstream;
unsigned char **bufptr;
size_t *sizeptr;
{

StdioStream *stream = CoerceStdioStream(qpstream);
register int c;

if ((c = getc(stream->fp)) < 0)
return QP_EOF;

stream->buffer[0] = (unsigned char) c;
*bufptr = stream->buffer;
*sizeptr = 1;
/* ’-1’ because the magic field stores the beginning

address of the returned buffer */
qpstream->magic.byteno = ftell(stream->fp)-1;
return (c == ’\n’) ? QP_FULL : QP_PART;

}

Chapter 10: Foreign Language Interface 475

stdio.c

static int
stdio_write(qpstream, bufptr, sizeptr)

QP_stream *qpstream;
unsigned char **bufptr;
size_t *sizeptr;
{

StdioStream *stream = CoerceStdioStream(qpstream);

if (*sizeptr == 0) {
*bufptr = stream->buffer;
*sizeptr = 0;
return QP_SUCCESS;

}
errno = 0;
if (putc((char) stream->buffer[0], stream->fp) < 0) {

qpstream->errno = (errno) ? errno : QP_E_CANT_WRITE;
return QP_ERROR;

}
qpstream->magic.byteno = ftell(stream->fp);
*bufptr = stream->buffer;
sizeptr = 0; / use 0 for unbuffered write */
return QP_SUCCESS;

}

static int
stdio_flush(qpstream, bufptr, sizeptr)

QP_stream *qpstream;
unsigned char **bufptr;
size_t *sizeptr;
{

StdioStream *stream = CoerceStdioStream(qpstream);

/* The stream is unbuffered so that there is no character
in the buffer of stream->buffer */

errno = 0;
if (fflush(stream->fp) < 0) {

qpstream->errno = (errno) ? errno : QP_E_CANT_FLUSH;
return QP_ERROR;

}
qpstream->magic.byteno = ftell(stream->fp);
*bufptr = stream->buffer;
*sizeptr = 0;
return QP_SUCCESS;

}

476 Quintus Prolog

stdio.c

static int
stdio_seek(qpstream, qpmagic, whence, bufptr, sizeptr)

QP_stream *qpstream;
union QP_cookie *qpmagic;
int whence;
unsigned char **bufptr;
size_t *sizeptr;
{

StdioStream *stream = CoerceStdioStream(qpstream);
int rtn;

errno = 0;
/* fseek() should normally flush out the buffered input

for stream->fp. Use fflush() just to be safe */
if (qpstream->mode != QP_READ)

(void) fflush(stream->fp);
switch (whence) {
case QP_BEGINNING:

rtn = fseek(stream->fp, qpmagic->byteno, 0);
break;

case QP_CURRENT:
rtn = fseek(stream->fp, qpmagic->byteno, 1);
break;

case QP_END:
rtn = fseek(stream->fp, qpmagic->byteno, 2);
break;

default:
qpstream->errno = QP_E_INVAL;
return QP_ERROR;

}
if (rtn == -1) {

qpstream->errno = (errno) ? errno : QP_E_CANT_SEEK;
return QP_ERROR;

}
qpstream->magic.byteno = ftell(stream->fp);
*bufptr = stream->buffer;
*sizeptr = (qpstream->mode == QP_READ) ? 0

: qpstream->max_reclen;
return QP_SUCCESS;

}

Chapter 10: Foreign Language Interface 477

stdio.c

static int
stdio_close(qpstream)

QP_stream *qpstream;
{

StdioStream *stream = CoerceStdioStream(qpstream);

/* characters in fp buffer is flushed by fclose() */
if (fclose(stream->fp) < 0) {

qpstream->errno = errno;
return QP_ERROR;

}
QP_free((char *) stream);
return QP_SUCCESS;

}

478 Quintus Prolog

stdio.c

/* open_stdio() creates an instance of standard input/output
based stream. The function creates a file stream based
on the ’filename’ and ’modename’ parameter.
It returns the pointer to the created QP_stream structure
upon success. It returns QP_NULL_STREAM and sets
error code in ’error_num’ upon failure.

*/
QP_stream *
open_stdio(filename, modename, error_num)

char *filename, *modename;
int *error_num;
{

QP_stream *option;
FILE *fp;
StdioStream *stream;
int mode, stdio_read(), stdio_write(),

stdio_flush(), stdio_seek(), stdio_close();

switch (*modename) {
case ’r’: mode = QP_READ; break;
case ’w’: mode = QP_WRITE; break;
case ’a’: mode = QP_APPEND; break;
default: *error_num = QP_E_BAD_MODE;

return QP_NULL_STREAM;
}
if ((fp = fopen(filename, modename)) == NULL) {

*error_num = errno;
return QP_NULL_STREAM;

}

/* allocate space for the stream */
stream = (StdioStream *) QP_malloc(sizeof(*stream));

/* set values in the stream */
stream->fp = fp;

/* obtain default values in QP_stream structure */
/* and modified fields for this stream */
option = &stream->qpinfo;
QU_stream_param(filename, mode, QP_DELIM_LF, option);
if (isatty(fileno(fp))) {

option->format = QP_DELIM_TTY;
option->seek_type = QP_SEEK_ERROR;

} else {
option->seek_type = QP_SEEK_BYTE;

}
option->max_reclen = (mode == QP_READ) ? 1 : 0;

Chapter 10: Foreign Language Interface 479

stdio.c

if (mode != QP_READ) {
option->write = stdio_write;
option->flush = stdio_flush;

} else {
option->read = stdio_read;
option->peof_act = QP_PASTEOF_EOFCODE;

}
option->seek = stdio_seek;
option->close = stdio_close;

/* sets correct value in magic field */
if (option->mode != QP_APPEND)

option->magic.byteno = 0;
else

option->magic.byteno = ftell(fp);

/* set internal fields and register stream */
QP_prepare_stream(&stream->qpinfo, stream->buffer);
if (QP_register_stream(&stream->qpinfo) == QP_ERROR) {

(void) stream->qpinfo.close(&stream->qpinfo);
*error_num = QP_errno;
return QP_NULL_STREAM;

}

/* register tty stream to its group */
if (option->format == QP_DELIM_TTY)

(void) QP_add_tty(&stream->qpinfo, filename);
return (QP_stream *) stream;

}

10.5.8 Built-in C Functions And Macros For I/O

Several builtin functions and macros are defined to enable Prolog streams to be manipulated
in foreign code. This section lists each of these functions. In this list, the character ‘#’ is
used to denote a C macro, which is defined in ‘<quintus/quintus.h>’. Full descriptions of
each of these functions can be found in the individual reference pages.

Open a stream
QP_fopen(): open a text file or a binary file as a Prolog stream.
QP_fdopen(): create a text stream or a binary stream from a file descriptor.

Close a stream
QP_close(): close a Prolog stream
QP_fclose(): close a Prolog stream, same as QP_close().

480 Quintus Prolog

Input from a stream
#QP_getchar(): get a character from the Prolog current input stream.
QP_getc(): get a character from a Prolog input stream.
QP_fgetc(): get a character from a Prolog input stream.
#QP_peekchar(): look a character ahead from the Prolog current input stream.
#QP_peekc(): look a character ahead from a Prolog input stream.
QP_fpeekc(): look a character ahead from a Prolog input stream.
QP_ungetc(): unget the previous read character from a Prolog input input
stream.
#QP_skipline(): skip the current input record of the Prolog current input
stream.
#QP_skipln(): skip the current input record of a Prolog input stream.
QP_fskipln(): skip the current input record of a Prolog input stream.
QP_fgets(): get a string from a Prolog input stream.
QP_fread(): read several items of data from a Prolog input stream.

Output to a stream and flush output stream buffer:
#QP_putchar(): put a character on the Prolog current output stream.
#QP_putc(): put a character on a Prolog output stream.
QP_fputc(): put a character on a Prolog output stream.
#QP_newline(): terminates an output record for the Prolog current output
stream.
#QP_newln(): terminates an output record for a Prolog output stream.
QP_fnewln(): terminates an output record for a Prolog output stream.
QP_puts(): put a character string on the Prolog current output stream.
QP_fputs(): put a character string on a Prolog output stream.
QP_fwrite(): write several items of data on a Prolog output stream.
QP_tab(): put the specified character the number of times specified on a Prolog
output stream.
QP_tabto(): put the specified character up to the specified line position on a
Prolog output stream.
QP_printf(): print formatted output on the Prolog current output stream.
QP_fprintf(): print formatted output on a Prolog output stream.
QP_vfprintf(): print formatted output of a varargs argument list on a Prolog
output stream.
QP_flush(): flush output on a Prolog output stream

Get stream position and seek to a new position in a stream:
QP_getpos(): Get the current position for a Prolog stream.
QP_setpos(): position a Prolog stream back to a previous read/written posi-
tion.
QP_rewind(): reposition a Prolog stream back to the beginning
QP_seek(): seek to a random position in a Prolog stream

Chapter 10: Foreign Language Interface 481

Get counts in a stream:
#QP_char_count(): obtain the character count for a Prolog stream.
#QP_line_count(): obtain the line count for a Prolog stream.
#QP_line_position(): obtain the line position for a Prolog stream.

End of line (record) and End of file test:
#QP_eoln(): test end of record condition for an input stream.
#QP_eof(): test end of file condition for an input stream.

Set current stream:
QP_setinput(): set the Prolog current input stream.
QP_setoutput(): set the Prolog current output stream.

Error number related functions:
QP_ferror(): test error condition for a Prolog stream.
QP_clearerr(): clear the previous error on a Prolog stream.
QP_errmsg(): get the corresponding error message from a QP error number.
QP_perror(): print an error message based on a QP error number.

Finally, there are five global stream variables accessible in foreign code. These are streams,
not file descriptors. It makes no sense to pass these to system calls that expect file de-
scriptors. The values in these variables should not be changed by an assignment statement.
These variables are:

QP_stream *QP_stdin
user input stream, it is referred as user_input (or user) in Prolog.

QP_stream *QP_stdout
user output stream, it is referred as user_output (or user) in Prolog.

QP_stream *QP_stderr
user error stream, it is referred as user_error in Prolog.

QP_stream *QP_curin
current input stream

QP_stream *QP_curout
current output stream

10.5.9 Backward Compatibility I/O Issues

The Quintus Prolog input/output system is redesigned in release 3. C code written for
Quintus Prolog application prior to Release 3.0 should also work on release 3 since the new
design also maintains backward compatibility.

482 Quintus Prolog

10.5.9.1 Default Stream

However, while the old Prolog I/O system is based on the C standard I/O library, the new
Prolog I/O system is not. If an application performs mixed I/O operation in Prolog and
foreign code on the three default Prolog streams, it might not work appropriately under the
new I/O due to incompatibilities between the buffering mechanism in the C standard I/O
stream and the Quintus Prolog stream.

Let’s look at an example of a mixed output operation on a Prolog session under UNIX.
Both the C standard output stream and the Prolog user_output stream write output to
the same file descriptor, 1, which is a tty.

| ?- set_output(user_output), write(first), c_printf(’FIRST’),

write(second), c_printf(’SECOND’), nl, c_nl.

The predicate c_printf/1 and c_nl/0 calls the following C functions:

void c_printf(atom)
char *atom;
{ printf("%s", atom); }

void c_nl() { putchar(’\n’); }

The query yields the following output as expected prior to Quintus Prolog release 3.

firstFIRSTsecondSECOND

However it yields the following output on Quintus Prolog release 3 since each stream has
its own buffer and no characters are actually written to the file descriptor 1 until new line
operation is called.

firstsecond
FIRSTSECOND

This problem can be solved by supplying a different embedding QU_initio() function at
the time of the installation of Quintus Prolog (or at the time of creating a statically linked
Prolog system) to create the three default streams based on C standard I/O streams. How
to create an unbuffered Prolog stream based on a C standard I/O stream has already been
shown in the third example of creating customized Prolog streams (see Section 10.5.7.3
[fli-ios-uds-sst], page 472)

10.5.9.2 User defined Streams

In Quintus Prolog releases prior to 3.0, QP_make_stream() was the function used to create
a user-defined stream. Quintus Prolog 3.1 users should use the method described in Sec-
tion 10.5.5 [fli-ios-cps], page 445. QP_make_stream() creates an unbuffered Prolog stream.
This is not very efficient.

Chapter 10: Foreign Language Interface 483

QP_make_stream() can still be used in release 3, but may not be supported in the future.
Other old QP I/O functions that may not be available in future release are:

QP_sprintf() QP_getc() QP_sgetc()
QP_putc() QP_sputc() QP_sputs()

The naming convention of these functions does not match well with their counterparts on C
standard I/O library. For instance, QP_sprintf() performs formatted output on a Prolog
stream as the same operation for fprintf(3) on a C standard I/O stream. It is therefore
renamed to be QP_fprintf() in release 3. For the same reason, QP_sgetc() is renamed
as QP_fgetc(); QP_sputc() is renamed as QP_fputc(). QP_getc() and QP_putc() are
now actually macros defined in ‘<quintus/quintus.h>’. However, all these functions are
still available in release 3. If a user’s foreign code calls either QP_getc() or QP_putc()
without including ‘<quintus/quintus.h>’, the old version of the function will be called.
If ‘<quintus/quintus.h>’ is included, the call is expanded to another function since both
QP_getc() and QP_putc() are macros in ‘<quintus/quintus.h>’.

484 Quintus Prolog

Chapter 11: Inter-Process Communication 485

11 Inter-Process Communication

11.1 tcp: Network Communication Package

This package supplies the necessary primitives for network communication. This allows the
user to take advantage of the computing power of a network of computers by allowing the
construction of a set of cooperating processes running on different machines.

In general, the tcp package provides facilities to

• Send output to some connected process;
• Wait for input from some connected process, with or without a timeout; and
• Schedule wakeups.1

This package implements a stream socket with the TCP protocol providing the underlying
communication support. A stream socket provides for bidirectional, reliable, sequenced
and unduplicated flow of data without record boundaries. Two other types of sockets,
the datagram socket and the raw socket, are not used here. TCP stands for the Internet
Transmission Control Protocol.

This library package is intended for network communication, however, it does not require
that each process be on a separate machine. It can be used to establish connections and
communicate with processes on the same machine in just the same way that it would
establish connections and communicate with processes on other machines.

Here is a simple example of the kind of thing you can do with this package. The example
is the producer-filter-consumer problem, each running as a separate process. The producer
produces successive terms and passes them on to the filter. The filter reads successive terms
from the producer and then either passes them on to the consumer or discards them. The
consumer reads and echos the terms passed to it by the filter. It is taken from the example
program ‘IPC/TCP/demo/ce.pl’.

1 Not available for C processes.

486 Quintus Prolog

:-use_module(library(random)).
:-use_module(library(tcp)).

% on machine A we have the producer process:

producer:-
tcp_address_from_file(filter, Address),
tcp_connect(Address, Filter),
repeat,

random(X),
tcp_send(Filter, X),

fail.

% on machine B we have the filter process:

filter:-
tcp_create_listener(AddressA, _),
tcp_address_to_file(filter, AddressA),
tcp_address_from_file(consumer, AddressC),
tcp_connect(AddressC, Consumer),
repeat,

tcp_select(term(_,X)),
0.2 =< X, X < 0.7,
tcp_send(Consumer, X),

fail.

% and on machine C we have the consumer process:

consumer:-
tcp_create_listener(Address, _),
tcp_address_to_file(consumer, Address),
repeat,

tcp_select(term(_,X)),
format(’The filtered number: ~d~n’, [X]),

fail.

11.1.1 The client/server relationship

Two processes have a client/server relationship when they cooperate with one another in
such a way that one process responds to connection requests generated by the other.

It is important to remember that the client/server relationship has a very restricted meaning:
it refers solely to how connections are established. For example, an X-Windows server
controls the X-Windows client, whereas a NFS server is controlled by NFS clients. So
saying processes have a client/server relationship says nothing about which process is the
controlling process.

Chapter 11: Inter-Process Communication 487

The distinction between clients and servers is based solely on how connections are estab-
lished. Servers get connections by accepting connection requests, clients get connections by
requesting a connection from a server.

server a process that accepts connection requests. The server is said to listen for
connections.

client a process that requests a connection from a server.

A process can be a client to some processes, but a server to other processes. In the preceding
example, the filter is a server to the producer and a client of the consumer.

A Prolog server is a Prolog process that calls the predicate tcp_create_listener/2 and
then accepts connection requests. A C server is a process that calls the C function tcp_
create_listener() and then accepts connection requests.

A Prolog client is a Prolog process that calls the predicate tcp_connect/2 to generate
connection requests. In the same way a C client is a process that calls tcp_connect().

Although designed principally with Prolog to Prolog communication in mind, this package
can be used for any combination of C or Prolog servers or clients.

11.1.2 Using tcp

The tcp package is loaded by

:- use_module(library(tcp)).

This package relies on the flag fileerrors being set, which is the default. See
fileerrors/0 (Section 8.7.7.3 [ref-iou-sfh-sem], page 226) and prolog_flag/3 (Sec-
tion 8.10.1 [ref-lps-ove], page 245) for more about this flag. If fileerrors is not set,
the behavior of this package is unpredictable. While we’re on the subject of flags, it is
also probably a good idea to set the flag syntax_errors to error (see Section 8.19.4.10
[ref-ere-err-syn], page 322). In summary, we recommend that the commands

prolog_flag(fileerrors,_,on),
prolog_flag(syntax_errors,_,error)

be issued before connections are established.

11.1.2.1 tcp_trace(-OldValue, +On_or_Off)

Causes a trace of the major events. All trace output is written to user_error.

tcp_trace/2 raises a domain error if either of its arguments do not unify with either of the
atoms on or off.

488 Quintus Prolog

11.1.2.2 tcp_watch_user(-Old, +On_or_Off)

Not available under Windows.

This causes tcp_select/[1,2] (see Section 11.1.4.1 [ipc-tcp-trm-select1], page 491) to
return the atom user_input whenever input is available on stdin.

Unless stdin is unbuffered, the atom user_input will only be returned after a newline is
received.

tcp_watch_user/2 raises a domain error if either of its arguments do not unify with either
of the atoms on or off.

11.1.2.3 tcp_reset

Resets the tcp software, killing all its sockets and dynamic predicates. All connected pro-
cesses get an end_of_file.

11.1.3 Maintaining Connections

Described here are the various predicates for creating and destroying connections to other
processes.

11.1.3.1 tcp_create_listener(?Address, -PassiveSocket)

tcp_create_listener/2 creates a passive socket to listen for connections. If Address
is unbound, tcp_create_listener/2 establishes a listener on a dynamic port and binds
Address to an address term of the form address(Port,Host). Alternatively, tcp_create_
listener/2 will establish a listener on a fixed port if Address is bound to an address term
with Port set to the specific port number. Note that only privileged (or ‘root’) processes
can use port numbers less than 1024.

tcp_create_listener/2 returns immediately after creating the socket that is used for
accepting connection requests and returns the socket identifier in PassiveSocket. Connection
requests are accepted by the select predicates (see Section 11.1.4.1 [ipc-tcp-trm-select1],
page 491).

11.1.3.2 tcp_destroy_listener(+PassiveSocket)

This predicate kills the passive socket created by tcp_create_listener/2.

Chapter 11: Inter-Process Communication 489

11.1.3.3 tcp_listener(?PassiveSocket)

This predicate succeeds if the PassiveSocket argument is the socket identifier of a listener,
or backtracks returning all passive socket identifiers if PassiveSocket is unbound.

11.1.3.4 tcp_address_to_file(+ServerFile, +Address)

This predicate writes the address term Address to the file ServerFile. This is useful when
creating a listener on a dynamic port to enable clients to find out the server address by
using the complementary predicate tcp_address_from_file/2.

11.1.3.5 tcp_address_from_file(+ServerFile, -Address)

A client uses this predicate to obtain the address of the server from the file ServerFile,
written by the server using tcp_address_to_file/2. If the client and server are on different
machines then ServerFile must be located on a network transparent filesystem (e.g. NFS)
to be accessible to the client.

11.1.3.6 tcp_address_from_shell(+Host, +ServerFile, -Address)

Not available under Windows.

This is identical to tcp_address_from_file/2 except that, instead of relying on a network
transparent file system to be able to read ServerFile, it executes a remote shell command
on Host to read the contents of the file. This is useful for applications that cannot rely on
the presence of a network transparent file system.

11.1.3.7 tcp_address_from_shell(+Host, +UserId, +ServerFile, -
Address)

This adds a UserId parameter, so that the machine that has the handle file need not have
an account for every user that wishes to access it.

The UserId is an atom representing the login name of some account on the target machine
Host.

490 Quintus Prolog

11.1.3.8 tcp_connect(+Address, -Socket)

This is used by a Prolog client to connect to a server. Socket is unified with the active
socket identifier created when the connection is established. The Address parameter is an
address term, such as that returned by tcp_address_from_file/2.

Once a connection has been made to Socket later calls to tcp_connect/2 succeed immedi-
ately, without attempting to re-establish a connection to Socket.

11.1.3.9 tcp_connected(?Socket)

This predicate succeeds if the Socket argument is the socket identifier of an active connec-
tion, or backtracks returning all currently active connections if Socket is unbound.

For example, this predicate can be used to shutdown all connections:

close_all_connections :-
tcp_connected(X),
tcp_shutdown(X),
fail

; true.

11.1.3.10 tcp_connected(?Socket,?PassiveSocket)

A server process can use this predicate to identify which active connections are associated
with which listeners. This can be useful if a server process establishes multiple listeners,
listening on different ports simultaneously.

11.1.3.11 tcp_shutdown(+Socket)

This kills the connection to Socket. Socket gets, through tcp_select/[1,2], an end_of_
file. If there is no connection to Socket, it silently fails.

Note that when tcp_select/[1,2] (see Section 11.1.4.1 [ipc-tcp-trm-select1], page 491)
returns end_of_file(Socket), tcp_shutdown(Socket) has already been called.

tcp_shutdown/1 raises an instantiation error when Socket is uninstantiated.

11.1.3.12 Short lived connections

The operating system limits the number of simultaneous connections open by a process at
one time. The limit various with different operating systems but is typically 64 connections.

Chapter 11: Inter-Process Communication 491

If the number is too small for your application, consider making connections persist only
long enough for a send or receive. This way at most one connection would be alive at any
time.

Here is an example of how you might implement sending and receiving in terms of short
lived connections.

send(To,Term):- % +To, +Term
my_address(MyAddress),
tcp_connect(To, Socket),
tcp_send(Socket, MyAddress-Term),
tcp_shutdown(Socket).

receive(From,Term):- % -From, -Term
repeat,
tcp_select(term(Socket, From-Term)),
!,
tcp_shutdown(Socket).

In the above example, it is assumed that all processes are servers, and have asserted the
address obtained from a call to tcp_create_listener/2 into my_address/1.

The performance penalty of short lived connections is the time for making and breaking
connections, which is actually quite fast. For comparison, the time it takes to create and
then destroy a connection to a server is hundreds of times slower than sending a character
to the server, but is comparable to the time it takes to send a large term to the server.

11.1.4 Sending and Receiving Terms

11.1.4.1 tcp_select(-Term)

The purpose of tcp_select/1 is to process connection requests, return terms related to
timing, and return in a round-robin fashion terms read from connected processes. Term is
one of:

connected(Socket)
is returned when the server has accepted a connection request from Socket.
Socket is small integer. It is a socket file descriptor (a small integer).

wakeup(Term)
is returned when the timer alarm specified in tcp_schedule_wakeup/2 was
delivered (see Section 11.1.5.3 [ipc-tcp-tim-schedule wakeup2], page 494).

492 Quintus Prolog

user_input
is returned whenever there is input available on stdin and tcp_watch_user(_
,on) has been called. See tcp_watch_user/2, Section 11.1.2.2 [ipc-tcp-utc-
watch user2], page 488.

term(Socket,Term)
is returned when some process whose socket file descriptor is Socket has called
tcp_send/2 (see Section 11.1.4.3 [ipc-tcp-trm-send2], page 493). This is the
result of a read from the socket.

end_of_file(Socket)
is returned when the connection is lost to the process whose socket file descriptor
is Socket. This is the result a read from the socket. The connection is shut
down.

Windows caveats:

• tcp_select/[1,2] is not interruptible by ^C. For this reason, calling tcp_
select/2 with infinite timeout is probably a bad idea. If called with infinite
timeout and if there are no open sockets, then tcp_select/2 will return
immediately, indicating a timeout.

•

11.1.4.2 tcp_select(+Timeout, -Term)

This is the same as tcp_select/1 (see Section 11.1.4.1 [ipc-tcp-trm-select1], page 491),
except tcp_select/2 will return the atom timeout if the timeout interval expires before
input is available or before a timer alarm is delivered (from tcp_schedule_wakeup/2, see
Section 11.1.5.3 [ipc-tcp-tim-schedule wakeup2], page 494).

Timeout is a floating point number indicating seconds.

The tcp_select predicates must deal with three events:

1. Timer alarms — are dealt with first. These are scheduled with tcp_schedule_
wakeup/2 (see Section 11.1.5.3 [ipc-tcp-tim-schedule wakeup2], page 494).

2. ready input — are dealt with when (1) doesn’t apply, that is, if no timer alarm is
delivered; tcp_select/2 will sleep until there is input available from some connected
process.

3. timeout — when neither (1) or (2) apply, and the timeout interval specified has expired,
then the atom timeout is returned.

A poll is effected by specifying 0 for Timeout.

Chapter 11: Inter-Process Communication 493

11.1.4.3 tcp_send(+Socket, +Term)

This sends Term to the process whose socket identifier is Socket. Socket gets the term term
(From,Term) from tcp_select/[1,2] (see Section 11.1.4.1 [ipc-tcp-trm-select1], page 491).

Note that tcp_send/2 can only be used to send terms to a Prolog server as Term is sent
in an encoded form that is efficiently decoded by tcp_select/[1,2] (see Section 11.1.4.1
[ipc-tcp-trm-select1], page 491).

Here is an example of how one might use tcp_send/2 to implement a remote procedure call
to some process whose file descriptor is P. It is assumed that the connections between the
two processes have been established elsewhere.

:-use_module(library(basics), [member/2]).
:-use_module(library(freevars), [free_variables/4]).

% machine a has p_call/2

p_call(P, Goal):-
free_variables(Goal, [], [], FreeVars),
tcp_send(P, satisfy(FreeVars, Goal)),
tcp_select(term(P, Bag)),
member(FreeVars, Bag).

% machine b has slave/0

slave:-
T = term(P, satisfy(FreeVars, Goal)),
repeat,

tcp_select(T),
findall(FreeVars, Goal, Bag),
tcp_send(P, Bag),

fail.

The use of library(freevars) is to limit the amount of data being sent by the slave to
just those variables that may be instantiated by calling Goal.

For many applications this is all that is required. It has the advantage of limiting both the
frequency of messages sent (findall/3), and the size of the messages (free_variables/4).
A better implementation of remote procedure call would allow the caller to respond to
solutions from several different machines as soon as the solutions are generated, without
waiting for the solutions to be assembled into a list. This is attempted in the example
program ‘IPC/TCP/demo/sibling.pl’ (see Section 11.1.9 [ipc-tcp-exa], page 505).

If you try to send to a broken socket, the “Broken pipe” exception is raised:

existence_error(_,_,_,_,errno(32))

494 Quintus Prolog

11.1.5 Time Predicates

The tcp package supplies various operations on time. These predicates can be used inde-
pendently of the rest of the package. The tcp package provides a timer scheduling facility
and time conversion facilities. Time stamping and portrayal is supplied by another library
package, namely library(date) (see Section 12.11.2 [lib-mis-date], page 637).

All the time predicates use an absolute time format called the timeval/2 representation. It
is a term of the form timeval(Seconds,MicroSeconds), where Seconds and MicroSeconds
are integers representing the absolute system time in seconds and microseconds, respectively.

11.1.5.1 tcp_now(-Timeval)

tcp_now/1 returns the current absolute system time in a timeval/2 structure.

11.1.5.2 tcp_time_plus(?Timeval1, ?DeltaTime, ?Timeval2)

This predicate is true when the interval between Timeval1 and Timeval2 is DeltaTime.
DeltaTime is a floating point number representing seconds. Both Timeval1 and Timeval2
are timeval/2 structures.

At least two of the arguments to tcp_time_plus/3 must be ground.

11.1.5.3 tcp_schedule_wakeup(+Timeval, +Term)

This schedules a wakeup from tcp_select/1 (see Section 11.1.4.1 [ipc-tcp-trm-select1],
page 491). For example,

tcp_now(Now),
tcp_time_plus(Now, 0.1, Timeval),
tcp_schedule_wakeup(Timeval, foo)

forces tcp_select/[1,2] to return the term wakeup(foo) a tenth of a second after the call
to tcp_now/1. Any number of wakeups may be pending.

The wakeup mechanism is implemented in terms of timer alarms. If a timer alarm was
delivered when the process was not waiting at select, the next call to select will indicate
that an alarm was delivered.

The wakeup mechanism can be used independently of the rest of the tcp package. You need
not set up communications with other processes to use the wakeup mechanism.

Chapter 11: Inter-Process Communication 495

11.1.5.4 tcp_scheduled_wakeup(?Timeval, ?Term)

tcp_schedule_wakeup/2 backtracks through the list of scheduled wakeups.

11.1.5.5 Canceling Wakeups

Two predicates are provided:

tcp_cancel_wakeup(+Timeval, +Term)

tcp_cancel_wakeups

tcp_cancel_wakeup/2 cancels the wakeup that was previously specified using tcp_
schedule_wakeup/2. tcp_cancel_wakeups/0 cancels all the pending wakeups.

11.1.5.6 tcp_daily(+Hour, +Minute, +Seconds, -Timeval)

This predicate is useful for scheduling daily events. The given time will be translated into
the equivalent absolute time, and that time will definitely be within the next 24 hours. For
example,

tcp_daily(13, 0, 0, Timeval)

unifies Timeval with the timeval/2 representation for 1 pm. If the goal was submitted at
noon, Timeval will represent an hour later. If the goal was submitted at 2 pm, Timeval will
represent 1 pm the following day.

Hour, Minute, and Second must all be integers.

The following example wakes up every 24 hours

...
tcp_daily(H, M, S, Timeval)
tcp_schedule_wakeup(Timeval, time(H,M,S)),
repeat,

tcp_select(X),
dispatch(X),

fail.

dispatch(wakeup(T)):-
T = time(H,M,S),
tcp_daily(H, M, S, Timeval),
tcp_schedule_wakeup(Timeval, T),
...

496 Quintus Prolog

11.1.5.7 tcp_date_timeval(?Date, ?Timeval)

This predicate is used to convert between the time format supplied by library(date)
and the timeval/2 representation. At least one of the arguments must be ground. The
parameter Date is of the form date(Year,Month,Day,Hour,Minute,Second).

library(date) has facilities for portraying time. tcp_date_timeval/2 can be used with
library(date) for portrayal:

:-use_module(library(addportray), [add_portray/1]).
:-use_module(library(date), [time_stamp/3]).
:-use_module(library(tcp), [tcp_date_timeval/2]).

:-initialization add_portray(portray_timeval).

portray_timeval(timeval(Seconds, MicroSeconds)):-
tcp_date_timeval(Date,timeval(Seconds, MicroSeconds)),
time_stamp(Date,’%y %02n %M %02d %W %02c:%02i:’, Stamp),
write(Stamp),
Date=date(_, _, _, _, _, S),
X is (S * 1.0e6 + MicroSeconds) / 1.0e6,
(X < 10 -> write(0) ; true),
format(’~2f’, X).

Which would result in the following:

| ?- tcp_now(X).

X = 1989 03 March 01 Wednesday 17:09:58.12

11.1.6 Using Prolog streams

Sometimes the format of data being exchanged between processes is not known in advance
and it is not possible to assume that the data sent are valid Prolog terms. This package
provides Prolog streams for each connection that can be read from or written to using
the stream input/output predicates. For more information about Prolog streams, see Sec-
tion 8.7.2 [ref-iou-str], page 215.

Although these streams can be written to or read from using the standard input/output
predicates supplied by Prolog, they must be closed using tcp_shutdown/1 instead of
close/1, otherwise the database internal to library(tcp) will become inconsistent.

There is a subtle point about end_of_file: in a correct implementation of TCP it is
possible to receive zero-length packets, so that a socket should be able to signal end-of-file
repeatedly just like a terminal. So does end_of_file(Socket) mean “connection lost to
Socket”, or does it mean “zero-length packet received from Socket”? Using tcp_select/1

Chapter 11: Inter-Process Communication 497

or tcp_select/2, end_of_file causes the connection to be shutdown. Reading the streams
yourself lets you decide what end_of_file means on your sockets.

11.1.6.1 tcp_select_from(-Term)

This is similar to tcp_select/1 (see Section 11.1.4.1 [ipc-tcp-trm-select1], page 491), but
instead of reading the socket that has data available, it returns the term from(Socket),
where Socket is socket to some other process. The other terms it may return are

• connected(Socket)

• wakeup(T)

• user_input

as described in the section on tcp_select/1.

It is up to the caller to read from the stream associated with the socket file descriptor, Socket,
by using tcp_input_stream/2 and then reading from that stream using the standard stream
input predicates, as in

...,
tcp_select_from(from(Socket)),
tcp_input_stream(Socket, S),
get0(S,X),
...

11.1.6.2 tcp_select_from(+Timeout, -Term)

The behavior of tcp_select_from/2 is the same as tcp_select_from/1, except tcp_
select_from/2 will return the atom timeout if the timeout interval expires before input
is available or a timer alarm is delivered.

Timeout is a floating point number indicating seconds

11.1.6.3 tcp_input_stream(?Socket, -Stream)

Returns the input stream Stream from the socket file descriptor Socket. You can read from
the stream using the regular stream input predicates.

If you attempt to read from a broken socket, the “Connection reset by peer” exception is
raised:

existence_error(_,_,_,_,errno(54))

498 Quintus Prolog

When using tcp_select/[1,2], this exception is caught and interpreted as an end_of_
file, and the connection is shut down.

11.1.6.4 tcp_output_stream(?Socket, -Stream)

Returns the output stream Stream from the socket file descriptor term Socket. You can
write to the stream using the regular stream output predicates.

Output on socket streams are buffered. If you want to send characters one at a time, you
must follow each write with a flush, as in

tcp_output_stream(Socket, Stream),
put(Stream, Character),
flush_output(Stream)

If you try to write to a broken socket, the “Broken pipe” exception is raised:

existence_error(_,_,_,_,errno(32))

11.1.7 The Callback Interface

The tcp package supplies a callback interface, which is a way of arranging for a predicate to
be called whenever some tcp event occurs. This is especially useful for applications that can
not wait at one of the tcp_select predicates. A callback is a predicate that is called when
some condition is met. Callbacks are called when your process is in some wait state. It uses
the callback facility described in relation to the Quintus supplied C functions QP_select()
and QP_add_input().

For example, applications that use the callbacks defined in the Quintus X Toolkit interface
(xif) use callbacks extensively. Before the callback interface to library(tcp) was pro-
vided, there was no way for a graphics program to both service its callbacks and service
library(tcp) without polling.

Although this interface may seem primitive, it has the advantage of being able to be used
by separate subcomponents of a larger system since the requirement that the application
wait at tcp_select/[1,2] is lifted.

11.1.7.1 tcp_create_input_callback(+Socket, +Goal)

tcp_create_input_callback/2 arranges that Goal is called whenever there is data avail-
able on Socket.

To arrange for the client to make a callback whenever there is input available on a given
socket:

Chapter 11: Inter-Process Communication 499

...
tcp_connect(Address, Socket),
tcp_create_input_callback(Socket, input_on(Socket)).
...

input_on(Socket) :-
tcp_input_stream(Socket, I),
read(I, Term),
...

11.1.7.2 tcp_destroy_input_callback(+Socket)

tcp_destroy_input_callback/1 destroys the callback associated with Socket.

11.1.7.3 tcp_input_callback(*Socket, *Goal)

tcp_input_callback/2 backtracks through the list of Socket-Goal pairs maintained by the
callback interface to the tcp package.

11.1.7.4 tcp_create_timer_callback(+Timeval, +Goal, -TimerId)

tcp_create_timer_callback/3 arranges things so that Goal will be called when the ab-
solute time value Timeval is called.

Note that this goal will only be called when your program is in a wait state. Therefore all
the tcp package can do is guarantee that if your program goes to sleep at QP_select() and
the absolute time specified is reached or passed, then the goal is called. It does not work
using asynchronous operating system timers.

The output argument TimerId can be used for destroying the timer callback just created.

To arrange for a goal to be called at some absolute time:

...,
tcp_create_timer_callback(Timeval, Goal, TimerId),
...

11.1.7.5 tcp_destroy_timer_callback(+TimerId)

tcp_destroy_timer_callback/1 uses the TimerId obtained by calling tcp_create_
timer_callback/3 for removing the timer callback.

500 Quintus Prolog

11.1.7.6 tcp_timer_callback(*Timerid, *Goal)

tcp_timer_callback/2 backtracks through the list of Timerid-Goal pairs maintained by
the callback interface to the tcp package.

11.1.7.7 tcp_accept(+PassiveSocket, -Socket)

tcp_accept/2 is used to accept a connection request on PassiveSocket and binding a Prolog
stream to it. The input and output streams created by calling this predicate can be obtained
by using the Socket output argument when calling tcp_input_stream/2 and tcp_output_
stream/2, respectively.

To arrange for a server to make a callback whenever there is a connection request:

...
tcp_create_listener(Port, Host, Passive),
tcp_create_input_callback(Passive, accept(Passive)),
...

accept(Passive) :-
tcp_accept(Passive, Socket),
...

Probably you will want to make the newly created socket a callback as well, so then the
clause for accept/1 in the preceding example would be:

accept(Passive) :-
tcp_accept(Passive, Socket),
tcp_create_input_callback(Socket, input_on(Socket)).

Where input_on/1 is as defined in the example for tcp_create_input_callback/2.

11.1.8 The C functions

Communication between processes is effected through sockets. Sockets are referred to by
small 32 bit integers, called file descriptors below (even though they are proper file descrip-
tors only under UNIX).

The program using this package should be linked with the object file ‘tcp_c.o’ (substitute
the actual object file extension for ‘.o’). The sources to create this file, the C source files
‘tcp.c’ and ‘tcp.h’, are provided in the tcp library directory.2 Furthermore, the source file
‘tcp.h’ from ‘IPC/TCP’ should be included in the C sources using the package.

2 The object file is also created in the system directories of tcp at installation time. In the development
system, the call absolute_file_name(library(system(’tcp_c.o’)),AbsPath) returns the full path to
the object file ‘tcp_c.o’ for the particular architecture being used.

Chapter 11: Inter-Process Communication 501

Errors from using the C tcp package are written to stderr using the system function
perror(3), so whenever a tcp C function indicates an error, the error message has already
been printed and errno has already been set.

Although sockets may be used like any other file descriptor, they must be killed using
tcp_shutdown(), otherwise the behavior of tcp_select() will become unpredictable.

For a C client calling a Prolog server, see example ‘cs.c’ (Section 11.1.9 [ipc-tcp-exa],
page 505).

For a Prolog client calling a C server, see example ‘c_server.pl, c_server.c’ (Sec-
tion 11.1.9 [ipc-tcp-exa], page 505).

11.1.8.1 tcp_create_listener()

A C process can listen for connection requests generated by client processes by calling the
C function tcp_create_listener(), as shown by the following program fragment:

int Port,Service;
char *Host;

if (tcp_create_listener(0, &Port,&Host,&Service) != 0)
... an error occurred.

The C function tcp_create_listener() is used by a C server to create a listener (Service
). A passive socket is used to accept connection requests. It returns the port and hostname
in Port and Host arguments respectively. The first argument specifies a fixed port number
to listen on. If it is zero, as in this example, then a dynamic port number is allocated.
The Service is used with later calls to the C function tcp_accept() to accept a connection
request. A connection request is detected using the C function tcp_select().

The example program ‘c_server.c’ illustrates the use of this function (see Section 11.1.9
[ipc-tcp-exa], page 505).

11.1.8.2 tcp_address_to_file()

#include "tcp.h"

int tcp_address_to_file(ServerFile, Port, Host)
char *ServerFile;
int Port;
char *Host;

This function writes the Port and Host to the file ServerFile to enable a client to find the
server’s address. This is useful when establishing a listener on a dynamic port.

502 Quintus Prolog

11.1.8.3 tcp_address_from_file()

#include "tcp.h"

int tcp_address_from_file(ServerFile, Port, Host)
char *ServerFile;
int *Port;
char **Host;

This reads the server’s address from the file ServerFile, which was written by the server
calling tcp_address_to_file/2.

Note that *Host is a pointer to static storage that will be overwritten at the next call to
tcp_address_from_file().

tcp_address_from_file() returns zero upon successful completion.

11.1.8.4 tcp_address_from_shell()

#include "tcp.h"

int tcp_address_from_shell(Host1, UserId, ServerFile, Port, Host)
char *Host1;
char *UserId;
char *ServerFile;
int *Port;
char **Host;

This is identical to tcp_address_from_file(), except that, instead of relying on a network
transparent file system to be able read ServerFile, it executes a remote shell command to
Host1 to read the contents of the file. This is useful for applications that cannot rely on
the presence of a network transparent file system.

*Host is a pointer to static storage that will be overwritten at the next call to tcp_address_
from_shell().

The UserId argument may be specified as "", meaning login as myself. It is provided so that
the machine that has the handle file need not have an account for every user that wishes to
access it.

Note that Host1 need not be the same string as *Host, but typically is.

tcp_address_from_shell() returns zero upon successful completion.

Chapter 11: Inter-Process Communication 503

11.1.8.5 tcp_connect()

The C function tcp_connect() is used by C clients to connect to some server running on
machine host at some port. It returns the newly created socket. The following program
fragment demonstrates the use of the C function tcp_connect() along with its companion
C function tcp_address_from_file():

#include "tcp.h"

int c,port;
char *host;

if(tcp_address_from_file(serverfile, &port, &host) != 0)
... an error occurred.

c = tcp_connect(host, port);
if (c == -1) ... an error occurred.

A fuller example of the above can be found in the demonstration program ‘cs.c’.

11.1.8.6 tcp_accept()

#include "tcp.h"

int fd,Service;

fd = tcp_accept(Service);
if (fd == -1) ... an error occurred.

The C function tcp_accept() is used to accept a connection request. It returns the file
descriptor for the newly created socket (fd).

A connection request is recognized when the file descriptor returned by the C function tcp_
select() is the file descriptor for the passive socket returned by tcp_create_listener().
In other words, tcp_select() indicates that the passive socket created by tcp_create_
listener() has input available. Since it is impossible to read from a passive socket, this
means that a connection request is pending, and it is time to call tcp_accept() to accept
the connection request.

504 Quintus Prolog

11.1.8.7 tcp_select()

#include "tcp.h"

int FD,Block;
double Timeout;

...

switch (tcp_select(Block, Timeout, &FD))
{
case tcp_ERROR:

... an error occurred.
case tcp_TIMEOUT:

... handle a timeout
case tcp_SUCCESS:

... input is ready on FD
}

tcp_select() is used to determine which file descriptor is ready for input. It returns 3
status values:

tcp_ERROR
the error message is printed using the system function perror(3).

tcp_TIMEOUT
the time interval specified in Timeout (seconds) expired.

tcp_SUCCESS
the FileDescriptor returned is ready to be read.

With Block == tcp_BLOCK, tcp_select() will ignore the Timeout parameter, and simply
block until some data is available.

With Block == tcp_POLL, tcp_select() will sleep for Timeout seconds, or until data is
available, whichever comes first.

11.1.8.8 tcp_shutdown()

#include "tcp.h"

int FD;

if (tcp_shutdown(FD) == -1) ... an error occurred.

The C function tcp_shutdown() is used to kill a passive or active socket. It is important
that this is used instead of the system function close(2), since it affects the behavior of
the C function tcp_select().

Chapter 11: Inter-Process Communication 505

11.1.9 Examples

Five examples have been provided in ‘IPC/TCP/demo’. Each example has detailed instruc-
tions on its use in its source file. A Makefile is provided in the ‘demo’ directory.

Calling absolute_file_name/2 is a convenient way of finding the path to a demonstration
program. For example, to find the sibling demonstration, try issuing the command

| ?- absolute_file_name(demo(’sibling.pl’),X).

Here is a list of the example tcp programs.

‘client.pl, server.pl’
The client/server example. This illustrates how connections are established and
a very simple method of remote procedure call.

‘sibling.pl’
This file demonstrates the tcp software for three connected processes. Once
connected, all three send and receive goals to each other as peers. It can detect
reception of keyboard input, since it uses the tcp_watch_user/2 predicate.

‘ce.pl’ An example of the producer, filter, consumer problem. The producer process
sends random numbers between 0 and 1 to the filter process, which in turn
sends copies of the numbers it received from the producer ranging between 0.2
and 0.7 to the consumer.

‘cs.c’
This is a simple way to call the Prolog server defined in ‘server.pl’ from
the c-shell. If the ServerFile (see tcp_address_from_file/2, Section 11.1.3.5
[ipc-tcp-mco-address from file2], page 489) for some server is x, then

% cs x "write(’hi there’),nl"

causes the server to write the string "hi there\n" to its socket. The C program
‘cs.c’ copies the socket output from the server to stdout.

‘c_server.c, c_server.pl’
This illustrates a Prolog client calling a C server.

11.2 IPC/RPC: Remote Predicate Calling

11.2.1 Overview

We recommend that if you are just starting out, do not use this package. The TCP package
is much faster and more powerful. IPC/RPC is not available under Windows.

In releases prior to Quintus Prolog Release 2.5, this package was simply known as IPC. It
is now called IPC/RPC to distinguish it from another interprocess communication package,

506 Quintus Prolog

which is called IPC/TCP. That package is more general than this one since its facilities can
be used to implement the functionality of this package.

This package has some interesting facilities for calling a Prolog servant from C. Before
Release 3.0, this was the only way to call Prolog from C. Now Prolog can be fully embedded
in a C application.

This Interprocess Communication (IPC) package provides tools for allowing programs writ-
ten in Prolog or C to remotely call predicates in a Prolog program that is running as a
separate process, possibly on a different machine. The communication between the pro-
cesses is implemented using sockets or pipes to send goals to the remote process and to
retrieve answers back.

We refer to the Prolog process that is being invoked by some other program as a servant,
because it provides a goal evaluation service at the request of another program: it is given a
goal to invoke, invokes it, and then returns the answers to the caller. It is called a servant,
as opposed to a server, because it serves a single master. We refer to the program that
is calling the servant as the master. The interface described here permits a program (the
master) to call one servant and use it to evaluate many subgoals. The characteristics of the
interface vary somewhat with the programming language of the master. If the master is
itself a Prolog program, then the interface can be much more flexible than when the calling
program is written in a procedural language, such as C. We divide the description of the
interface into two parts: (1) when the master program is written in Prolog, and (2) when
the master program is written in C. Although only C calling Prolog is documented, other
languages can also call Prolog if they adhere to the specified protocol.

Please note: On System V versions of UNIX or VMS, the master and server
processes are currently required to run on the same machine, and the commu-
nication is via pipes rather than sockets. On UNIX systems based on BSD,
such as SunOS 4.x, the user can choose to use either pipes or sockets, provided
that the two processes are on the same machine. Sockets must be used when
the processes are on separate machines. When sockets are used, there needs to
be an entry in the ‘/etc/hosts’ file(s) for each machine that is used.

11.2.2 Prolog Process Calling Prolog Process

When the master is a Prolog program, a very flexible interface is supported because the
nondeterminacy of the two Prolog programs can be combined. Also, general Prolog data
structures can be passed between the programs easily, since both programs support the same
data types. Using this interface, a complex Prolog system can achieve significant parallel
evaluation, by using a servant on another processor and communicating over a network.
The routines described below allow a master to have only a single servant process. (They
could be extended without much difficulty to support multiple servants and servants being
masters of other servants, if that proves important.)

Chapter 11: Inter-Process Communication 507

There are two sides to any interface: here we have the calling Prolog program (the master),
and the called Prolog program (the servant). Each must perform certain functions that
allow them to cooperate.

For a master to use a servant, the master must first create it. This is done by starting
a Prolog process that will be the servant. The system creates that process by running a
saved state previously created by the programmer. After the servant has been created and
is running, the master may send it goals to evaluate using call_servant/1 and bag_of_
all_servant/3. All goals sent to the servant are evaluated in the database of the servant,
which is disjoint from the database of the master. This means that all programs that the
servant will execute must either already be in the saved state that was initially loaded, or
a goal must be sent to the servant telling it to compile (or consult) the appropriate files.
One could also use remote call to have the servant evaluate an assert/1.

For an example of using a Prolog servant from Prolog, see the ‘IPC/RPC/demo’ library
directory (qplib(’IPC/RPC/demo’)).

All the following predicates are defined in the module qpcallqp. To be able to use them,
the master program must first load them by entering the directive:

:- use_module(library(qpcallqp)).

11.2.2.1 save_servant(+SavedState)

To be able to call a servant, you must first create (using save_servant/1) a saved state
that is to be run as the servant. Run Prolog on the machine on which the servant is to be
run, and load (that is, compile, consult, or assert) everything that the servant will need.
Then call save_servant(SavedState), where SavedState is the name of the file in which
to save the state. (This saved state should not normally be started directly from a terminal
by a user; when started it will automatically try to open and read a socket.)

11.2.2.2 create_servant(+Machine, +SavedState, +OutFile)

Before a master can use a servant, the servant must first be started up and connections to
it must be made. This is done by a call to create_servant/[2,3].

Machine is the name of the machine on which to run the servant. If Machine is omitted,
or set to the null atom ’’, the servant is run on the same machine, and communication
is via pipes. If Machine is the atom local, the servant is run on the same machine but
communication is via sockets. If Machine names another machine, communication will be
via sockets. You need to be able to use rsh on that machine.

SavedState is the name of the file that contains the Prolog saved state on that machine. It
must have been previously created with save_servant/1.

508 Quintus Prolog

OutFile is the name of the file to which output from the servant will be written. This file is
on the local machine and it will be created if it does not already exist. This file should be
examined if there are problems with the communication to the servant. Tracing information
(if any, see Section 11.2.4 [ipc-rpc-tra], page 518) will also be written to this file.

If OutFile is the atom user, then all output will be sent to the standard output stream
of the master. If it is the null atom ’’, the servant’s standard output is discarded and its
standard error is directed to the master’s standard error.

11.2.2.3 call_servant(+Goal)

Once a servant has been created (by create_servant/2), goals can be sent to it for eval-
uation, by using call_servant(Goal). This sends the goal Goal to the servant, which
evaluates it (with respect to its own database) and sends all the answers back. The answers
are returned as solutions of call_servant/1. The answers bind the variables in Goal.
Answers after the first are obtained by backtracking into call_servant/1. Note that the
servant computes and sends all answers back to the master, even if the caller uses a cut to
throw away all but the first.

11.2.2.4 bag_of_all_servant(?Template, +Goal, -Bag)

If the servant is running on a different physical processor than the master, then it is desirable
to be able to achieve some degree of parallelism, to have both machines doing useful work
at the same time. This is not the case with call_servant/1, since the master Prolog
process is waiting the entire time that the servant process is computing. The predicate bag_
of_all_servant/3 is provided to allow a sophisticated user to write some truly parallel
applications. (See the demo program ‘queensdemo’ for an example of using parallelism in
a search problem.)

Semantically bag_of_all_servant/3 is very similar to bagof/3. The reader should be
familiar with the operation of bagof/3 before reading further. The differences are:

1. bag_of_all_servant/3 requires that there be no free variables in Goal that do not
appear in Template. If there are, bag_of_all_servant/3 will report an error. You
may use the existential operator (^) as in bagof/3.

2. bag_of_all_servant/3 succeeds with Bag bound to [] if Goal has no answers at all.
This means that bag_of_all_servant/3 always succeeds and returns in Bag exactly
one answer: the list of instances of Template, one instance for each success of Goal.

The exact operation of bag_of_all_servant/3 depends on the form of Goal. If Goal is a
conjunction of the form (Goal1, Goal2) or a disjunction of the form (Goal1; Goal2), then
the first subgoal (Goal1) will be executed by the servant, and the second subgoal (Goal2)
will be executed by the current process. The system will try to overlap local and remote
evaluation as much as possible. If Goal is neither a conjunction nor a disjunction, then the
entire goal will be sent to the servant to be executed.

Chapter 11: Inter-Process Communication 509

There are several restrictions on how bag_of_all_servant/3 can be used.

• Goal2 may not contain any cuts.
• Goal2 must not require the services of the servant to be evaluated. That is, it cannot

call any predicate that uses call_servant/1 or bag_of_all_servant/3.

11.2.2.5 set_of_all_servant(?Template, +Goal, -Set)

This is just like bag_of_all_servant except that duplicates are removed in the returned
list.

11.2.2.6 reset_servant

There are occasions in which the communications between the master and the servant can
get out of sync, in particular if the user generates an interrupt and then aborts a process
in the middle of a remote goal service. In this case, the goal reset_servant attempts to
return the servant to the top level and to flush the socket.

11.2.2.7 shutdown_servant

To close down a servant when it is no longer needed (or to reinitialize it or to connect to
another servant with a different database), use shutdown_servant/0. This terminates the
servant process.

11.2.3 C Process Calling Prolog Process

The support for calling a Prolog goal from a C program consists of Prolog predicates and
C functions. The Prolog predicates allow you to create a saved state, which will be the
servant. The C functions are used by your C program to create the Prolog process and
communicate with it.

Before a C program can call a Prolog program, you must first create a Prolog saved state
in which all the predicates to be called are defined. The saved state must also define the
characteristics of the interface to each of the predicates to be called. Once this saved state
is created, a C program can call the Prolog predicates by using C API functions. We first
describe how to create the Prolog saved state. After that we describe how the C program
calls a Prolog predicate.

:- use_module(library(ccallqp)).

510 Quintus Prolog

11.2.3.1 The Prolog Side

The interface for calling a Prolog program from a C program is strictly typed. In the Prolog
servant program, the user must declare which Prolog procedures can be called from the C
program, the types of the data elements to be passed between them, and the direction the
elements are to be sent. This is done in Prolog by defining external/3 facts to provide this
information. These facts are very similar to those for foreign/3 and have the following
form:

external(CommandName, Protocol, PredicateSpecification).

CommandName is the name by which the C program invokes this predicate. Protocol is
the protocol to be used, which currently must be xdr. PredicateSpecification is a term that
describes the Prolog predicate and the interface, and is of the form:

PredicateName(ArgSpec1, ArgSpec2, ...)

PredicateName is the name of the Prolog predicate (an atom). There is an ArgSpec for
each argument of the predicate, and ArgSpec is one of:

+integer +float +atom +string
-integer -float -atom -string

Examples:

external(add, xdr, addtwoints(+integer,+integer,-integer)).
external(ancestor, xdr, ancestor(+string,-string)).

/* Define addtwoints/3 for use by C caller. */
addtwoints(X, Y, Z) :- Z is X+Y.

/* Define ancestor/2 for use by C caller */
ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

The interface allows the simple Prolog data types (atoms, integers, and floating-point num-
bers) to be passed to and from a calling C program. The ‘+’ annotation on an argument
specification means that the corresponding value will be passed from the calling C program
to the called Prolog predicate. A ‘-’ annotation means that the value will be passed from
the Prolog predicate back to the calling C program. The ‘+’ and ‘-’ annotations are always
from the point of view of the master (or caller). In this case the C program is the master.

The argument specifications have the same meanings as they do in foreign/3 facts, but
note the directions implied by ‘+’ and ‘-’. Also note that the ‘...’ specifications are not
allowed. The limitations on the sizes of integers, floats, and strings in Prolog are the same
as for the interface to foreign routines.

Chapter 11: Inter-Process Communication 511

The values passed as atom arguments will be treated as unsigned integers in the C program.
Their uses must be restricted to the same invocation of the Prolog servant. These integers
can be converted to and from the associated strings by using the C functions QP_ipc_atom_
from_string() and QP_ipc_string_from_atom() below.

11.2.3.2 save_ipc_servant(+SavedState)

To be able to call a servant from C, you must first have created a saved state that will run as
the servant. This is done using save_ipc_servant/1. Run Prolog on the machine on which
the servant is to be run, and load (that is, compile, consult, or assert) everything that the
servant will need. This includes all the external/3 facts that define the interface, as well
as the predicates that the C program will call. Then call save_ipc_servant(SavedState
), where SavedState is the name of the file in which to save the state.

11.2.3.3 The C Side

After the saved state containing the Prolog predicates and the interface declarations has
been created, a C program can access those predicates by using the C functions described
in the following sections. Your C program that uses these functions should #include the file
‘IPC/RPC/ccallqp.h’ to include the extern definitions. The final linker step that creates
the main executable must include the file ‘IPC/RPC/system/ccallqp.o’. This file contains
the C object code that implements the C functions you will be using, and was created at
the time your Quintus Prolog system was installed.

See the RPC demo for an example.

11.2.3.4 QP_ipc_create_servant()

int QP_ipc_create_servant(host, QP_save_state, QP_outfile)
char *host, *QP_save_state, *QP_outfile;

host is the name of the machine on which the Prolog servant is to run. If host is the string
"local", then the servant is run on the same machine as the master. If host is the empty
string "", the servant is run on the local machine but pipes are used for the interprocess
communication rather than sockets, which are used otherwise.

QP save state is the name of a file containing a Prolog saved state that was created by save_
ipc_servant/1. This saved state must contain the definitions of the predicates to be called
and the external/3 facts that specify the interface. If QP save state is not an absolute
filename, it will be sought, on the specified machine, in the sequence of directories specified
by your PATH environment variable. If this search fails, the current working directory will
be tried, if it exists on that machine.

QP outfile is the name of the file to which to route the Prolog servant’s output (stdout
and stderr). If QP outfile is the string "user", then the servant’s output is routed to the

512 Quintus Prolog

C program’s stdout. If it is the empty string "", the servant’s stdout stream is discarded,
and its stderr stream is routed to the master’s stderr.

This routine returns the file descriptor of the connecting socket if the connection was made
successfully and -1 if not. This routine starts the Prolog servant and may take several
seconds to complete.

11.2.3.5 QP_ipc_lookup()

int QP_ipc_lookup(name)
char *name;

This routine finds and returns the command number associated with the external routine
name. The command number is a nonnegative integer. The associated command must
have appeared as the first field in an external declaration in the saved state started by the
previous QP_ipc_create_servant() call. If the command is not found, -1 is returned.

11.2.3.6 QP_ipc_prepare()

int QP_ipc_prepare(command, arg1, ..., argn)
int command;
va_dcl

This function sends a request to the Prolog process to evaluate a goal. The command
is identified by command, which must have been obtained by an earlier call to QP_ipc_
lookup(). The arguments are the values to be sent to the command, that is those in the
interface specification with a ‘+’ annotation. They must be in left-to-right order as they
appear in the specification. They must be of the corresponding types as indicated in the
specification:

+integer: int
+float: float
+atom: QP_atom
+string: char *

See the example below in Section 11.2.3.12 [ipc-rpc-cpp-exa], page 514.

On successful completion, this routine returns 0. If an error has occurred, it returns -1.

11.2.3.7 QP_ipc_next()

int QP_ipc_next(command, arg1, ..., argm)
int command;
va_dcl

The C routine QP_ipc_next() retrieves an answer for a goal (command) that was initiated
by a previous call to QP_ipc_prepare(). The command is identified by command. It must

Chapter 11: Inter-Process Communication 513

be the same as the command given to QP_ipc_prepare(). The remaining arguments are
variables that will be set by QP_ipc_next() to the values returned as the next answer to the
goal. There is one argument for each field in the interface specification that was annotated
with ‘-’. They must be in left-to-right order. The types of the arguments must correspond
to the types declared in the external/3 specification as follows:

-integer: int *
-float: float *
-atom: QP_atom *
-string: char **

For a returned value of type string, space must be provided by the calling routine to hold
the value returned. The characters of the returned string will be copied over the string
passed in.

If an(other) answer to the query has been obtained and the argument parameters have been
set accordingly, QP_ipc_next() returns 0. If there are no more answers, it returns -1. If
there is an error, it returns -2.

See the example below in Section 11.2.3.12 [ipc-rpc-cpp-exa], page 514.

11.2.3.8 QP_ipc_close()

int QP_ipc_close()

The QP_ipc_close() routine closes a query that was opened by QP_ipc_prepare() but
did not have all of its answers retrieved by calls to QP_ipc_next(). (When QP_ipc_next()
returns a -1, indicating no more answers, the query is automatically closed, and a subsequent
call to QP_ipc_close() is an error.) QP_ipc_close() returns 0 if it has closed the query
successfully, and -1 if there is an error.

11.2.3.9 QP_ipc_shutdown_servant()

int QP_ipc_shutdown_servant()

The routine QP_ipc_shutdown_servant() shuts down the servant. It sends a message to
the servant that causes it to terminate. It returns 0 if the shutdown is successful, and -1 if
there is some problem.

11.2.3.10 QP_ipc_atom_from_string()

QP_atom QP_ipc_atom_from_string(str)
char *str;

The routine QP_ipc_atom_from_string() returns the unsigned integer that is the Prolog
representation of the atom with the name str. This representation is valid for the lifetime
of the servant. It must not be saved and used with a different invocation of the servant.

514 Quintus Prolog

11.2.3.11 QP_ipc_string_from_atom()

void QP_ipc_string_from_atom(atom, str)
QP_atom atom;
char *str;

The routine QP_ipc_string_from_atom() can be used to get the name corresponding to
an atom, given the Prolog internal unsigned integer representation of the atom. The string
str will be overwritten with a null-terminated string that is the name of the atom. The
caller must provide enough space to contain this string.

11.2.3.12 Examples

The first example shows how you can package a call to a Prolog goal that is known to be
determinate. Here, the C function fred hides the call to Prolog. However, the servant must
be initiated by a call to QP_ipc_create_servant() before it can be called.

Prolog Specification

external(fred, xdr, fred(+integer,-integer,+integer)).

fred(X, Y, Z) :- ...

Chapter 11: Inter-Process Communication 515

C routine

int fred(i, j)
int i, j;
{

static int fredp = -1;
int k;

if (fredp < 0) { /* initialize */
fredp = QP_ipc_lookup("fred");
if (fredp < 0)

DieBecause("couldn’t find fred");
}

/* send the request */
QP_ipc_prepare(fredp, i, j);

/* get the answer back */
if (QP_ipc_next(fredp, &k))

DieBecause("fred failed");

/* known determinate, so close request */
QP_ipc_close();

/* return the answer */
return k;

}

The second example shows an entire program and how all types of arguments are be passed.
It also shows how QP_ipc_atom_from_string() and QP_ipc_string_from_atom() can be
used. In terms of functionality, this is not a very interesting program, and the conversion
between atoms and strings is just to give an example.

Prolog Specification

external(dupl, xdr, duplicate(-integer,+integer,-string,+string,
-float,+float,-atom,+atom)).

duplicate(A, A, B, B, C, C, D, D).

516 Quintus Prolog

C program:

main()
{

int pdupl;
char host[20], savestate[50];
int iint, oint;
char istr1[20], istr2[20], ostr1[20], ostr2[20];
float iflt, oflt;
QP_atom iatom, oatom;

printf("Enter host and savestate: ");
scanf("%s%s", host, savestate);

if (QP_ipc_create_servant(host,savestate,"servant_out"))
DieBecause("Error starting up servant");

pdupl = QP_ipc_lookup("dupl");
if (pdupl < 0) DieBecause("dupl not defined");

for (;;) { /* loop until break */
printf("Enter int, str, flt, str: ");
if (scanf("%d%s%f%s",&iint,istr1,&iflt,istr2) != 4)

break;
/* get atom for the string typed in */
iatom = QP_ipc_atom_from_string(istr2);

/* send the request */
if (QP_ipc_prepare(pdupl, iint, istr1, iflt, iatom))

DieBecause("dupl prepare error");

/* get answer back, and convert atom back to string */
QP_ipc_next(pdupl, &oint, ostr1, &oflt, &oatom);
QP_ipc_string_from_atom(oatom, ostr2);

/* close request because we want only one answer */
if (QP_ipc_close()) printf("ERROR closing\n");

printf("Answer is: %d %s %G %s(%d)\n",
oint, ostr1, oflt, ostr2, oatom);

}

if (QP_ipc_shutdown_servant())
DieBecause("Error shutting down servant");

}

The third example shows how to retrieve multiple answers:

Chapter 11: Inter-Process Communication 517

Prolog Specification

external(table, xdr, table(-string,-integer)).

table(samuel, 34).
table(sarah, 54).
...

C program

main()
{

char host[20], savestate[50];
int ptable, ret;
char strval[40];
int intval;

printf("Enter host and savestate: ");
scanf("%s%s", host, savestate);

if (QP_ipc_create_servant(host,savestate,"servant_out"))
DieBecause("Error starting up servant");

ptable = QP_ipc_lookup("table");
if (ptable < 0) {

printf("table not defined\n");
return;

}

/* send the request */
QP_ipc_prepare(ptable);

/* retrieve and print ALL answers */
while (!(ret = QP_ipc_next(ptable, strval, &intval)))

printf("String: %s, Integer: %d\n", strval,intval);

/* note no close, since we retrieved all the answers! */
if (ret == -1) printf("All answers retrieved\n");
else printf("Error retrieving answers\n");

if (QP_ipc_shutdown_servant())
DieBecause("Error shutting down servant");

}

The final example shows how one could write a C function to turn Prolog’s message tracing
(see Section 11.2.4 [ipc-rpc-tra], page 518) on and off.

518 Quintus Prolog

Prolog Specification

external(settrace, xdr, settrace(+string)).

settrace(X) :- msg_trace(_,X).

C routine

void settrace(OnOff)
char *OnOff;
{

static int psettrace = -1;
int k;

if (psettrace < 0) {
psettrace = QP_ipc_lookup("settrace");
if (psettrace < 0)

DieBecause("couldn’t find settrace");
}

QP_ipc_prepare(psettrace, OnOff);
if (QP_ipc_next(psettrace))

DieBecause("settrace failed");
QP_ipc_close();

}

11.2.4 Tracing

A simple tracing facility is available for determining what messages are received by and
sent from the Prolog servant. When message tracing is on, messages sent or received cause
a trace message to be written to the current output stream. It will normally be redirected
to a file by create_servant/3 or QP_ipc_create_servant(). The UNIX command tail

-f may be helpful in looking at the trace messages. Each trace message indicates what the
corresponding interprocess message was. The precise form of the trace information depends
on whether the Prolog servant is serving a C program or another Prolog program.

Message tracing can be turned on and off by having the servant process call msg_trace/2
which is described below. A master that is a Prolog process can use call_servant/1 to
cause the servant to call msg_trace/2. It can also call msg_trace/2 directly to control
tracing of its own messages.

To make a servant that serves a C master trace its message, it must either have had tracing
turned on before its saved state was created, or it must provide an external routine that
can be invoked by the C master to turn on tracing (see Example 4 in Section 11.2.3.12
[ipc-rpc-cpp-exa], page 514).

Chapter 11: Inter-Process Communication 519

11.2.4.1 msg_trace(-OldValue, +OnOrOff)

The predicate msg_trace/2 returns the current value of the message-trace flag (on or off)
and resets its value. The message-trace flag has one of the values on or off. OldValue
is bound to the previous value of the flag, and the flag is reset to the value of OnOrOff,
which must be either on or off. The call msg_trace(X,X) returns the current value without
changing it. When the message-trace flag is on, messages to and from the servant are traced.
By executing call_servant(msg_trace(_,on)), tracing can be turned on in the servant.

11.2.5 Known Bugs

If the Prolog master process is interrupted while it is waiting for an answer from the servant
process, the master process may crash.

520 Quintus Prolog

Chapter 12: Library 521

12 Library

12.1 Introduction

12.1.1 Directory Structure

The Quintus Prolog Library directory (part of the installation directory described in Sec-
tion 1.1 [int-man], page 1) contain files written in Prolog and C, which supplement the
Quintus Prolog kernel. The structure of the Library Directory differs slightly between
UNIX and Windows, as shown in the following figures.

522 Quintus Prolog

Chapter 12: Library 523

The Quintus Prolog Library Directory under UNIX, ‘qplib3.5’

524 Quintus Prolog

Chapter 12: Library 525

The Quintus Prolog Library Directory under Windows, ‘src’

‘library’ contains a large number of predicates that can be regarded as extensions to the
set of predicates that are built into the Prolog system. Both source and QOF
versions are provided.

‘tools’ source files for Quintus-supplied development tools, independent programs that
perform various functions such as determinancy checking and cross-referencing.
They can be used to analyze your programs statically (that is, without running
them) and possibly locate bugs.

‘structs’ contains the Structs Package, which allows access to C data structures from
Prolog. The directory includes demos.

‘objects’ contains the Objects Package, which enables programmers to write object-
oriented programs in Quintus Prolog. It can be regarded as a high-level al-
ternative to the Structs Package.

‘prologbeans’
contains the PrologBeans Package, which provides an interface from Java to
Prolog.

‘vbqp’ An interface from Visual Basic to Prolog. Only available under Windows.

‘IPC’ two inter-process communication packages: Remote Predicate Call (RPC, not
available under Windows) and Transmission Control Protocol (TCP).

‘include’ Contains ‘<quintus/quintus.h>’, a header file containing #defines, typedefs,
struct definitions, etc., which are needed to compile C code that needs to call
API functions or use Quintus data structures. Under Windows, the ‘include’
directory is placed directly under quintus-directory.

‘embed’ contains modules for user customization of the message handler (see Section 8.20
[ref-msg], page 325) and source code for the Embedding Layer.

The predicate library_directory/1 has predefined clauses for the ‘library’ and ‘tools’
directories. These depend on the file_search_path/2 definition of ‘qplib’. You can
see these clauses by typing listing. or listing(library_directory). after starting up
Prolog. This definition of library_directory/1 means that you can refer, from within
Prolog, to any file in any of these areas using the form library(File). For example either
(A) or (B) would load the file ‘lists.qof’ from the ‘library’ directory.

| ?- [library(lists)]. (A)

| ?- load_files(library(lists)). (B)

Library packages are typically loaded by doing (C) if the package is not a module-file or if
it is a module and you want all the exported predicates.

| ?- ensure_loaded(library(addportray)). (C)

See the descriptions of ensure_loaded/1 and use_module/[1,2,3].

526 Quintus Prolog

In addition to the loadable QOF files, source files (‘.pl’ or ‘.c’) are provided for each
package.

12.1.2 Status of Library Packages

The predicates described here have been tested and are believed to work as documented.
If you want something slightly different from one of these predicates, it is strongly recom-
mended that you do not change the existing definition. Instead, write a new predicate using
the existing definition as a model. There are several reasons for not changing the definition
of a predicate in the library:

1. It may confuse people reading your code who are familiar with the documented behavior
of the library predicate.

2. If you use other library files, they may depend on the exact definition of this predicate.
3. You might have to redo your modification if you wished to run your program on some

new release of Quintus Prolog.
4. We do not accept responsibility for any bugs introduced by a user’s change to library

code.

12.1.3 Documentation of Library Packages

All library packages include code comments, often extensive, which serve as documenta-
tion. Accessing these comments and other information available in the library directory is
discussed in Section 12.1.3.1 [lib-bas-dlp-acc], page 526.

In addition, many packages are more fully documented:

• The IPC packages are documented in Chapter 11 [ipc], page 485.
• A large number are documented in Section 12.2 [lib-lis], page 528 through Section 12.11

[lib-mis], page 635 of this part of the manual.

The rest are abstracted in Section 12.13 [lib-abs], page 641. For these the information in
the following section is particularly useful.

12.1.3.1 Accessing Code Comments

If you know the name of the library package in question, simply look at the source code
in ‘qplib3.5’. Apart from code comments, there is information about predicates in two
files that summarize the contents of the directory. They are called ‘Contents’ and ‘Index’.
(See the figure above.) If you do not know the name of the package the ‘Index’ file will
be helpful. If you know the name of the package, you can use the ‘Contents’ file to gain
further information about it.

Chapter 12: Library 527

The ‘Index’ file contains one line for each exported predicate in the library. The predicates
are listed in standard order, ignoring module names. A typical entry looks like this:

list_to_binary/4 flatten ./flatten.pl

This means that there is a predicate called list_to_binary/4 in the library, that it lives
in a module called flatten, and that the file that contains it is ‘flatten.pl’ in the same
directory as the Index.

If you have set up an environment variable QL holding the name of the Quintus library
directory, you could ask “what predicates are there to deal with files?” by issuing the
command

% egrep files $QL/Index

The ‘Contents’ file is organized by library files rather than by predicates. A typical entry
in this file is a block of lines like this:

basics + documented in manual
basics % the basic list processing predicates
basics - ./basics.pl
basics : member/2
basics : memberchk/2
basics : nonmember/2

The first line means that library(basics) is one of the library packages that is fully doc-
umented in this manual. The second line is a short description of the contents. The third
line says which file contains library(basics); in this case it is ‘basics.pl’ in the same di-
rectory as Contents. The remaining lines list the predicates exported by library(basics).
You could obtain this information by issuing the command

% egrep ’^basics’ $QL/Contents

These files are provided as a convenience, and do not have the same authority as the printed
manual.

12.1.4 Notation

12.1.4.1 Character Codes

Many of the examples in this manual show lists of character codes being written as quoted
strings. This actually happens if you load the library package library(printchars). That
package extends the predicate portray/1 (using library(addportray)) so that print/1,
the top-level, and the debugger will write lists of character codes as follows:

528 Quintus Prolog

| ?- X = [0’a,0’b,0’c].

X = [97,98,99]

| ?- ensure_loaded(library(printchars)).

| ?- X = [0’a,0’b,0’c].

X = "abc"

12.1.4.2 Mode Annotations

A new system of representing the modes of arguments has been adapted in Release 3, is
described in Chapter 18 [mpg], page 985. The library, including IPC, is still documented
under the old system of mode annotations:

Each predicate definition is headed by a goal template such as

setof(?X,+Goal,-Set)

Here X and the others are meta-variables, which name the arguments so that we don’t
have to keep saying “its first argument” and so on. The characters that precede the meta-
variables will seem familiar if you know the mode declarations of DEC-10 Prolog; their
significance is as follows:

‘+’ This argument is an input to the predicate. It must initially be instantiated;
otherwise, the predicate raises an error exception.

‘-’ This argument is an output. It is returned by the predicate. That is, the
output value is unified with any value that was supplied for this argument. The
predicate fails if this unification fails. If no value is supplied, the predicate
succeeds, and the output variable is unified with the return value.

‘?’ This argument does not fall into either of the above categories. It is not neces-
sarily an input nor an output, and it need not be instantiated.

Note that it is not an error to call a predicate with a ‘-’ argument already instantiated.
The value supplied will simply be unified with the result returned, and if that unification
fails, the predicate fails.

12.2 List Processing

12.2.1 Introduction

While Prolog has data structures other than lists (and the library implements several others,
such as priority queues, in terms of more primitive structures), list processing is still very
important in Prolog. This section describes the library predicates that operate on lists.

Chapter 12: Library 529

12.2.2 What is a “Proper” List?

Several of the predicate descriptions below indicate that a particular predicate only works
when a particular argument “is a proper list”. A proper list is either the atom [] or else it
is of the form [_|L] where L is a proper list. X is a partial list if and only if var(X) or X
is [_|L] where L is a partial list. A term is a list if it is either a proper list or a partial list;
that is, [_|foo] is not normally considered to be a list because its tail is neither a variable
nor [].

Note that the predicate is_list(X) defined in library(lists) really tests whether X is
a proper list. The name is retained for compatibility with earlier releases of the library.
Similarly, is_set(X) and is_ordset(X) test whether X is a proper list that possesses the
additional properties defining sets and ordered sets.

The point of the definition of a proper list is that a recursive procedure working its way
down a proper list can be certain of terminating. Let us take the case of last/2 as an
example. last(X, L) ought to be true when append(_, [X], L) is true. The obvious way
of doing this is

last(Last, [Last]).
last(Last, [_|Tail]) :-

last(Last, Tail).

If called with the second argument a proper list, this definition can be sure of terminating
(though it will leave an extra choice point behind). However, if you call

| ?- last(X, L), length(L, 0).

where L is a variable, it will backtrack forever, trying ever longer lists. Therefore, users
should be sure that only proper lists are used in those argument positions that require
them.

12.2.3 Five List Processing Packages

There are five library files that are specifically concerned with list processing. They are

library(basics)
contains very basic list processing operations.

library(lists)
contains operations that view lists as sequences.

library(sets)
contains operations that view lists as sets.

530 Quintus Prolog

library(ordsets)
contains operations that view lists as sets, but require that the elements of the
lists be in standard order (see compare/3 in the reference pages) so as to be
much more efficient than library(sets) for any but the smallest sets.

library(listparts)
establishes a common vocabulary for names of parts of lists.

As a general rule, if a predicate defined here has a counter (a non-negative integer) as one
of its arguments, it will suffice for the counter argument to be instantiated. Otherwise,
at least one of the list arguments must be a proper list. Failing this, the predicate may
backtrack forever trying ever longer lists. When you look at the code you will see that some
of the library routines use same_length/2 or same_length/3 to ensure termination.

12.2.4 Basic List Processing — library(basics)

12.2.4.1 Related Built-in Predicates

See also the built-in predicates length/2 and append/3, which can be used to find the
length of a proper list or to construct a proper list of a given length, and append(*Head,
*Tail, *List), which is used to combine lists and take lists apart.

12.2.4.2 member(?Element, ?List)

member(?Element, ?List) is true when List is a (possibly partial) list, and Element is one
of its elements. It may be used to check whether a particular element occurs in a given list,
or to enumerate all of the elements of a list by backtracking. member/2 may also be used
to generate a list.

Chapter 12: Library 531

| ?- member(a, [b,e,a,r]).

yes

| ?- member(e, [s,e,e,n]).

yes /* this will succeed twice */

| ?- member(e, [t,o,l,d]).

no

| ?- member(X-Y, [light-dark,near-far,wet-dry]).

X = light,
Y = dark ;

X = near,
Y = far ;

X = wet,
Y = dry

| ?- member(a-X, [b-2,Y-3,X-Y]).

X = 3,
Y = a ;

X = a,
Y = a

| ?- member(a, L), member(b, L), member(c, L),

| length(L, N).

L = [a,b,c],
N = 3

The last example will generate lists of increasing length whose first three members are a,
b, and c.

If L is a proper list of length n, member(X, L) has at most n solutions, whatever X is. But
if L is a partial list, member/2 will backtrack indefinitely, trying to place X ever farther to
the right. For example,

532 Quintus Prolog

| ?- member(a, L).

L = [a|_879] ;

L = [_878,a|_881] ;

L = [_878,_880,a|_883] ;

.

.

.

until you stop it.

In general, you should only use member/2 when the second argument is a proper list. This
list need not be ground; however, it must not end with a variable.

12.2.4.3 memberchk(+Element, +List)

In the previous section, it was pointed out that member(e, [s,e,e,n]) succeeds twice. If
you have a ground term (or one that is sufficiently instantiated) and you only want to know
whether it occurs in a list or not, you would like the membership test to succeed only once.
memberchk/2 is a version of member/2 that does this.

memberchk(Element, List) can only be used to test whether a known element occurs in a
known list. It cannot be used to enumerate elements of the list. memberchk/2 commits to
the first match and does not backtrack.

Use memberchk/2 in preference to member/2, but only where its restrictions are appropriate.

12.2.4.4 nonmember(+Element, +List)

nonmember(+Element, +List) is true when Element does not occur in the List. For
nonmember/2 to instantiate Element in any way would be meaningless, as there are in-
finitely many terms that do not occur in any given list.

nonmember/2 should only be used when List and Element are sufficiently instantiated that
you can tell whether Element occurs in List or not without instantiating any variables. If
this requirement is not met, the answers generated may not be exactly what you would
expect from the logic.

For example, some valid uses of nonmember/2 are:

Chapter 12: Library 533

| ?- nonmember(a, [x,y,z]).

yes
| ?- nonmember(x, [x,y,z]).

no

In the following examples, nonmember/2 is invalidly used with insufficiently instantiated
arguments. In these cases it simply fails.

| ?- nonmember(X, [x,y,z]).

no
| ?- nonmember(x, [X]).

no
| ?- nonmember(x, X).

no

Use nonmember/2 to check whether a known element occurs in a known list, in preference
to ‘\+ member/2’ or ‘\+ memberchk/2’.

12.2.5 Lists as Sequences — library(lists)

library(lists) provides a large number of list processing operations. See also Sec-
tion 12.2.4 [lib-lis-basics], page 530, which describes the more basic list processing operations
that are provided by library(basics).

The predicates defined by this library file are:

is_list(+List)
is true when List is instantiated to a proper list: that is, to either [] or [_|Tail
] where Tail is a proper list. A variable, or a list that ends with a variable, will
fail this test.

append(+ListOfLists, ?List)
is true when ListOfLists is a list [L1,...,Ln] of lists, List is a list, and ap-
pending L1, . . . , Ln together yields List. If ListOfLists is not a proper list,
append/2 will fail. Additionally, either List should be a proper list, or each of
L1, . . . , Ln should be a proper list. The behavior on non-lists is undefined.
ListOfLists must be proper because for any given solution, infinitely many more
can be obtained by inserting nils ([]) into ListOfList.

append(?Prefix, ?Tail1, ?List1, ?Tail2, ?List2)
is logically equivalent to:

append(Prefix, Tail1, List1),
append(Prefix, Tail2, List2).

534 Quintus Prolog

but is much more efficient. append/5 is guaranteed to halt in finite time if any
one of Prefix, List1, or List2 is a proper list.
You can use append/5 to add a common Prefix to the front of Tail1 and Tail2,
to remove a common Prefix from List1 and List2, or in several other ways.
Here is an example of the use of append/5. The task is to check whether
Word1 and Word2 are the same except for exactly one insertion, deletion, or
transposition error.

spell(i, Word1, Word2) :-
append(_, Suffix, Word1, [_|Suffix], Word2).

spell(d, Word1, Word2) :-
append(_, [_|Suffix], Word1, Suffix, Word2).

spell(t, Word1, Word2) :-
append(_, [X,Y|Suffix], Word1, [Y,X|Suffix], Word2).

| ?- spell(E, Word1, "fog"),
print(E-Word1), nl, fail.

i-"og"
i-"fg"
i-"fo"
d-[_682,102,111,103]
d-[102,_682,111,103]
d-[102,111,_682,103]
d-[102,111,103,_682]
t-"ofg"
t-"fgo"
no

correspond(?X, ?Xlist, ?Ylist, ?Y)
is true when Xlist and Ylist are lists, X is an element of Xlist, Y is an element
of Ylist, and X and Y are in corresponding places in their lists. Nothing is said
about the other elements of the two lists, nor even whether they are the same
length. Only one solution is ever found, as the procedure for correspond/4
contains a cut. For a logical predicate having similar effects (that is, one that
finds all solutions), see select/4. Either Xlist or Ylist should be a proper list.

delete(+List, +Elem, ?Residue)
is true when List is a list, in which Elem may or may not occur, and Residue is
a copy of List with all elements equal to Elem deleted. To extract a single copy
of Elem, use select(Elem, List, Residue). For a given Elem and Residue,
there are infinitely many Lists containing Elem or not. Therefore, this predicate
only works one way around: List must be a proper list and Elem should be
instantiated. Only one solution is ever found.

delete(+List, +Elem, +Count, ?Residue)
is true when List is a list, in which Elem may or may not occur, and Count is
a non-negative integer. Residue is a copy of List with the first Count elements
equal to Elem deleted. If List has fewer than Count elements equal to Count,

Chapter 12: Library 535

all of them are deleted. If List is not proper, delete/4 may fail. Elem and the
elements of List should be sufficiently instantiated for \= to be sound.

keys_and_values(?KeyValList, ?KeyList, ?ValList)
is true when all three arguments are lists of the same length (at least one of
them should be a proper list), and are of the form

KeyValList = [K1-V1,K2-V2,...,Kn-Vn]
KeyList = [K1, K2 ,...,Kn]
ValList = [V1, V2,..., Vn]

That is, the ith element of KeyValList is a pair Ki-Vi, where Ki is the ith
element of KeyList and Vi is the ith element of ValList. The main point of
this, of course, is that KeyValList is the kind of list that the built-in predicate
keysort/2 sorts, where the Ki are the keys that are sorted on and the Vi go
along for the ride. You can, for example, sort a list without discarding duplicate
elements, using

msort(Raw, Sorted) :-
keys_and_values(RawKV, Raw, _),
keysort(RawKV, SortedKV),
keys_and_values(SortedKV, Sorted, _).

keys_and_values/3 can also be used for constructing the input (list) argument
of list_to_map/2 and for decomposing the result of map_to_list/2 — see
library(maps) (Section 12.13 [lib-abs], page 641).

| ?- keys_and_values([light-dark,

near-far,

wet-dry],

Keys, Vals).

Keys = [light,near,wet],
Vals = [dark,far,dry]

| ?- keys_and_values(Pairs, [light,near,wet],

| [dark,far,dry]).

Pairs = [light-dark,near-far,wet-dry]

last(?Last, +List)
is true when List is a list and Last is its last element. This could be defined as

last(X, L) :-
append(_, [X], L).

nextto(?X, ?Y, +List)
is true when X and Y appear side-by-side in List. It could be defined as

nextto(X, Y, List) :- append(_, [X,Y|_], List).

nextto/3 may be used to enumerate successive pairs from List. List should be
a proper list.

536 Quintus Prolog

nth0(?N, ?List, ?Elem)
is true when Elem is the Nth member of List, counting the first as element 0
(that is, throw away the first N elements and unify Elem with the next one).
Note that the argument pattern resembles that of arg/3. Unlike arg/3 (but
like genarg/3; see Section 12.3.3 [lib-tma-arg], page 551), nth0/3 can be used
to solve for either N or Elem. If used to solve for N, List should be a proper
list.

nth0(?N, ?List, ?Elem, ?Rest)
unifies Elem with the Nth element of List, counting from 0, and Rest with
the remaining elements. nth0/4 can be used to select the Nth element of List
(yielding Elem and Rest), or to insert Elem before the Nth (counting from 0)
element of Rest, (yielding List). Either N should be instantiated, or List should
be a proper list, or Rest should be a proper list; any one is enough.

| ?- nth0(2, List, c, [a,b,d,e]).

List = [a,b,c,d,e]

| ?- nth0(2, [a,b,c,d,e], Elem, Rest).

Elem = c,
Rest = [a,b,d,e]

| ?- nth0(N, [a,b,c,d,e], c, Rest).

N = 2,
Rest = [a,b,d,e]

| ?- nth0(1, List, Elem, Rest).

List = [_973,Elem|_976],
Elem = _755,
Rest = [_973|_976]

nth1(?N, ?List, ?Elem)
is the same as nth0/3, except that it counts from 1 so that, for example,

nth1(1, [H|T], H)

is true. List should be a proper list.

nth1(?N, ?List, ?Elem, ?Rest)
is the same as nth0/4 except that it counts from 1. It can be used to select the
Nth element of List (yielding Elem and Rest), or to insert Elem before the N
+1st element of Rest, when it yields List. Either N should be instantiated, or
List should be a proper list, or Rest should be a proper list; any one is enough.

Chapter 12: Library 537

| ?- nth1(3, List, c, [a,b,d,e]).

List = [a,b,c,d,e]

| ?- nth1(3, [a,b,c,d,e], Elem, Rest).

Elem = c
Rest = [a,b,d,e]

| ?- nth1(N, [a,b,c,d,e], c, Rest).

N = 3
Rest = [a,b,d,e]

| ?- nth1(1, List, Elem, Rest).

List = [Elem|Rest],
Elem = _755,
Rest = _770

perm(+List, ?Perm)
is true when List and Perm are permutations of each other. If you simply
want to test this, the best way is to sort the two lists and see if the results
are the same; use samsort/2 from library(samsort) (Section 12.13 [lib-abs],
page 641) in preference to sort/2.
The point of perm/2 is to generate permutations; it only works if List is a proper
list. perm/2 should not be used in new programs; use permutation/2 instead.

permutation(?List, ?Perm)
is true when List and Perm are permutations of each other. Unlike perm/2,
it will work even when List is not a proper list. permutation/2 will return
reasonable results when Perm is also not proper, but will still backtrack forever
unless one of the arguments is proper. Be careful: permutation/2 is is quite
efficient, but the number of permutations of an N-element list is N! (N-factorial).
Even for a 7-element list that is 5040.

perm2(?A, ?B, ?C, ?D)
is true when [A, B] is a permutation of [C, D]. perm2/4 is very useful for
writing pattern matchers over commutative operators. It is used more of-
ten than perm/2. perm2/4 is not really an operation on lists. perm2/4 is
in library(lists) only because permutation/2 is there.

remove_dups(+List, ?Pruned)
removes duplicated elements from List, which should be a proper list. If List
contains non-ground elements, Pruned may contain elements that unify. Two
elements will be considered duplicates if and only if all possible substitutions
cause them to be identical.

538 Quintus Prolog

| ?- remove_dups([X,X], L).

X = _123
L = [X]

| ?- remove_dups([X,Y], L).

X = _123
Y = _126
L = [X,Y]

| ?- remove_dups([3,1,4,1], L).

L = [1,3,4]

remove_dups/2 does not preserve the original order of the elements of List.

rev(+List, ?Reversed)
is true when List and Reversed are lists with the same elements but in opposite
orders. List must be supplied as a proper list; if List is partial, rev/2 may find
a solution, but if backtracked into will backtrack forever, trying ever longer
lists. Use rev/2 only when you know that List is proper; it is then twice as fast
as calling reverse/2.

reverse(?List, ?Reversed)
is true when List and Reversed are lists with the same elements but in opposite
orders. Either List or Reversed should be a proper list: given either argument
the other can be found. If both are partial, reverse/2 will keep trying longer
instances of both. If you want an invertible relation, use this. If you only want
the reversal to work one way around, rev/2 is adequate.

same_length(?List1, ?List2)
is true when List1 and List2 are both lists and have the same number of ele-
ments. No relation between the elements of List1 and List2 is implied. This
predicate may be used to generate either list given the other, or indeed to gen-
erate two lists of the same length, in which case the arguments will be bound
to lists of length 0, 1, 2, and so on. same_length/2 is supplied to make it
easier to write invertible predicates, transferring the proper list status of either
argument to the other. same length(List1, List2) has the same effect as the
following call to same_length/3:

same_length(List1, List2, _ /* any length */)

same_length(?List1, ?List2, ?Length)
is true when List1 and List2 are both lists and have the same number of ele-
ments, and Length is an integer that is the common length of the two lists. No
relation between the elements of List1 and List2 is implied. This predicate may
be used to generate any of its arguments. If Length is given, or if either List1
or List2 is a proper list at the time of call, same_length/3 is determinate and
terminates. Otherwise it will backtrack forever, binding its arguments to lists
of length 0, 1, 2, and so on. same_length/3 is logically equivalent to

Chapter 12: Library 539

length(List1, Length),
length(List2, Length)

except that if List2 is known and the other arguments are not, this code will
not terminate if backtracked into, while same_length/3 will terminate deter-
minately.

select(?X, ?Xlist, ?Y, ?Ylist)
is true when X is the Kth element of Xlist and Y the Kth element of Ylist for
some K, and apart from that element Xlist and Ylist are the same. You can
use select/4 to replace X by Y or vice versa. Either Xlist or Ylist should be
a proper list.

selectchk(?X, ?Xlist, ?Y, ?Ylist)
is to select/4 what memberchk/2 is to member/2 in library(basics).

shorter_list(?Short, ?Long)
is true when Short is a list strictly shorter than Long. No relation between the
elements of Short and Long is implied. Long does not have to be a proper list
provided it has one more element than Short. This can be used to generate lists
shorter than Long; lengths 0, 1, 2, and so on will be tried, but backtracking will
terminate with a list that is one element shorter than Long. shorter_list/2
cannot be used to generate lists longer than Short, because it does not look at
all the elements of the longer list.

subseq(?Sequence, ?SubSequence, ?Complement)
is true when SubSequence and Complement are both subsequences of the list
Sequence (the order of corresponding elements being preserved) and every ele-
ment of Sequence that is not in SubSequence is in Complement and vice versa.
Among other things, this means that

length(Sequence) = length(SubSequence) +
length(Complement)

and
subseq([1,2,3,4], [1,3,4], [2]).

subseq/3 was written to generate subsets and their complements together from
Sequence, but can also be used to interleave two lists Subsequence and Com-
plement in all possible ways. Either Sequence should be a proper list, or both
SubSequence and Complement should both be proper lists. Note that if S1 is
a subset of S2, it will be generated before S2 as a SubSequence and after it as a
Complement. To be specific, take S1 = [a], S2 = [a,c], Sequence = [a,b,c]:

540 Quintus Prolog

| ?- subseq([a,b,c], Sub, Com).

Sub = [],
Com = [a,b,c] ;

Sub = [c],
Com = [a,b] ;

Sub = [b],
Com = [a,c] ; % S2 generated as Complement

Sub = [b,c],
Com = [a] ; % S1 generated as Complement

% (AFTER S2)
Sub = [a], % S1 generated as SubSequence

Com = [b,c] ; % (BEFORE S2)

Sub = [a,c], % S2 generated as SubSequence

Com = [b] ;

Sub = [a,b],
Com = [c] ;

Sub = [a,b,c],
Com = [] ;

no % these 8 are all the solutions.

Further examples of the use of subseq/3 are:

Chapter 12: Library 541

| ?- subseq([1,2,3,4], X, [2]).

X = [1,3,4]

| ?- subseq([a,b], Subs, Comp).

Subs = [],
Comp = [a,b] ;

Subs = [b],
Comp = [a] ;

Subs = [a],
Comp = [b] ;

Subs = [a,b],
Comp = [] ;

no

| ?- subseq(Seq, [@], [#]).

Seq = [#,@] ;

Seq = [@,#] ;

no

subseq0(+Sequence, ?SubSequence)
is true when SubSequence is a subsequence of Sequence, but may be Sequence
itself. Thus:

| ?- subseq0([a,b], [a,b]).

yes
| ?- subseq0([a,b], [a]).

yes

Also,
| ?- setof(X, subseq0([a,b,c],X), Xs).

Xs = [[],[a],[a,b],[a,b,c],[a,c],[b],[b,c],[c]]

| ?- bagof(X, subseq0([a,b,c,d],X), Xs).

Xs = [[a,b,c,d],[b,c,d],[c,d],[d],[],[c],[b,d],
[b],[b,c],[a,c,d],[a,d],[a],[a,c],[a,b,d],[a,b],
[a,b,c]]

Sequence must be a proper list.

542 Quintus Prolog

subseq1(+Sequence, ?SubSequence)
is true when SubSequence is a proper subsequence of Sequence; that is, SubSe-
quence contains at least one element less than Sequence. Sequence must be a
proper list.

| ?- % note that [a,b,c] does NOT appear in Xs:

| setof(X, subseq1([a,b,c],X), Xs).

Xs = [[],[a],[a,b],[a,c],[b],[b,c],[c]]

| ?- % note that [a,b,c,d] does NOT appear in Xs:

| bagof(X, subseq1([a,b,c,d],X), Xs).

Xs = [[b,c,d],[c,d],[d],[],[c],[b,d],[b],[b,c],
[a,c,d],[a,d],[a],[a,c],[a,b,d],[a,b],[a,b,c]]

sumlist(+Numbers, ?Total)
is true when Numbers is a proper list of numbers, and Total is their sum. Note
that a list of arithmetic expressions will not work. If any of the Numbers is a
floating-point number, Total will be a floating-point number; otherwise it will
be an integer.

transpose(?X, ?Y)
is true when X is a list of the form [[X11,. . . ,X1m],. . . ,[Xn1,. . . ,Xnm]] and Y
is its transpose, that is, Y = [[X11,. . . ,Xn1],. . . ,[X1m,. . . ,Xnm]].
To make the transpose/2 invertible, all the sublists of the list being transposed
must be of the same length. If they are not, it will fail.

12.2.6 Lists as Sets

12.2.6.1 Set Processing — library(sets)

The library(sets) package represents sets as lists with no repeated elements. Some of
the predicates provided by this package may return sensible answers if given arguments
that contain repeated elements, but that is a lucky accident. When in doubt, use list_
to_set/2 to convert from a list (with possibly repeated elements) to a set. For a list of
predicates related to set manipulation that are not in the library(sets) package, see
Section 12.2.6.2 [lib-lis-set-pre], page 546. For some applications, ordered sets are more
appropriate; see Section 12.2.7 [lib-lis-ordsets], page 547 for more information.

The predicates defined in library(sets) are described below:

add_element(+Elem, +Set1, -Set2)
is true when Set1 and Set2 are sets represented as unordered lists, and Set2 =
Set1 U {Elem}. add_element/3 may only be used to calculate Set2 given Elem

Chapter 12: Library 543

and Set1. However, it is permissible for Set1 to be a list with a variable at the
end; in this case, add_element/3 will add new elements to the end of Set2.

del_element(+Elem, +Set1, -Set2)
is true when Set1 and Set2 are sets represented as unordered lists, and Set2

= Set1 \ {Elem}. del_element/3 may only be used to calculate Set2 given
Elem and Set1. If Set1 does not contain Elem, Set1 and Set2 will be equal. If
Set1 contains more than one copy of Elem (in which case Set1 is not really a
set representation), only the first copy of Elem will be removed. See delete/3
in library(lists) (Section 12.2.5 [lib-lis-lists], page 533) for a predicate that
removes all copies of a given element. When Set1 and Set2 are identical, there
are infinitely many Elems that would make this predicate true, so we could not
solve for Elem. Therefore, we do not attempt to solve for Elem in any case,
which is why it is a ‘+’ argument.

is_set(+Set)
is true when Set is a proper list that contains no repeated elements (that is, a
proper set). is_set/1 does not check for any particular order. If Set is not a
proper list, is_set/1 fails.

disjoint(+Set1, +Set2)
is true when Set1 and Set2 have no elements in common. disjoint/2 is the
opposite of intersect/2 (below).

select(?Element, ?Set, ?Residue)
is true when Set is a list, Element occurs in Set, and Residue is everything in
Set except Element (the order of elements is preserved). To ensure termination,
either Set or Residue should be proper. select/3 works on lists as well as on
sets.
select/3 is closely related to the predicate select/4 in library(lists) (Sec-
tion 12.2.5 [lib-lis-lists], page 533). Although select/3 is normally used to solve
for Element and Residue, you can read ‘select(X, S, Y, R)’ as dq"replace X
by Y in S giving R", and ‘select(X, S, R)’ can be read as “replace X by
nothing in S giving R”.

544 Quintus Prolog

| ?- select(a, [a,r,a], R).

R = [r,a] ;

R = [a,r] ;

no

| ?- select(a, [a,r,a], e, R).

R = [e,r,a] ;

R = [a,r,e] ;

no

selectchk(+Element, +Set, ?Residue)

is to select/3 what memberchk/2 is to member/2 in library(basics). That
is, it locates the first occurrence of Element in Set and deletes it, returning the
resulting list in Residue. It is steadfast in Residue.

pairfrom(?Set, ?Element1, ?Element2, ?Residue)
is true when Set is a set, Element1 occurs in Set, Element2 occurs in Set after
Element1, and Residue is everything in Set except Element1 and Element2. The
point of pairfrom/4 is to select pairs of elements from a set without selecting
the same pair twice in different orders. To ensure termination, either Set or
Residue should be proper. pairfrom/4 works on lists as well as on sets.

intersect(+Set1, +Set2)
is true when Set1 and Set2 have a member in common. It assumes that both
sets are known, and that you do not need to know which element it is that they
share.

intersect/3
is an obsolete predicate and should not be used in new programs.

subset(+SubSet, +Set)
is true when each member of SubSet occurs in Set. subset/2 can only be used
to test two given sets; it cannot be used to generate subsets.
To gen-
erate subsets, use subseq0/[2,3] or subseq1/[2,3] from library(lists)
(Section 12.2.5 [lib-lis-lists], page 533); they will generate each subset (or each
proper subset) (and, for the three-argument versions, its complement) precisely
once, but cannot be used for testing whether a given set is a subset of another.
Note that they generate sub-sequences; to really generate sub-sets they would
have to enumerate all the permutations of each subsequence, which would be
quite costly.

seteq(+Set1, +Set2)
is true when Set1 is a subset of Set2, and vice-versa. Since set representations
should not contain duplicates, we could check whether one is a permutation of

Chapter 12: Library 545

the other. The method used by seteq/2 works even if Set1 and Set2 do contain
duplicates.

list_to_set(+List, ?Set)
is true when List and Set are lists, and Set contains the same elements as List
in the same order, except that Set contains no duplicates. List and Set are thus
equal when considered as sets. list_to_ord_set/2 is faster at converting a
list to a set, but the method used by list_to_set/2 preserves as much of the
original ordering as possible.

intersection(+Set1, +Set2, ?Intersection)
is true when Intersection is the intersection of Set1 and Set2, taken in a par-
ticular order. In fact it is precisely the elements of Set1 taken in their original
order, with elements not in Set2 deleted. If Set1 contains duplicates, so may
Intersection.

intersection(+Sets, ?Intersection)
is true when Sets is a proper list of sets, and Intersection is the intersection of
all the sets in Sets. In fact, Intersection is precisely the elements of the head
of Sets, with elements that do not occur in all of the other sets dropped. Sets
must not be empty.

subtract(+Set1, +Set2, ?Difference)
is like intersection/3, but here it is the elements of Set1 that are in Set2 that
are deleted.

symdiff(+Set1, +Set2, ?Diff)
is true when Diff is the symmetric difference of Set1 and Set2; that is, if each
element of Diff occurs in one of Set1 and Set2, but not both. The construction
method is such that the answer will contain no duplicates even if Set1 and Set2
do.

setproduct(+Set1, +Set2, ?CartesianProduct)
is true when Set1 is a set (list) and Set2 is a set (list) and CartesianProduct is
a set of Elt1-Elt2 pairs, with a pair for each element Elt1 of Set1 and Elt2 of
Set2. For example,

| ?- setproduct([b,a], [1,2], Product).

Product = [[b-1],[b-2],[a-1],[a-2]]

union(+Set1, +Set2, ?Union)
is true when Union is the elements of Set1 that do not occur in Set2, followed
by all the elements of Set2, that is, when the following are true:

subtract(Set1, Set2, Diff)
append(Diff, Set2, Union.

union(+Sets, ?Union)
is true when Sets is a list of sets and Union is the union of all the sets in Sets.
Sets must be a proper list, but it may be empty.

union(+Set1, +Set2, ?Union, ?Difference)
added to keep ‘sets.pl’ and ‘ordsets.pl’ parallel. This predicate is true when
the following are true:

546 Quintus Prolog

union(Set1, Set2, Union),
subtract(Set1, Set2, Difference).

power_set(?Set, ?PowerSet)
is true when Set is a list and PowerSet is a list of all the subsets of Set. The
elements of PowerSet are ordered so that if A and B are subsets of Set and B
is a subset of A (for example, Set=[1,2,3], A=[1,3], B=[3]) then A will appear
before B in PowerSet. Note that length(PowerSet) = 2^length(Set), so this
is only useful for a small Set.

| ?- power_set([a,b], X).

X = [[a,b],[a],[b],[]]

12.2.6.2 Predicates Related to Sets

The following predicates are relevant to sets, but are not in library(sets):

length(-List, +Integer)
built-in predicate: do not use this if Set might contain duplicates. See Sec-
tion 8.15 [ref-all], page 295 for more information.

append(+*List1, +*List2, +*List3)
built-in predicate: only use append/3 this way when Set1 and Set2 are known
to be disjoint, and put a comment in your code explaining the hack.

member(?Elem, ?Set)
in library(basics) (Section 12.2.4.2 [lib-lis-basics-member], page 530)

memberchk(?Elem, ?Set)
in library(basics) (Section 12.2.4.3 [lib-lis-basics-memberchk], page 532)

subseq0(+Set, ?SubSet)
in library(lists) (Section 12.2.5 [lib-lis-lists], page 533): you can only use
subseq0/2 to generate subsets of a given Set, not to test whether a given
SubSet is a subset of a given Set, because subseq0/2 preserves the order of
the elements, which is irrelevant to sets. However, you can use it to generate
subsets of an ordered set, as the order of the elements does matter there.

subseq1(+Set, ?ProperSubSet)
in library(lists) (Section 12.2.5 [lib-lis-lists], page 533): you can only use
subseq1/2 to generate proper subsets of a given Set, not to test whether a
given SubSet is a proper subset of a given Set, because subseq1/2 preserves
the order of the elements, which is irrelevant to sets. However, you can use it
to generate proper subsets of an ordered set, as the order of the elements does
matter there.

Chapter 12: Library 547

12.2.7 Lists as Ordered Sets — library(ordsets)

In this group of predicates, sets are represented by ordered lists with no duplicates. Thus
{c,r,a,f,t} would be [a,c,f,r,t]. The ordering is defined by the @< family of term com-
parison predicates, and is the ordering used by the built-in predicates sort/2 and setof/3.
Note that sort/2 and setof/3 produce ordered sets as their results. See Section 8.15
[ref-all], page 295 for more information.

The benefit of the ordered representation is that the elementary set operations can be done
in time proportional to the sum of the argument sizes rather than their product.

A number of predicates described elsewhere can be used on unordered sets. Examples are
length/2 (built-in; see Section 8.9 [ref-lte], page 238), member/2 (from library(basics);
see Section 12.2.4.2 [lib-lis-basics-member], page 530), subseq1/2 (from library(lists);
see Section 12.2.5 [lib-lis-lists], page 533), select/3 (from library(sets); see Sec-
tion 12.2.6.1 [lib-lis-set-sets], page 542), and sublist/3 (from library(maplist); see Sec-
tion 12.13 [lib-abs], page 641).

is_ordset(+List)
is true when List is a proper list of terms [T1,T2, . . . ,Tn] and the terms are
strictly increasing: T1 @< T2 @< ... @< Tn. The output of sort/2 and setof/3
always satisfies this test. Anything that satisfies this test can be given to the
predicates in library(ordsets), regardless of how it was generated.

list_to_ord_set(+List, ?Set)
is true when Set is the ordered representation of the set designated by the un-
ordered representation List. (This is in fact no more than an alias for sort/2.)

ord_add_element(+Set1, +Element, ?Set2)
calculates Set2 = Set1 U {Element}. It only works this way around. ord_
add_element/3 is the ordered equivalent of add_element/3 (Section 12.2.6.1
[lib-lis-set-sets], page 542).

ord_del_element(+Set1, +Element, ?Set2)
calculates Set2 = Set1 \ {Element}. It only works this way around. ord_
del_element/3 is the ordered equivalent of del_element/3 (Section 12.2.6.1
[lib-lis-set-sets], page 542).

ord_disjoint(+Set1, +Set2)
is true when Set1 and Set2 have no element in common. It is not defined for
unsorted lists.

ord_intersect(+Set1, +Set2)
is true when Set1 and Set2 have at least one element in common. Note that
the test is == rather than = .

ord_intersect(+Set1, +Set2, ?Intersection)
is an obsolete synonym for ord_intersection/3. It should not be used in new
programs.

548 Quintus Prolog

ord_intersection(+Set1, +Set2, ?Intersection)
is true when Intersection is the ordered representation of the intersection of
Set1 and Set2, provided that Set1 and Set2 are ordered sets.

ord_intersection(+Sets, ?Intersection)
is true when Intersection is the ordered representation of the intersection of all
the sets in Sets (which must be a non-empty proper list of ordered sets).

ord_seteq(+Set1, +Set2)
is true when Set1 and Set2 represent the same set. Since they are assumed to
be ordered representations, Set1 and Set2 must be identical.

ord_setproduct(+Set1, +Set2, ?Product)
is true when Product is a sorted list of Elt1-Elt2 pairs, with a pair for each
element Elt1 of Set1 and each element Elt2 of Set2. Set1 and Set2 are assumed
to be ordered; if they are not, the result may not be.

| ?- list_to_ord_set([t,o,y], Set1),

| list_to_ord_set([d,o,g], Set2),

| ord_setproduct(Set1, Set2, Product).

Set1 = [o,t,y],
Set2 = [d,g,o],
Product = [o-d,o-g,o-o,t-d,t-g,t-o,y-d,y-g,y-o]

| ?- % but with unordered arguments:

| ord_setproduct([t,o,y], [d,o,g], Product).

Product = [t-d,t-o,t-g,o-d,o-o,o-g,y-d,y-o,y-g]

ord_subset(+Set1, +Set2)
is true when every element of the ordered set Set1 appears in the ordered
set Set2. To generate subsets, use a member of the subseq0/2 family from
library(lists) (Section 12.2.5 [lib-lis-lists], page 533).

ord_subtract(+Set1, +Set2, ?Difference)
is true when Difference contains all and only the elements of Set1 that are not
also in Set2.

ord_symdiff(+Set1, +Set2, ?Difference)
is true when Difference is the symmetric difference of Set1 and Set2.

ord_union(+Set1, +Set2, ?Union)
is true when Union is the union of Set1 and Set2. Note that when an element
occurs in both Set1 and Set2, only one copy is retained.

ord_union(+Sets, ?Union)
is true when Union is the ordered representation of the union of all the sets in
Sets (which must be a proper list of ordered sets). This is quite efficient. In
fact ord_union/2 can be seen as a generalization of sort/2.

ord_union(+OldSet, +NewSet, ?Union, ?ReallyNew)
is true when Union is NewSet U OldSet, and ReallyNew is NewSet \ OldSet.
This is useful when you have an iterative problem, and you’re adding some

Chapter 12: Library 549

possibly new elements (NewSet) to a set (OldSet), and as well as getting the
updated set (Union) you would like to know which if any of the “new” elements
didn’t already occur in the set (ReallyNew).

If operations on ordered sets or ordered lists are useful to you, you may also find
library(ordered) (Section 12.13 [lib-abs], page 641) or library(ordprefix) (Sec-
tion 12.13 [lib-abs], page 641) of interest.

12.2.8 Parts of lists — library(listparts)

library(listparts) exists to establish a common vocabulary for names of parts of lists
among Prolog programmers. You will seldom have occasion to use head/2 or tail/2 in
your programs — pattern matching is clearer and faster — but you will often use these
words when talking about your programs. The predicates provided are

cons(?Head, ?Tail, ?List)
Head is the head of List and Tail is its tail; i.e. append([Head, Tail, List)]. No
restrictions.

last(?Fore, ?Last, ?List)
Last is the last element of List and Fore is the list of preceding elements, e.g.
append(Fore, [Last, List)]. Fore or Last should be proper. It is expected that
List will be proper and Fore unbound, but it will work in reverse too.

The remaining predicates are binary, and part(Whole, Part) is to be read as “Part is
the/a part of Whole”. When both part/2 and proper_part/2 exist, proper parts are
strictly smaller than Whole, whereas Whole may be a part of itself. N is the length of
the whole argument, assumed to be a proper list. This order is strictly in accord with the
fundamental principle of argument ordering in Prolog: INPUTS BEFORE OUTPUTS.

head(List, Head)
List is a non-empty list and Head is its head. A list has only one head. No
restrictions.

tail(List, Tail)
List is a non-empty list and Tail is its tail. A list has only one tail. No
restrictions.

prefix(List, Prefix)
List and Prefix are lists and Prefix is a proper prefix of List.

proper_prefix(List, Prefix)
List and Prefix are lists and Prefix is a proper prefix of List. That is, Prefix is
a prefix of List but is not List itself. It terminates if either argument is proper,
and has at most N solutions. Prefixes are enumerated in ascending order of
length.

550 Quintus Prolog

suffix(List, Suffix)
List and Suffix are lists and Suffix is a suffix of List. It terminates only if List is
proper, and has at most N+1 solutions. Suffixes are enumerated in descending
order of length.

proper_suffix(List, Suffix)
List and Suffix are lists and Suffix is a proper suffix of List. That is, Suffix
is a suffix of List. It terminates only if List is proper, and has at most N+1
solutions. Suffixes are enumerated in descending order of length.

segment(List, Segment)
List and Segment are lists and Segment is a sublist of List.

proper_segment(List, Segment)
List and Segment are lists and Segment is a proper sublist of List.

sublist/2
same as segment/2

proper_sublist/2
same as proper_segment/2

12.3 Term Manipulation

12.3.1 Introduction

There are two ways of looking at Prolog data structures. One is the proper “object-level”
logical way, in which you think of arguments as values. The other is the “meta-logical” way,
in which you see them not as lists or trees (or whatever your object-level data types are),
but as “terms”.

Prolog has the following built-in operations that operate on terms as such:

functor(+Term, -Name, -Arity)
is true when Term is a term, and the principal function symbol of Term is Name,
and the arity (number of arguments) of Term is Arity. Alternatively, you may
think of this as being true when Term is a term and the principal functor of
Term is Name/Arity. All constants, including numbers, are their own principal
function symbols, so functor(1.3, 1.3, 0) is true. This may be used to find
the functor of a given term, or to construct a term having a given functor.

arg(+Argnum, +Term, -Arg)
is true when Term is a non-variable, Argnum is a positive integer, and Arg is
the Argnumth argument of Term. Argument numbering starts at 1. This can
only be used to find Arg; Argnum and Term must be given.

+-Term =.. +-List
is true when Term is a term, List is its principal function symbol and the list
of the remaining arguments. Use of =../2 can nearly always be avoided, and

Chapter 12: Library 551

should be whenever possible, as it is very slow and uses memory unnecessarily
(see Section 2.5.7 [bas-eff-bdm], page 47).

copy_term(+Term, -Copy)
unifies Copy with an alphabetic variant of Term that contains all new variables
(see Section 12.3.8 [lib-tma-subsumes], page 562). That is, copy_term/2 makes
a copy of Term by replacing each distinct variable in Term by a new variable
that occurs nowhere else in the system, and unifies Copy with the result.

compare(-Order, +Term1, +Term2)
compares Term1 and Term2 with respect to Order, which may be one of <, >,
or =. If Order is =, the comparison is actually done with respect to the ==/2
operator on terms.

The system also includes the term comparison predicates ==/2, \==/2, @</2, @>/2, @>/2,
@=</2. See Section 8.9 [ref-lte], page 238 for more details.

12.3.2 The Six Term Manipulation Packages

There are currently six library packages that extend Prolog’s built-in set of operations on
terms. They are

library(arg)
some generalizations of arg/3

library(changearg)
some operations for building new terms

library(occurs)
testing whether a given term does or does not contain another term or variable

library(samefunctor)
some generalizations of functor/3

library(subsumes)
testing whether one term subsumes another

library(unify)
sound unification

12.3.3 Finding a Term’s Arguments — library(arg)

library(arg) defines seven predicates, all of which are generalizations of the built-in pred-
icate arg/3.

arg(+ArgNum, +Term, -Arg)
unifies Arg with the ArgNumth argument of Term. Term must not be a variable,
but any other kind of term is acceptable. Even a number is acceptable as Term;

552 Quintus Prolog

numbers are simply terms that happen to have no arguments. ArgNum must be
instantiated to an integer. If ArgNum is less than 1 or greater than the number
of arguments of Term, arg/3 signals an error. Basically, arg/3 pretends to be
the infinite table

arg(1, a(X), X).
arg(1, a(X,_), X).
arg(2, a(_,X), X).
...
arg(5, zebra_finch(_,_,_,_,X,_,_,_), X).
...

except that it can only be used to find the Arg for a given Index and Term,
and cannot find the Index. arg/3 is a built-in predicate, and is described in
the reference pages, not actually defined in library(arg).

arg0(+Index, +Term, ?Arg)
unifies Arg with the Indexth argument of Term if Index > 0, or with the prin-
cipal function symbol of Term if Index = 0. This predicate is supplied because
some other Prolog implementations have made arg/3 do this, and this makes
it easier to convert code originally written for those systems. The one reason
you might use arg0/3 is that it reports errors, while arg/3, for backwards
compatibility with DEC-10 Prolog, does not. Examples:

| ?- arg0(2, f(o,x,y), X).

X = x

| ?- arg0(0, f(o,x,y), X).

X = f

| ?- arg0(N, f(o,x,y), X).

! Instantiation error in argument 1 of arg0/3
! goal: arg0(_732,f(o,x,y),_767)

| ?- arg0(y, f(o,x,y), N).

! Type error in argument 1 of arg0/3
! integer expected, but y found
! goal: arg0(y,f(o,x,y),_764)

genarg(?Index, +Term, ?Arg)
is a version of arg/3 that is able to solve for Index as well as for Arg.

Chapter 12: Library 553

| ?- arg(N, f(a,b), X).

no

| ?- genarg(N, f(a,b), X).

N = 2,
X = b ;

N = 1,
X = a ;

no

| ?- genarg(N, f(1,b,2), X), atom(X).

N = 2,
X = b ;

no

| ?- genarg(3, f(1,b,2), X).

X = 2

If Index is instantiated, genarg/3 generates the same result as arg/3. If Index
is uninstantiated, genarg/3 picks out each argument in turn. The order in
which the arguments are tried is not defined; the current implementation works
from right to left, but this order should not be relied upon.

genarg0(?Index, +Term, ?Arg)
is a version of arg0/3 that is able to solve for Index as well as Arg.

args(?Index, +Terms, ?Args)
is true when Terms and Args are lists of the same length, each element of Terms
is instantiated to a term having at least Index arguments, and arg(Index,
Term, Arg) is true for each pair <Term, Arg> of corresponding elements of
<Terms, Args>. Index is strictly positive, and only arguments are found, not
principal function symbols. This is a generalization of genarg/3. For example,

| ?- args(1, [a+b,c-d,e*f,g/h], X).

X = [a,c,e,g]

| ?- args(2, [a+A,c-B,e*C,g/D], [b,d,f,h]).

A = b,
B = d,
C = f,
D = h

554 Quintus Prolog

| ?- args(I, [1-a,2-b,3-c,4-d], X).

I = 2,
X = [a,b,c,d] ;

I = 1,
X = [1,2,3,4]

args0(?Index, +Terms, ?Args)
is like args/3 except that Index = 0 selects the principal function symbol.

| ?- args0(0, [a+b,c-d,e*f,g/h,27], X).

X = [+,-,*,/,27]

| ?- args0(I, [1-a,2-b,3-c,4-d], X).

I = 2,
X = [a,b,c,d] ;

I = 1,
X = [1,2,3,4] ;

I = 0,
X = [-,-,-,-]

This is a generalization of genarg0/3.

project(+Terms, ?Index, ?Args)
is identical to args0/3 except for the argument order. The argument order of
project/3 is not consistent with anything else in the library. This predicate is
retained for backwards compatibility. Use args0/3 instead in new programs.

path_arg(?Path, +Term, ?SubTerm)
unifies SubTerm with the subterm of Term found by following Path, where Path
is a sequence of positive integers. For example, the goal

path_arg([I,J], MyTerm, MySubTerm)

unifies MySubTerm with the J’th argument of the I’th argument of MyTerm. In
general, Term should be ground. path_arg/3 may be regarded as a generaliza-
tion of genarg/3. It can be used to find the SubTerm and a known Path, or to
find a Path to a known SubTerm. It could have been defined as

path_arg([], Term, Term).
path_arg([Index|Indices], Term, SubTerm) :-

genarg(Index, Term, Arg),
path_arg(Indices, Arg, SubTerm).

The actual library program is rather more complicated because it contains
error-reporting code. Examples of its use include:

Chapter 12: Library 555

/* Here is a sample table of all the subterms of
/* the quadratic formula "(a*x^2) + (b*x) + c = 0"
/*
[] a*x^2+b*x+c=0
[1] a*x^2+b*x+c
[1,1] a*x^2+b*x
[1,1,1] a*x^2
[1,1,1,1] a
[1,1,1,2] x^2
[1,1,1,2,1] x
[1,1,1,2,2] 2
[1,1,2] b*x
[1,1,2,1] b
[1,1,2,2] x
[1,2] c
[2] 0
*/

| ?- path_arg([1,1,2,2], a*x^2+b*x+c=0, X).

X = x ^

| ?- path_arg([1,1,1,2,2], a*x^2+b*x+c=0, X).

X = 2 ^

| ?- path_arg(Path, a*x^2+b*x+c=0, b).

Path = [1,1,2,1] ^

This notation for locating subtrees of a tree is widely used throughout computer
science.

Note that except for project/3, which is included only in the interests of backwards com-
patibility, all of these predicates have the same pattern of arguments:

• first Index (or its equivalent, Path)
• then Term (or Terms)
• and finally Arg (or Args)

For consistency, we recommend that you use this argument order for “selector” predicates
generally: first the argument or arguments that constitute the selector or index, then the
thing or things that are being selected from, and finally the result or results.

556 Quintus Prolog

12.3.4 Altering Term Arguments — library(changearg)

The predicates in library(changearg) allow you to construct a new term that is identical
to an old term except that one of its elements has been replaced or two of its elements have
been swapped. Using these operations, you could use terms as one-dimensional arrays; how-
ever, though the elements of such arrays can be accessed in O(1) time using arg/3, changing
an element takes O(N) time, where N is the arity of the term. See library(logarr) for a
more efficient way of implementing arrays in Prolog.

Why then are these operations provided? To aid in the construction of term-rewriting
systems. For example, suppose you have a set of rewrite rules expressed as a table

rewrite_rule(X*0, 0).
rewrite_rule(X*1, X).
rewrite_rule(K*X, X*K) :- integer(K).
rewrite_rule(X*(Y*Z), (X*Y)*Z).

.

.

.

which you want exhaustively applied to a term. You could write

waterfall(Expr, Final) :-
path_arg(Path, Expr, Lhs),
rewrite_rule(Lhs, Rhs),
change_path_arg(Path, Expr, Modified, Rhs),
!,
waterfall(Modified, Final).

waterfall(Expr, Expr).

Then

| ?- waterfall((a*b)*(c*0)*d, X).

X = 0

| ?- waterfall((1*a)*(2*b), X).

X = a*2*b

The predicates supplied by library(changearg) are as follows:

change_arg(+Index, ?OldTerm, ?OldArg, ?NewTerm, ?NewArg)
is true when OldTerm and NewTerm are identical except that the Indexth
argument of OldTerm is OldArg and the Indexth argument of NewTerm is
NewArg. Either OldTerm or NewTerm should be supplied; the other term can
then be found. change_arg/5 is actually quite symmetric:

Chapter 12: Library 557

change_arg(K, O, X, N, Y)

and
change_arg(K, N, Y, O, X)

have exactly the same effect. For example:
| ?- change_arg(1, c(o,l,t), X, N, u).

X = o,
N = c(u,l,t)

| ?- change_arg(1, N, u, c(o,l,t), X).

N = c(u,l,t),
X = o

| ?- change_arg(3, SALE, E, s(a,l,t), T).

SALE = s(a,l,E),
E = _755,
T = t

| ?- change_arg(3, a+b, b, X, c).

no

change_arg(+Index, ?OldTerm, ?NewTerm, ?NewArg)
is identical to change_arg/5 except that the OldArg argument is omitted.
Please note: this argument order may be surprising if you think about this
predicate on its own; however, it makes sense in the context of the entire group.

change_arg0/[4,5]
like change_arg/[4,5] except that Index=0 is allowed, in which case the prin-
cipal function symbol is changed. Do not use this in new programs; use change_
arg/5 or change_functor/5 directly. The order in which values for Index are
enumerated is not defined.

change_functor(?OldTerm, ?OldSymbol, ?NewTerm, ?NewSymbol, ?Arity)
is true when OldTerm and NewTerm are identical terms, except that the functor
of OldTerm is OldSymbol/Arity, and the functor of NewTerm is NewSymbol
/Arity. This is similar to same_functor/3 in some respects (Section 12.3.7
[lib-tma-samefunctor], page 561), such as the fact that any of the arguments
can be solved for. If OldTerm and NewSymbol are instantiated, or NewTerm
and OldSymbol are instantiated, or NewSymbol, OldSymbol, and Arity are
instantiated, that is enough information to proceed. Note that OldSymbol or
NewSymbol may be a number, in which case Arity must be 0.

swap_args(+Index1, +Index2, ?OldTerm, ?Arg1, ?NewTerm, ?Arg2)
is true when OldTerm and NewTerm are identical except that

at Index1 at Index2
in OldTerm Arg1 Arg2

558 Quintus Prolog

in NewTerm Arg2 Arg1

that is, the arguments at Index1 and Index2 have been swapped. As with
change_arg/5, swap_args/6 is symmetric; the following terms have exactly
the same effect.

swap_args(I, J, O, X, N, Y)

swap_args(I, J, N, Y, O, X)

For example:
| ?- swap_args(1, 4, f(X,e,a,Y,e,r), r, T, d).

X = r,
Y = d,
T = f(d,e,a,r,e,r)

swap_args(+Index1, +Index2, ?OldTerm, ?NewTerm)
is identical to swap_args/6 except that the Arg1 and Arg2 arguments are
omitted.

| ?- swap_args(1, 4, f(r,e,a,d), X).

X = f(d,e,a,r)

change_path_arg(+Path, ?OldTerm, ?OldSub, ?NewTerm, ?NewSub)
is true when OldTerm and NewTerm are identical terms except that

path_arg(Path, OldTerm, OldSub),
path_arg(Path, NewTerm, NewSub)

That is, the subterm of OldTerm at Path was OldSub and is replaced by New-
Sub in NewTerm, and there are no other differences between OldTerm and
NewTerm. This is to change_arg/5 as path_arg/3 is to arg/3.

change_path_arg(+Path, ?OldTerm, ?NewTerm, ?NewSub)
is identical to change_path_arg/5 except that the OldSub argument is omitted.

| ?- OldTerm = this*is+an*example,
| path_arg(Path, OldTerm, this),

| change_path_arg(Path, OldTerm, NewTerm, it).

OldTerm = this*is+an*example,
Path = [1,1],
NewTerm = it*is+an*example

12.3.5 Checking Terms for Subterms — library(occurs)

The predicates in library(occurs) test whether a given term is a subterm of another or
not. We define a subterm thus:

• T is a subterm of T

• S is a subterm of T if A is an argument of T and S is a subterm of A

Chapter 12: Library 559

A proper subterm of a term T would be any subterm of T other than T itself. There are no
library predicates concerned with the “proper subterm” relationship, only the “subterm”
relationship.

There are two questions we might ask:

• does S unify with (is it ‘=’ to) some subterm of T? The predicates that ask this question
have ‘_term’ in their names.

• is S identical to (is it ‘==’ to) some subterm of T? The predicates that ask this question
have ‘_var’ in their names.

When the predicates are applied to ground terms, both questions have the same answers.

Seven predicates are defined by library(occurs):

contains_term(+SubTerm, +Term)
is true when Term contains a subterm that unifies with (‘=’) SubTerm.

contains_var(+SubTerm, +Term)
is true when Term contains a subterm that is identical to (‘==’) SubTerm. The
reason for the name is that this predicate is normally used to check whether
Term contains a particular variable SubTerm. But contains_var/2 makes
sense even when SubTerm is not a variable. In fact, if Term and SubTerm are
both ground, contains_term/2 and contains_var/2 are the same test.

free_of_term(+SubTerm, +Term)
is true when Term does not contain a subterm that unifies with (‘=’) SubTerm.

free_of_var(+SubTerm, +Term)
is true when Term does not contain a subterm that is identical to (‘==’) Sub-
Term. This is the “occur check”, which is needed for sound unification: a
variable X should unify with a non-variable term T only if free_of_var(X, T

). See library(unify) (Section 12.3.9 [lib-tma-unify], page 562) for an exam-
ple of the use of this predicate.

occurrences_of_term(+SubTerm, +Term, ?Tally)
unifies Tally with the number of subterms of Term that unify with (‘=’) Sub-
Term.

occurrences_of_var(+SubTerm, +Term, ?Tally)
unifies Tally with the number of subterms of Term that are identical to (‘==’)
SubTerm.

sub_term(-SubTerm, +Term)
enumerates the SubTerms of Term. The order in that the subterms are enu-
merated is not fully defined, though each subterm will be reported before any
of its own subterms. Be careful: terms tend to have lots of subterms.

560 Quintus Prolog

| ?- sub_term(X, (a+b)*(c+d)), tab(8),

write(X), nl, fail.

(a+b)*(c+d)
c+d
d
c
a+b
b
a

no

The order in which these terms are generated is subject to change, and should
not be relied upon.

12.3.6 Note on Argument Order

All the predicates in library(occurs) have the same argument pattern:

{prefix}_{term|var}(SubTerm, Term[, Extra])

where Extra includes any other arguments. Why does the SubTerm argument appear first?
The answer involves library(call) and library(maplist). Here are some of the things
you can do with the arguments this way around:

terms_containing_term(SubTerm, Terms, Selected) :-
include(contains_term(SubTerm), Terms, Selected).

% if member(Term, Terms), then Term will be included in
% Selected iff contains_term(SubTerm, Term) succeeds.

terms_free_of_var(SubTerm, Terms, Selected) :-
exclude(contains_var(SubTerm), Terms, Selected).

% if member(Term, Terms), then Term will be included in
% Selected iff contains_var(SubTerm, Term) fails.

tallies_of_term(SubTerm, Terms, Tallies) :-
maplist(occurrences_of_term(SubTerm), Terms, Tallies).

% if nth1(N, Terms, Term), then nth1(N, Tally, Tallies)
% where occurrences_of_term(SubTerm, Term, Tally).

The same argument order is used for sub_term/2 even though it is not used in this way, in
order to preserve consistency.

Chapter 12: Library 561

12.3.7 Checking Functors — library(samefunctor)

This library package is supplied to solve the following problem: often you could write code
that works more than one way around except that this requires calling functor/3 twice,
and one of the calls must therefore precede the other. For example,

reverse_terms(Term1, Term2) :-
functor(Term1, F, N), % ***
functor(Term2, F, N), % ***
reverse_terms(N, 1, Term1, Term2).

reverse_terms(0, _, _, _) :- !.
reverse_terms(Z, A, Term1, Term2) :-

arg(Z, Term1, Arg),
arg(A, Term2, Arg),
Y is Z-1, B is A+1,
reverse_terms(Y, B, Term1, Term2).

As written, this can only be used to find Term2 given Term1. If you swapped the two
*** lines, you could find Term1 given Term2, but then could not find Term2 given Term1.
You can make a bidirectional version of reverse_terms/2 by using the predicate same_
functor/3 in place of the *** lines:

reverse_terms(Term1, Term2) :-
same_functor(Term1, Term2, N), % ***
reverse_terms(N, 1, Term1, Term2).

library(samefunctor) defines the following predicates:

same_functor(?Term1, ?Term2, ?Symbol, ?Arity)
is true when Term1 and Term2 have the same principal functor, the function
symbol being Symbol and the arity being Arity. In other words,

same_functor(T1, T2, F, N) if
functor(T1, F, N) and
functor(T2, F, N) are both true.

Either Term1, or Term2, or both Symbol and Arity should be instantiated. This
is the most general variant.

same_functor(?Term1, ?Term2, ?Arity)
is true when Term1 and Term2 have the same principal functor, and Arity is
their common arity. Either Term1 or Term2 should be instantiated, and the
other arguments can then be found. Often, same_functor/3 is appropriate and
the greater generality of same_functor/4 is not needed.

same_functor(?Term1, ?Term2)
is true when Term1 and Term2 have the same principal functor. Either Term1
or Term2 should be instantiated, and the other argument can then be found.

562 Quintus Prolog

Note that same_functor/4 has the same argument order as functor/3 except that it has
two “term” arguments at the front. Whenever a predicate’s arguments include a functor
specification expressed as two arguments, the function symbol and its arity, those two argu-
ments should always be adjacent, with the function symbol first and the arity immediately
following. functor/3 and same_functor/4 obey this rule.

12.3.8 Term Subsumption — library(subsumes)

Term subsumption is a sort of one-way unification. Recall that terms S and T unify if they
have a common instance, and that unification in Prolog instantiates both terms to that
common instance. S subsumes T if T is already an instance of S. For our purposes, T is an
instance of S if there is a substitution that leaves T unchanged and makes S identical to T.

Two terms are alphabetic variants if they are identical except for variable names, and all
common variables appear in corresponding positions. For example,

f(X,Y,X) and f(X,Z,X) are alphabetic variants;
f(X,Y,X) and f(Y,X,Y) are not;
f(X,Y,X) and f(X,Y,Y) are not;
f(X,Y,X) and f(Z,V,Z) are

This file used to define subsumes_chk/2, but this is now a built-in predicate:

subsumes_chk(+General, +Specific)
is true when General subsumes Specific; that is, when Specific is already an
instance of General. It does not bind any variables in General or in Specific.

There are currently two predicates in this file:

subsumes(?General, +Specific)
is true when General subsumes Specific, and instantiates General so that it
becomes identical to Specific. It does not further instantiate Specific.

variant(?Term1, ?Term2)
is true when Term1 and Term2 are alphabetic variants. That is,
variant(Term1, Term2) holds precisely when subsumes_chk(Term1, Term2)
and subsumes_chk(Term2, Term1) both hold.

12.3.9 Unification — library(unify)

This file defines only one predicate.

Chapter 12: Library 563

unify(?Term1, ?Term2)
is true when Term1 unifies with Term2. The only difference between this pred-
icate and the built-in predicate Term1 = Term2 is that unify/2 applies the “oc-
cur check” and the built-in predicate =/2 does not. This means that according
to ordinary logic, a variable X should not unify with a term containing X.
unify/2 does this correctly and =/2 does not. Thus

| ?- unify(X, [X]).

no

| ?- X = [X].

X = [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[...

Whenever unify(X, Y) succeeds, X = Y would have succeeded and made the
same variable bindings.

12.3.10 library(termdepth)

Many resolution-based theorem provers impose a depth bound on the terms they create.
Not the least of the reasons for this is to prevent infinite loops. library(termdepth)
provides five predicates:

term_depth(+Term, -Depth)
Depth is unified with the depth of Term, calculated according to the following
definition:

term_depth(Var) = 0
term_depth(Const) = 0
term_depth(F(T1,...,Tn)) =

1 + max(term_depth(T1), ..., term_depth(Tn))

depth_bound(+Term, +Bound)
This succeeds when the depth of Term, as calculated by term_depth/2, is less
than or equal to Bound. Bound is assumed to be a strictly positive integer.
Note that depth_bound/2 will terminate even if Term is cyclic.

term_size(+Term, -Size)
Unify Size with the size of Term, where the size is the number of constants
and function symbols in the term. (Note that this is a lower bound on the size
of any term instantiated from Term, and that instantiating any variable to a
non-variable must increase the size. This latter property is why variables are
counted as 0 rather than as 1.) The definition is

term_size(Var) = 0
term_size(Const) = 1
term_size(F(T1,...,Tn)) =

1 + term_size(T1) + ... + term_size(Tn).

564 Quintus Prolog

size_bound(+Term, +Bound)
This succeeds when the size of Term, as calculated by term_size/2, is less than
or equal to Bound. Bound is assumed to be a non-negative integer. Note that
size_bound/2 will always terminate even if Term is cyclic.

length_bound(+List, +Bound)
is true when List is a list having at most Bound elements. Bound must be
instantiated. If List ends with a variable, it will be instantiated to successively
longer proper lists, up to the length permitted by Bound. Note that the depth
of a list of constants is its length.

12.4 Text Processing

12.4.1 Introduction — library(strings)

Quintus Prolog has two data types that can be used to represent sequences of characters.
For each sequence of up to N characters for some implementation-defined limit (N is 65532
in Quintus Prolog) there is exactly one atom with that character sequence as its name.
Further, each atom has exactly one name.

Atoms provide a convenient and storage-efficient way of handling modest amounts of charac-
ter data. Two atoms can be compared for identity very quickly using the built-in predicate
==/2.

The second data type is chars. A convention in Prolog is that a list of values all of which
belong to the data type thing is said to be of type things. A further convention is that
integers representing character codes (the range is 1..255) are said to be of type char. So a
chars value is a (possibly empty) list of character codes. A list can be of any length. Two
lists can be compared for identity in time proportional to their length by using the built-in
predicate ==/2.

In the text that follows, the term text object can generally be taken to refer to an atom.

This section describes how to use the predicates defined in library(strings). If you plan
to do extensive text processing, you should consider using lists of character codes rather
than atoms, because you will then be able to use an exceptionally powerful pattern-matching
language for recognizing patterns and also for constructing new chars. See Section 8.16 [ref-
gru], page 298 for more about this facility. It is highly recommended that you use grammar
rules freely for list and text processing, and that you always consider whether grammar
rules can be used clearly to accomplished a desired text processing effect before using the
operations in library(strings).

Chapter 12: Library 565

12.4.1.1 Access to operating system — system/1

system(ListOfTextObjects)
is a version of unix(shell(_)) that builds the command up out of pieces
without the cost of interning a new atom, which may never be used again. It
does whatever the C function system(3) does.

12.4.2 Type Testing

name(+Constant)
is true when Constant is a text object. Same as atom/1.

Note particularly:

| ?- name("chars").

no

| ?- name("").

yes

| ?- atom("").

yes

12.4.3 Converting Between Constants and Characters

Quintus Prolog currently supports the following kinds of constants:

• atoms
• integers
• floating-point numbers

The data type “list of character codes” is called chars. You can convert between atoms,
numbers, and chars using the following predicates:

• name(+Constant, -Chars)

• atom_chars(?Atom, ?Chars)

• number_chars(?Number, ?Chars)

• char_atom(?Char, ?Atom)

name/2 is retained for compatibility with DEC-10 Prolog, C-Prolog, and earlier releases of
Quintus Prolog. All the other predicates have names that follow a rule, which you would
do well to follow in your own code.

566 Quintus Prolog

Suppose you have two data types foo and baz, and a predicate that converts from one type
to another. If each value of type foo corresponds to exactly one value of type baz, and if
each value of type baz corresponds to at most one value of type foo, the predicate should
be called

foo_baz(?The_foo, ?The_baz)

As an example, let foo be the data type “character code” (we call this “char”), and let baz
be the data type “atom”. Given any char C, there is exactly one atom whose name is [C].
Given any atom, either its name contains one single character C, or it contains some other
number of characters, in which case there is no unique character to which it corresponds.
Therefore, a predicate that converts between character codes and single-character atoms
will have the name

char_atom(?Char, ?Atom)

Remember that this pattern means that we can always solve for the second argument given
a value for the first, and that we may be able to solve for the first argument given a value
for the second.

If a foo can be converted to a unique baz, but a baz might correspond to more than one
foo, the predicate is to be called

foo_to_baz(+The_foo, ?The_baz)

The ‘_to_’ tells you that the conversion only works one way around. For example, given
an atom or number, there is a unique list of character codes that can be made from it, but
a given list of character codes such as ‘"0’" could have come from an atom or an integer.
Therefore a predicate that converts between arbitrary constants and character codes should
be called

constant_to_chars(+Constant, ?Chars)

In fact this operation is called name/2, because that is what it was called in DEC-10 Prolog.

All the new data type conversion predicates follow these naming rules. Now let us look at
them.

12.4.3.1 name(?Constant, ?Chars)

If Constant is supplied, it should be an atom or number. Chars is unified with a list of
character codes representing the “name” of the constant. These are precisely the characters
that write/1 would write if asked to write Constant.

If Constant is a variable, Chars should be a proper list of character codes. If Chars looks
like the name of a number, Constant will be unified with that number. The syntax for
numbers that is accepted by name/2 is exactly the one that read/1 accepts. If Chars does
not look like the name of a number, Constant will be unified with an atom.

Chapter 12: Library 567

This attempt to guess what sort of constant you want means that there are atoms that
can be constructed by read/1 and by atom_chars/2, but not by name/2. name/2 is re-
tained for backwards compatibility with DEC-10 Prolog, C-Prolog, and earlier versions of
Quintus Prolog. New programs should use atom_chars/2 or number_chars/2, whichever
is appropriate.

name/2 is a built-in predicate. library(strings) contains a predicate name1/2, which is
identical to name/2 except that it reports errors in the same way as other library predicates.

12.4.3.2 atom_chars(?Atom, ?Chars)

Chars is the list of character codes comprising the printed representation of Atom. Initially,
either Atom must be instantiated to an atom, or Chars must be instantiated to a proper
list of character codes.

If Atom is initially instantiated to an atom, Chars is unified with a list of the character codes
that make up its printed representation. If Atom is uninstantiated and Chars is initially
instantiated to a list of characters, Atom is instantiated to an atom containing exactly those
characters, even if the characters look like the printed representation of a number. If the
arguments to atom_chars/2 are both uninstantiated, an error is signalled.

atom_chars/2 was built into the system in Release 2.0. Before that, it was a library
predicate. library(strings) still contains the old code under the name atom_chars1/2.

12.4.3.3 number_chars(?Number, ?Chars)

Chars is the list of character codes comprising the printed representation of Number. Ini-
tially, either Number must be instantiated to a number, or Chars must be instantiated to
a proper list of character codes.

If Number is initially instantiated to a number, Chars is unified with the list of character
codes that make up its printed representation. If Number is uninstantiated and Chars
is initially instantiated to a list of characters that corresponds to the correct syntax of
a number (either integer or float), Number is bound to that number; otherwise number_
chars/2 will simply fail. If the arguments to number_chars/2 are both uninstantiated, it
signals an error.

number_chars/2 was built into the system in Release 2.0. Before that, it was a library
predicate. library(strings) still contains the old code under the name number_chars1/2.

568 Quintus Prolog

12.4.3.4 char_atom(?Char, ?Atom)

char_atom/2 converts between character codes and atoms. Atom must be an atom or a
variable. Char must be a character code or a variable. Character codes are integers in the
range 1..255.

If either argument is instantiated, but Char is not a valid character code or Atom is not an
atom, char_atom/2 fails silently.

If Char is a valid character code, Atom is unified with the atom whose name is [Char].

If Atom is an atom, and its name contains a single character, Char is unified with the code
of that character.

char_atom(Char, Atom) is true when Char is a character code, Atom is an atom whose
name contains exactly one character, and Code is the code of that character. If Atom’s
name has no characters, or more than one, this predicate is simply false. Error exceptions
and efficiency aside, char_atom/2 could be defined as

char_atom(Char, Atom) :-
atom_chars(Atom, [Char]).

12.4.4 Comparing Text Objects

If you have two atoms, two character codes, or two lists of character codes to compare, the
following built-in predicates can be used:

@</2 lexicographically less than

@>=/2 not less than

@>/2 lexicographically greater than

@=</2 not greater than

==/2 identical to

\==/2 not identical to

compare/3
three-way comparison

For example,

Chapter 12: Library 569

| ?- a @< b.

yes

| ?- a @> b.

no

| ?- compare(R, "fred", "jim").

R = <

| ?- 0’a @< 0’z.

yes

There are several points to note about these built-in comparison predicates:

1. They are sensitive to alphabetic case
2. If the two terms being compared are of different types, it is the types that are compared

(integer < atom < list).
3. They behave as though the two operands were converted to character lists and the

shorter operand were padded on the right with -1’s.

It would be useful to have routines that ignored alphabetic case. to_lower/2 and to_
upper/2 in library(ctypes) (Section 12.4.10 [lib-txp-ctypes], page 588) may be useful in
writing your own.

library(strings) provides two string comparison predicates that address the other two
points.

compare_strings(-Relation, +Text1, +Text2)
takes two text objects and compares them, binding Relation to

< if Text1 lexicographically precedes Text2

= if Text1 and Text2 are identical (but for type)

> if Text1 lexicographically follows Text2

compare_strings(-Relation, +Text1, +Text2, +Pad)
is the same as compare_strings/3, except that it takes an additional param-
eter, which is a character code (an integer). In effect, it pads the shorter of
Text1 or Text2 on the right with the padding character Pad, and calls compare_
strings/3 on the result.

We could have defined compare_strings/[3,4] this way:

570 Quintus Prolog

compare_strings(Relation, Text1, Text2) :-
name(Text1), name(Text1, Name1),
name(Text2), name(Text2, Name2),
compare(Relation, Name1, Name2).

compare_strings(Relation, Text1, Text2, Pad) :-
name(Text1), name(Text1, Name1),
name(Text2), name(Text2, Name2),
pad(Name1, Name2, Pad, Full1, Full2),
compare(Relation, Full1, Full2).

pad(Name1, [], Pad, Name1, Full2) :- !,
pad(Name1, Pad, Full2).

pad([], Name2, Pad, Full1, Name2) :-
pad(Name2, Pad, Full1).

pad([Char1|Name1], [Char2|Name2], Pad,
[Char1|Full1], [Char2|Full2]) :-

pad(Name1, Name2, Pad, Full1, Full2).

pad([], _, []).
pad([_|X], Pad, [Pad|Y]) :-

pad(X, Pad, Y).

The point of compare_strings/4 is that some programming languages define string compar-
ison to use blank padding (Pad=32), while others define it to use NUL padding (Pad=0), and
yet others use lexicographic comparison (Pad= -1) as compare/3 and compare_strings/3
do; compare_strings/4 allows you to specify whichever is most useful for your application.

The host language function used to implement these operations is considerably more general.
You may want to experiment with it.

Here are some examples:

| ?- % illustrating the difference between compare/3

| % and compare_strings/3

| compare(R1, fred, jim),

| compare(R2, "fred", "jim").

R1 = <,
R2 = <

| ?- compare_strings(R1, fred, jim).

R1 = <

Chapter 12: Library 571

| ?- compare_strings(R2, "fred", "jim").
! Type error in argument 2 of compare_strings/3
! atom expected, but [102,114,101,100] found
! Goal: compare_strings(_286,[102,114,101,100],

[106,105,109])

| ?- % illustrating compare_strings/4

| Space is " ",
| compare_strings(R, ’ ’, ’’),

| compare_strings(S, ’ ’, ’’, Space).

Space = 32,
R = <,
S = =

Another convention is sometimes used, in which the lengths of the atoms are compared first,
and the text is examined only for atoms of the same length. You could program it thus:

xpl_compare(Relation, Text1, Text2) :-
/* this is not in library(strings) */
string_length(Text1, Length1),
string_length(Text2, Length2),
(Length1 =:= Length2 ->

compare_strings(Relation, Text1, Text2)
; compare(Relation, Length1, Length2)
).

12.4.5 Concatenation

There are two approaches to concatenation. One is to provide a concatenation function that
takes some number of text objects and yields their concatenation. The other is to provide
a concatenation relation.

Quintus Prolog provides a built-in concatenation relation for lists, namely append/3. This
concatenation relation can perforce be applied to lists of character codes.

572 Quintus Prolog

| ?- ensure_loaded(library(printchars)).

| ?- append("app", "end", X).

X = "append"

| ?- append(X, "end", "intend").

X = "int"

| ?- append(_, [C|_], "to be written"),
| put(C), fail.

to be written
no

library(strings) contains a concatenation relation for text objects. This relation was in-
herited from the DEC-10 Prolog library. The original code was written to support gensym/2
(described in Section 12.4.9 [lib-txp-ato], page 587) and then generalized.

concat(?Text1, +Constant2, ?Text3)
is true when Text1 and Text3 are the same kind of text object, Constant2 is
any sort of constant, and

name(Text1, Name1),
name(Constant2, Name2),
name(Text3, Name3),
append(Name1, Name2, Name3)

is true. It can be used to solve for Text1 given the other two arguments or to
solve for Text3 given the other two arguments, but unlike append/3 it cannot
be used to solve for Constant2.

This definition is retained for backwards compatibility with the DEC-10 Prolog and C-
Prolog libraries, and with earlier versions of the Quintus library. concat/3 may be removed
from future versions of the Quintus library.

There is a proper concatenation relation that is exactly analogous to append/3:

string_append(?A, ?Z, ?AZ)
is true when A, Z, and AZ are all atoms, and

name(A, NameA),
name(Z, NameZ),
name(AZ, NameAZ)
append(NameA, NameZ, NameAZ)

is true. It can be used to solve for any one of its arguments given the other two.

Chapter 12: Library 573

As a point of interest, string_append/3 could have been defined using midstring/4, which
is defined below.

append_strings(A, Z, AZ) :-
midstring(AZ, A, Z, 0).

Examples:

| ?- concat(app, end, X).

X = append

| ?- string_append(app, end, X).

X = append

| ?- concat(X, end, append).

X = app

| ?- string_append(X, end, append).

X = app

| ?- concat(app, X, append). % SURPRISE!

no

| ?- string_append(app, X, append).

X = end

| ?- concat(app, 137, X).

X = app137

| ?- string_append(app, 137, X).

no

| ?- concat(X, Y, ab). % SURPRISE!

no

| ?- string_append(X, Y, ab).

X = ’’, Y = ab ;

X = a, Y = b ;

X = ab, Y = ’’ ;

no

12.4.5.1 Concatenation Functions

library(strings) defines a set of concatenation functions. Each of them takes a list of
constants as its first argument, and returns the concatenation of the names of the constants
as its second argument. They are

574 Quintus Prolog

concat_atom(+ListOfConstants, -Atom)
unifies Atom with the atom whose name is the concatenation of the names of
the ListOfConstants.

concat_atom(+ListOfConstants, Separator, -Atom)
like concat_atom/2, except that the elements of Atom are separated by Sepa-
rator.

concat_chars(+ListOfConstants, -Chars)
unifies Chars with the list of character codes that is the concatenation of the
names of the ListOfConstants.

concat_chars(+ListOfConstants, +Separator, -Chars)
like concat_chars/2, except that the elements of Chars are separated by +Sep-
arator.

Simplified versions of these predicates could have been defined thus:

concat_atom(Constants, Atom) :-
concat_chars(Constants, Chars),
atom_chars(Atom, Chars).

concat_chars([], []).
concat_chars([Constant|Constants], Chars0) :-

name(Constant, Name),
append(Name, Chars1, Chars0),
concat_chars(Constants, Chars1).

There is one additional “feature”: in place of a constant, you may supply a non-empty list
of character codes. For example,

| ?- concat_atom([fred_,27], X).

X = fred_27

and

| ?- concat_atom([fred,"_",27], X).

X = fred_27

both work. Beware: an empty list of character codes, "", is in fact the atom written [].
Because of this ambiguity it is not possible to write a predicate that will accept any atom
and any list of character codes, because "" = [] is both. ‘[]’ is the atom [], which has two
punctuation marks in its name. This is for compatibility with other Edinburgh Prologs. So
while you might expect

| ?- concat_atom([fr,"",ed], fred).

no

Chapter 12: Library 575

you will in fact get

| ?- concat_atom([fr,"",ed], X).

X = ’fr[]ed’

This “feature” of allowing non-empty lists of character codes is thus sufficiently confusing
that it is likely to be withdrawn in future releases of the Quintus library, and is retained in
this release for backward compatibility with earlier releases of the library. The concatenation
functions themselves will remain.

12.4.6 Finding the Length and Contents of a Text Object

There are two predicates for determining the length of a text object:

string_size(+Text, -Length)
string_length(+Text, -Length)

Length is unified with the number of characters in the name of Text, which
must be an atom.

These two predicates are identical except that string_length/2 will report an error if its
first argument is not a text object.

There are versions of Quintus Prolog on stock hardware that support Kanji. Those versions
currently represent Kanji by pairs of characters. Beware of this difference. This is likely to
change.

There are two predicates for extracting a character from a text object:

string_char(?Index, +Text, ?Char)
unifies Char with the character code of the character at position Index (count-
ing from 1) in Text. Being a selector predicate, its arguments follow the con-
vention of being in the same order as those of arg/3; see the description of
library(args), Section 12.3.3 [lib-tma-arg], page 551. Text must be instan-
tiated to a text object. Index, if instantiated, must be an integer. If Index is
less than one or greater than the length of Text, string_char/3 fails quietly.
If Index is a variable, string_char/3 will enumerate suitable values for Index
and Char.

nth_char(?Offset, +Text, ?Char)
is the same as string_char/3 except that Offset counts from 0 rather than
from 1. This predicate was added in this release to simplify conversion from
another dialect, which is why it is inconsistent with Prolog conventions. We
recommend that you use string_char/3 in new programs instead.

576 Quintus Prolog

| ?- string_size(fred, X).

X = 4

| ?- string_size(47, X).

no

| ?- string_length(fred, X).

X = 4

| ?- string_length(47, X).

! Type error in argument 1 of string_length/2
! symbol expected, but 47 found
! goal: string_length(47,_43)

| ?- X is " ".

X = 32

| ?- string_char(3, ’an example’, X).

X = 32

| ?- nth_char(2, ’an example’, X).

X = 32

| ?- string_char(I, ’an example’, 0’a).

I = 1 ;

I = 6 ;

no

| ?- nth_char(I, ’an example’, 0’a).

I = 0 ;

I = 5 ;

no

We shall see in the next section that nth_char/3 could have been defined by

nth_char(Offset, Text, Char) :-
subchars(Text, [Char], Offset, 1, _).

If you wanted a predicate like nth_char/3 but that counted from the right-hand end of the
text instead of the left-hand end, you could define

Chapter 12: Library 577

nth_char_from_right(Offset, Text, Char) :-
/* this is not in library(strings) */
subchars(Text, [Char], _, 1, Offset).

12.4.7 Finding the width of a term — library(printlength)

library(printlength) provides four predicates to determine how wide a term would be
if written:

print_length(+Command, -Length)
This succeeds when Command would write Length characters to the current
output stream, none of them being newline characters. print_length/2 allows
you to determine how many columns an atom (or other term) would take if
printed according to Command. The length of the output of any command at
all can be determined this way, provided that it writes to the current stream,
and not to a stream argument. print_length/2 fails if Command fails.

print_length(+Command, ?StartColumn, ?EndColumn)
This succeeds when executing Command would write EndColumn-StartColumn
characters. Either StartColumn or EndColumn should be instantiated to an
integer. Then one can solve for the other argument. Quintus Prolog numbers
columns starting from 0 (think of ‘line_position’ as “the number of characters
that have already been read from/written on this line”), so print_length/3
will fail if StartColumn is negative. print_length/3 fails if Command fails.

print_lines(+Command, -Lines)

is true when Command would write Lines new-line characters to the current
output stream. One use of this is to tell whether there would be any point in
calling print_length/2.

tab_to(+Column)
Ensure that line_position(Current_output, Column) is true by writing 0 or
1 newlines and at most Column spaces to the Current output stream.

12.4.8 Finding and Extracting Substrings

The beauty of Prolog as a text processing language is that definite clause grammars (DCG’s)
are not only part of it, but almost an inevitable part, and may be used for constructing and
decomposing pieces of text as well as matching them.

As an example of the power of definite clause grammars, suppose we want to take American-
style dates apart. Here is a grammar:

578 Quintus Prolog

usa_date(Y, M, D, MDY) :-
usa_date(Y, M, D, MDY, "").

usa_date(Y, M, D) -->
digits(M), "/", digits(D), "/", digits(Y).

digits([D|Ds]) -->
[D], {is_digit(D)},
(digits(Ds)
; {Ds = []}
).

With this definition, we can take dates apart:

| ?- usa_date(Y, M, D, "12/25/86").

Y = "86",
M = "12",
D = "25"

| ?- usa_date(Y, M, D, "2/1/87").

Y = "87",
M = "2",
D = "1".

| ?- usa_date(Y, M, D, "1-feb-87").

no

We can also put dates together:

| ?- usa_date("86", "12", "25", Date).

Date = "12/25/86"

| ?- usa_date("87", "2", "1", Date).

Date = "2/1/87"

Thanks to the fact that non-terminals in a DCG can take arguments, and with a little
care, you can write quite complicated grammars that can be used for composition as well
as decomposition.

If you want to do any sort of text processing in Prolog, you should learn how to use
grammar rules. A well-written grammar requires less mental decoding than a program
using the operations in library(strings). Here are versions of usa_date/4 written using
the operations in library(strings). cons_date/4 can only build a date, and dest_date/4

Chapter 12: Library 579

can only take one apart. Both are simplified, and do not check that Y, M, and D are made
of digits.

cons_date(Y, M, D, Date) :-
concat_atom([Y,/,M,/,D], Date).

dest_date(Y, M, D, Date) :-
substring(Date, /, I, 1), % find left /
substring(Date, /, J, 1, R), % find right /
J > I,
substring(Date, Y, 0, I), % extract Y
substring(Date, D, _, R, 0), % extract D
P is I+1, Q is R+1, % widen fringes
substring(Date, M, P, _, Q). % extract M

It is not immediately obvious what this does, whereas the version using grammar rules is
considerably clearer.

The argument is sometimes raised that, while grammar rules may be more elegant, string
operations are more efficient. However, it is the daily experience of Prolog programmers
that “clean” and “efficient” tend to describe the same code.

The following relative times were measured using Quintus Prolog on an MC68020:

cons_date(’86’, ’12’, ’25’, _)
------------------------------ = 1.5
usa_date("86", "12", "25", _)

dest_date(_, _, _, ’86/12/25’)
------------------------------ = 4.5
usa_date(_, _, _, "86/12/25")

In both cases, processing lists of character codes using grammar rules was more efficient
than using “string” operations. If the “string” operations were built in, rather than being
part of the library, they could be faster than they are. Even so, using grammar rules would
still be the preferred method.

12.4.8.1 midstring/[3,4,5,6]

The midstring/N family has four members:

• midstring(ABC, B, AC, LenA, LenB, LenC)

• midstring(ABC, B, AC, LenA, LenB)

• midstring(ABC, B, AC, LenA)

• midstring(ABC, B, AC)

The principal routine for taking apart an atom is midstring/6.

580 Quintus Prolog

midstring/6
is true when
• ABC, B, and AC are all atoms.
• ABC can be broken into three pieces A, B, and C,
• AC is the concatenation of A and C,
• LenA is the length of A,
• LenB is the length of B, and
• LenC is the length of C.

Either ABC or both B and AC should be instantiated. Apart from this restriction,
midstring/6 is a genuine relation, and all the other arguments can be solved for.

How can you be expected to remember all these arguments? The arguments fall into two
groups: three text objects and three integers. The three integers form a little picture of
what you want.

| LenA | LenB | LenC |
ABC= a a a a a a B B B B B B B c c c c c

So the order of the three integer arguments is the same as the order of the substrings whose
lengths they are. Note that none of these arguments is a “position” in any string: all three
of them are to be understood as lengths of strings.

The order of the text arguments was chosen to extend the order used by substring/5 (see
Section 12.4.8.2 [lib-txp-sub-substring], page 582). Generally, you are more likely to know
ABC than B or AC, and you are more likely to know B than AC. For example, a common
use of the midstring/[3,4,5,6] family is to ask “if B is deleted from ABC, what results?”,
which can be done by asking

| ?- midstring(this_is_abc, is, AC, _, _, _).

AC = th_is_abc ;

AC = this__abc ;

no

Earlier in this section we saw midstring/4 used to append two strings. Now we can see
how that works:

| ?- midstring(BC, B, C, 0).

is true when BC can be broken into three parts, A, B, and C, such that 0 is the length of
A, the lengths of B and C are unconstrained, and C is the concatenation of A and C.

Another way to see this is that

| ?- midstring (ABC, B, AC, N).

Chapter 12: Library 581

is true when ABC is obtained by inserting B just after the Nth character of AC.

Some other examples using the midstring/N family:

• To delete 7 characters from I"m going, Tom, retaining the first 4 characters:
| ?- midstring(’I’’m going, Tom’, _, Answer, 4, 7).

Answer = ’I’’m Tom’

To search for the text ab in abracadabra:
| ?- midstring(abracadabra, ab, _, Offset).

Offset = 0 ;

Offset = 7 ;

no

• To divide Whole into Front and Back, where the length of Front is known:
| ?- midstring(Whole, Front, Back, 0, FrontLength).

• To divide Whole into Front and Back, where the length of Back is known:
| ?- midstring(Whole, Front, Back, 0, _, BackLength).

• To insert Part into Fringes at a given Offset from the left, yielding Whole:
| ?- midstring(Whole, Part, Fringes, Offset).

• To insert Part into Fringes at a given Offset from the right, yielding Whole:
| ?- midstring(Whole, Part, Fringes, _, _, Offset).

• To delete Drop characters from Whole, starting at a given Offset from the left, yielding
Short:

| ?- midstring(Whole, _, Short, Offset, Drop).

• To delete Drop characters from Whole, starting at a given Offset from the right, yielding
Short:

| ?- midstring(Whole, _, Short, _, Drop, Offset).

• To determine the Length of Text:
| ?- midstring(Text, Text, ’’, 0, Length, 0).

It would not be useful to try to memorize these examples. Instead, remember the picture:

ABC, B, AC, LenA, LenB, LenC

Note that midstring/[3,4,5,6] has been carefully designed so that you can extract and
insert from either the left or the right with equal facility, and so that successive calls to
extract related fragments will require a minimum of arithmetic. For example, suppose we
want to break a text ABCD into four pieces, where the lengths of B and D are known. We
think about the picture

ABCD = ’’ (ABC) D
ABC = A (B) C
AC = A (C) ’’

582 Quintus Prolog

and then write

four_parts(ABCD, A, B, C, D, LenB, LenD) :-
/* this is an example */
midstring(ABCD, ABC, D, 0, _, LenD),
midstring(ABC, B, AC, LenA, LenB),
midstring(AC, C, A, LenA, _, 0).

12.4.8.2 substring/[4,5]

Very often you are not interested in the third argument that midstring/[3,4,5,6] re-
turn. This argument is not returned or constructed by substring/[4,5]. In fact,
substring/[4,5] were designed first, and midstring/[3,4,5,6] were developed from it
to provide string insertion and deletion.

• substring(+ABC, ?B, ?LenA, ?LenB, ?LenC)

• substring(+ABC, ?B, ?LenA, ?LenB)

are true when

• ABC and B are both atoms,
• ABC can be broken into three pieces A, B, and C,
• LenA is the length of A,
• LenB is the length of B, and
• LenC is the length of C.

The ABC argument must be instantiated. The B argument may be instantiated (this
provides a string search facility) but need not be. This is the reason for the argument
order: arguments that are strict inputs should precede other arguments, and substring/5
has precisely one strict input.

The point of substring/5 is to let you work from the right-hand end of the text as easily as
from the left-hand end. But the fact that Prolog is based on relations rather than functions
means that this one operation can replace both substring and string search operations.

Thus to determine where a occurs in abracadabra,

| ?- substring(abracadabra, a, Offset, _).

Offset = 0 ;

Offset = 3 ;

Offset = 5 ;

Offset = 7 ;

Offset = 10 ;

no

Chapter 12: Library 583

This is the preferred way of searching for a substring in Quintus Prolog. Note that if you
use substring/5 to search for a substring, you can then extract the preceding or following
characters thus:

| ?- substring(Text, Pattern, L_Before, L_Pattern, L_After),

| substring(Text, Before, 0, L_Before, _),

| substring(Text, After, _, L_After, 0).

Again, this is not guesswork, but is arrived at by thinking about the picture

Text = Before (Pattern) After
= ’’ (Before) Pattern After
= Before Pattern (After) ’’

There are two other predicates in this family:

index(Pattern, String, Offset) :-
substring(String, Pattern, Offset, _).

string_search(Pattern, String, Offset) :-
substring(String, Pattern, Offset, _).

index/3 is retained for compatibility with earlier releases of library(strings). It will be
withdrawn in a future release. If you have code that uses index/3, you should replace calls
to index/3 by calls to string_search/3, which is an exact synonym for it.

12.4.8.3 subchars/[4,5]

subchars/[4,5] are identical to substring/[4,5] (Section 12.4.8.2 [lib-txp-sub-substring],
page 582) except that the second argument, B, is a list of character codes, not a text object.

subchars(+ABC, ?B, ?LenA, ?LenB, ?LenC)
subchars(+ABC, ?B, ?LenA, ?LenB)

are true when
• ABC is a text object,
• B is a list of character codes (it may be empty),
• ABC can be broken into three pieces A, B, and C,
• LenA is the length of A,
• LenB is the length of B, and
• LenC is the length of C.

| ?- subchars(frederica, Name, 4, 4).

Name = "eric"

These predicates avoid constructing an atom that you may have no further use for.

584 Quintus Prolog

12.4.8.4 The "span" family

The midstring, substring, and subchars families give you a way of taking strings apart when
you know the lengths of the substrings you want, or when you know a particular substring.

The “span” family gives you another way of taking strings apart. The family contains three
sub-families: span_left/[3,4,5], which scan from the left, span_right/[3,4,5], which
scan from the right, and span_trim/[3,4,5], which scans from both ends towards the
middle.

span_left(+Text, +Set, ?LenA, ?LenB, ?LenC)
span_left(+Text, +Set, ?LenA, ?LenB)
span_left(+Text, +Set, ?LenA)

are true when
• Text is a text object,
• Set specifies a set of characters (see below), and
• Text can be broken into three pieces A, B, C, such that

− LenA is the length of A,
− LenB is the length of B,
− LenC is the length of C,
− no character in A belongs to the Set,
− every character in B belongs to the Set,
− B is not empty (so some character of Text must belong to the Set),
− C contains the rest of Text (it may contain characters from Set), and
− A and B are as long as possible.

The Set is
• an atom A. A character belongs to such a Set if and only if it occurs in the

name of A. The atom ’’ represents an empty Set.
• a non-empty list of character codes [C1,. . . ,Cn]. A character belongs to

set a Set if and only if it occurs among the character codes C1,. . . ,Cn.
• not(X), where X is an atom or non-empty list of characters. A character

belongs to such a Set if and only if it does not belong to the set X.

The first two arguments must be instantiated. Given them, the remaining three arguments
are uniquely determined. The last three arguments give you a picture of how the text is
divided:

| LenA | LenB | LenC |
Text= a a a a a a B B B B B B B c c c c c

____Set____/

where Set embraces the characters in the B substring. By design, the Set argument occupies
the same position in the argument list of this predicate that B does in the argument list

Chapter 12: Library 585

of substring/[4,5] or midstring/[3,4,5,6]. The fact that the last three arguments
of span_left/5 follow this convention means that you can use midstring/[3,4,5,6],
substring/[4,5], or subchars/[4,5] to extract whichever substring interests you.

For example, to skip leading spaces in String, yielding Trimmed, you would write

| ?- span_left(String, not(" "), Before),

| substring(String, Trimmed, Before, _, 0).

Note that this fails if there are no non-blank characters in String. To extract the first
blank-delimited Token from String, yielding a Token and the Rest of the string, you would
write

| ?- span_left(String, not(" "), Before, Length, After),

| substring(String, Token, Before, Length, After),

| substring(String, Rest, _, After, 0).

span_right(+Text, +Set, ?LenA, ?LenB, ?LenC)
span_right(+Text, +Set, ?LenB, ?LenC)
span_right(+Text, +Set, ?LenC)

are true when
• Text is a text object,
• Set specifies a set of characters, and
• Text can be broken into three pieces A, B, C, such that

− LenA is the length of A,
− LenB is the length of B,
− LenC is the length of C,
− no character in C belongs to the Set,
− every character in B belongs to the Set,
− B is not empty (so some character of Text must belong to the Set),

and
− C and B are as long as possible.

These three predicates are exactly like span_left/[3,4,5] except that they work from
right to left instead of from left to right. In particular, the picture

| LenA | LenB | LenC |
Text= a a a a a a B B B B B B B c c c c c

____Set____/

applies.

Finally, there are predicates that scan from both ends:

span_trim(+Text, +Set, ?LenA, ?LenB, ?LenC)
is true when

586 Quintus Prolog

• Text is a text object,
• Set specifies a set of characters, and
• Text can be broken into three pieces A, B, C, such that

− LenA is the length of A,
− LenB is the length of B,
− LenC is the length of C,
− every character in A belongs to the Set,
− every character in C belongs to the Set,
− A and C are as long as possible, and
− B is not empty.

The Set argument of span_trim/5 has the same form as the Set argument of span_
left/[3,4,5] or span_right/[3,4,5], but there is an important difference in how it
is used: in span_trim/5 the Set specifies the characters that are to be trimmed away. The
picture is

| LenA | LenB | LenC |
Text= a a a a a a B B B B B B B c c c c c

___Set___/ __Set__/

There is a special case of span_trim/5 that enables you to strip particular characters from
both ends of a string. These unwanted characters are designated in Set in span_trim/3:

span_trim(String, Set, Trimmed) :-
span_trim(String, Set, Before, Length, After),
substring(String, Trimmed, Before, Length, After).

A further specialization, span_trim/2, is intended for trimming blanks from fixed-length
records:

span_trim(String, Trimmed) :-
span_trim(String, " ", Before, Length, After),
substring(String, Trimmed, Before, Length, After).

For example,

| ?- span_trim(’ abc ’, " ", B, L, A).

B = 2
L = 3
A = 4

| ?- substring(’ abc ’, Trimmed, 2, 3, 4).

Trimmed = abc

| ?- span_trim(’ an example ’, Trimmed).

Trimmed = ’an example’

Chapter 12: Library 587

Note that the last example leaves the group of three internal blanks intact. There are no
predicates in library(strings) for compressing such blanks.

In manipulating text objects, do not neglect the possibility of combining the “span” family
with subchars/[4,5] or midstring/[3,4,5,6].

12.4.9 Generating Atoms

library(strings) defines three predicates for generating atoms.

gensym(+Prefix, -Atom)
is equivalent to concat_atom([Prefix, N], Atom), where N is the next number
in the sequence associated with Prefix. Notionally, each Prefix has its own
counter, starting with zero. Prefix must be an atom. Examples:

| ?- gensym(a, X).

X = a1

| ?- gensym(a, X).

X = a2

| ?- gensym(b, X).

X = b1

| ?- gensym(1, X).

no

gensym(-Atom)
uses the Prefix ‘%’. Example:

| ?- gensym(X).

X = ’%58’

cgensym(+Prefix, ?Atom)
if Atom is a variable, it generates a new atom using gensym/2. Otherwise,
Prefix and Atom should be atoms. The name is to be read as “conditionally
generate symbol”.

These predicates are included for compatibility with the DEC-10 Prolog library, which has
contained them for several years. cgensym/2 will do nothing to Atom if it is already bound;
otherwise it is just like gensym/2.

588 Quintus Prolog

12.4.10 Case Conversion — library(ctypes)

There are no case conversion operations in the supported library(strings) package. In
the ASCII and EBCDIC character sets, case conversion is well defined, because each letter
is either an uppercase letter (which has a unique lowercase equivalent) or a lowercase letter
(which has a unique uppercase equivalent). Not all of the character sets have this property.

There are case conversion operations in library(ctypes). They are

to_lower(?Upper, ?Lower)
which is true when Upper and Lower are valid character codes, and either Upper
is the code of an uppercase letter that has a unique lowercase equivalent, and
Lower is the code of that unique lowercase equivalent, or Upper is the code of
some other character, and Lower is the same as Upper. Note that this means
that if Lower is the code of a lowercase letter that is the unique equivalent of
some uppercase letter, there are two solutions for Upper.

to_upper(?Lower, ?Upper)
which is true when Lower and Upper are valid character codes, and either Lower
is the code of a lowercase letter that has a unique uppercase equivalent; and
Upper is the code of that unique uppercase equivalent, or Lower is the code of
some other character, and Upper is the same as Lower. Note that this means
that if Upper is the code of an uppercase letter that is the unique equivalent of
some lowercase letter, there are two solutions for Lower.

In the ASCII and EBCDIC character sets, these definitions behave as one would expect.
But consider the case of Greek.

Capital sigma is undeniably an uppercase letter; yet it has two lowercase equivalents: one for
use at the end of words and one for use elsewhere. This means that to_upper/2 would map
both medial and final lowercase sigma to uppercase sigma, but that to_lower/2 would leave
uppercase sigma unchanged. A similar problem exists in German, where ‘ß’ is a lowercase
letter whose uppercase equivalent is the pair of letters ‘SS’.

Because of such problems, library(caseconv) is only adequate for ASCII or EBCDIC.
This package defines two groups of predicates. The predicates in the first group test the
case of a name. Those in the second group convert the case of a name or a non-empty list
of character codes.

lower(+Text)
is true if Text contains no uppercase letters.

upper(+Text)
is true if Text contains no lowercase letters.

mixed(+Text)
is true if Text contains at least one lowercase letter and and least one uppercase
letter.

Chapter 12: Library 589

In each case, Text may contain other things than letters. If mixed(Text) is true,
then lower(Text) and upper(Text) must both be false. However, lower(Text) and
upper(Text) can both be true if X contains no letters at all. Examples:

| ?- lower(a).

yes

| ?- lower(quixotic).

yes

| ?- lower(’Quixotic’).

no

| ?- lower(**).

yes

| ?- upper(a).

no

| ?- upper(’QUIXOTIC’).

yes

| ?- upper(’Quixotic’).

no

| ?- upper(**).

yes

| ?- mixed(quixotic).

no

590 Quintus Prolog

| ?- mixed(’QUIXOTIC’).

no

| ?- mixed(’!$Quixotic<<<’).

yes

| ?- mixed(**).

no

lower(+Given, ?Lower)
unifies Lower with a lowercase version of Given. Uppercase letters are converted
to lowercase, and no other changes are made. lower(Lower) is true.

upper(+Given, ?Upper)
unifies Upper with an uppercase version of Given. Lowercase letters are con-
verted to uppercase, and no other changes are made. upper(Upper) is true.

mixed(+Given, ?Mixed)
unifies Mixed with a mixed-case version of Given. In each block of consecutive
letters, the first letter is converted to uppercase and the following letters are
converted to lowercase. No other changes are made. mixed(Mixed) is true if and
only if Given contained at least two adjacent letters; otherwise upper(Mixed)
is true.

In each of these predicates, Given may be an atom or a non-empty list of character codes.
If Given is a number, these predicates will quietly fail. The action of these predicates on
other terms is not defined. The second argument is unified with a term of the same type as
Given, containing the same number of characters.

Examples (assuming that library(printchars) has been loaded):

| ?- lower("Are other character sets a REAL problem?", X).

X = "are other character sets a real problem?"

| ?- upper(’Yes, they are!’, X).

X = ’YES, THEY ARE!’

| ?- mixed(’what a nuisance’, X).

X = ’What A Nuisance’

Chapter 12: Library 591

| ?- upper(1.2e3, X).

no

| ?- lower(’1.2E3’, X).

X = ’1.2e3’

Note that numbers cannot be converted by these predicates.

12.4.11 Note

12.5 XML Parsing and Generation

library(xml) is a package for parsing XML with Prolog, which provides Pro-
log applications with a simple “Document Value Model” interface to XML docu-
ments. A description of the subset of XML that it supports can be found at:
http://homepages.tesco.net/binding-time/xml.pl.html

The package, originally written by Binding Time Ltd., is in the public domain and unsup-
ported. To use the package, enter the query:

| ?- use_module(library(xml)).

The package represents XML documents by the abstract data type document, which is
defined by the following grammar:

document ::= xml(attributes,content) { well-formed document }
|
malformed(attributes,content
)

{ malformed document }

attributes ::= []
| [name=chardata|attributes]

content ::= []
| [cterm|content]

cterm ::= pcdata(chardata) { text }
| comment(chardata) { an XML comment }
|
namespace(URI,prefix,element
)

{ a Namespace }

| element(tag
attributes,content
)

{ <tag>..</tag> encloses content
or <tag /> if empty }

| instructions(name,chardata
)

{ A PI <? name chardata ?> }

| cdata(chardata) { <![CDATA[chardata]]> }

http://homepages.tesco.net/binding-time/xml.pl.html

592 Quintus Prolog

| doctype(tag,doctypeid) { DTD <!DOCTYPE .. > }
| unparsed(chardata) { text that hasn’t been parsed }
| out_of_context(tag) { tag is not closed }

tag ::= atom { naming an element }
name ::= atom { not naming an element }
URI ::= atom { giving the URI of a namespace

}
chardata ::= chars { see Section 18.1.4.2 [mpg-ref-

aty-ety], page 988 }
doctypeid ::= public(chardata,chardata)

| system(chardata)
| local

The following predicates are exported by the package:

xml_parse(+Chars, -Document[, +Options])
Parses Chars, a chars, to Document, a document. Chars is not required to
represent strictly well-formed XML.
Options is a list of zero or more of the following, where Boolean must be true
or false:

format(Boolean)
Indent the element content (default true).

extended_characters(Boolean)
Use the extended character entities for XHTML (default true).

remove_attribute_prefixes(Boolean)
Remove namespace prefixes from attributes when it’s the same as
the prefix of the parent element (default false).

xml_parse(-Chars, +Document[, +Options])
Generates Chars, a chars, from Document, a document. If Document is not a
valid document term representing well-formed XML, an exception is raised.
In this usage of the predicate, the only option available is format/1.

xml_subterm(+Term, ?Subterm)
Unifies Subterm with a sub-term of Term, a document. This can be especially
useful when trying to test or retrieve a deeply-nested subterm from a document.

xml_pp(+Document)
“Pretty prints” Document, a document, on the current output stream.

12.6 Negation

Chapter 12: Library 593

12.6.1 Introduction — library(not)

This section describes the predicates provided by library(not): not/1, \=/2, ~=/2, and
once/1. For comparison purposes, the negation facilities that are built into the Prolog
system are also described.

12.6.2 The “is-not-provable” Operator

DEC-10 Prolog, C-Prolog, and Quintus Prolog all provide an “is-not-provable” operator
‘\+’. The meaning of

\+ Goal

is that the Prolog system is unable to find any solution for Goal as it currently stands.

In operational terms, we have

\+ Goal :-
(call(Goal) -> fail
; true
).

In DEC-10 Prolog and C-Prolog, this is exactly how ‘\+’ is implemented. In Quintus
Prolog there is a slight difference: the Quintus Prolog compiler supports ‘(if -> then ;
else)’ directly, so a clause of the form

p :-
q,
\+ r,
s.

is compiled as if you had written

p :-
q,
(r -> fail ; true),
s.

If ‘\+’ were not known to the compiler, the form r would be built as a data structure and
passed to ‘\+’ to interpret, which would be slower and would require more memory. The
extra efficiency of having ‘\+’ handled directly by the compiler is well worth having.

594 Quintus Prolog

12.6.3 “is-not-provable” vs. “is-not-true” — not(Goal)

If the difference between the Prolog “is-not-provable” operator (‘\+’) and the standard
negation operator of logic is not taken into account, you may find that some of your programs
will behave in an unexpected manner. Here is an example:

man(john).
man(adam).

woman(sue).
woman(eve).

married(adam, eve).

married(X) :-
married(X, _).

married(X) :-
married(_, X).

human(X) :-
man(X).

human(X) :-
woman(X).

The question

| ?- \+ married(Who).

is a perfectly good one, to which one might at first glance expect the response to be john
or sue. However, the meaning of this clause to Prolog is

is it the case that the term married(Who) has
no provable instances?

to which the answer is ‘no’, as married(adam) is an instance of married(Who) and is
provable by Prolog. The question

| ?- \+ dead(X).

is also a perfectly good one, and after perhaps complaining that dead/1 is undefined, Prolog
will report the answer ‘yes’, because dead(X) has no instance that can be proven from
this database. In effect, this means “for all X, dead(X) is not provable”. Even though
“dead(adam) is not provable” is a true consequence of this statement, Prolog will not
report ‘X = adam’ as a solution of this question. This is not the function of \+/1.

Note also that “dead(adam) is false” is not a valid consequence of this database, even
though “dead(adam) is not provable” is true. To deduce one from the other requires the

Chapter 12: Library 595

use of the “Closed World Assumption”, which can be paraphrased as “anything that I do
not know and cannot deduce is not true”. See any good book on logic programming (such
as Foundations of Logic Programming by John Lloyd, Springer-Verlag 1984) for a fuller
explanation of this.

We would very often like an operation that corresponds to logical negation. That is, we
would like to ask

| ?- not married(X).

and have Prolog tell us the names of some people who are not married, or to ask

| ?- not dead(X).

and have Prolog name some people who are not dead. The unprovability operator will not
do this for us. However, we can use \+/1 as if it were negation, but only for certain tasks
under some conditions that are not very restrictive.

The first condition is that if you want to simulate ‘not(p)’ with ‘\+(p)’, you must first
ensure that you have complete information about p. That is, your program must be such
that every true ground instance of p can be proved in finite time, and that every false
ground instance of p will fail in finite time. Database programs often have this property.

Even then, given a non-ground instance of p, ‘not(p)’ would be expected to bind some of
the variables of p. But by design, ‘\+(p)’ never binds any variables of p. Therefore the
second condition is that when you call ‘\+(p)’, p should be ground, or ‘\+(p)’ will not
simulate ‘not(p)’ properly.

Checking the first condition requires an analysis of the entire program. Checking that p is
ground is relatively simple. Therefore, the library file library(not) defines an operation

not Goal

which checks whether its Goal argument is ground, and if it is, attempts to prove ‘\+ Goal’.
Actually, the check done is somewhat subtler than that. The simulation can be sound even
when some variables remain; for example, if left_in_stock(Part, Count) has at most one
solution for any value of Part, then

\+ (left_in_stock(Part,Count), Count < 10)

is perfectly sound provided you do not use Count elsewhere in the clause. You can tell
not/1 that you take responsibility for a variable’s being safe by existentially quantifying it
(see the description of setof/3), so

not Count^(left_in_stock(Part,Count), Count < 10)

demands only that Part must be ground. Even so, this is not particularly good style, and
you would be better off adding a predicate

596 Quintus Prolog

fewer_in_stock_than(Part, Limit) :-
left_in_stock(Part, Count),
Count < Limit.

and asking the question

not fewer_in_stock_than(Part, 10)

If you want to find instances that do not satisfy a certain test, you can generally enumerate
likely candidates and check each one. For example,

| ?- human(H), not married(H).

H = john ;

H = sue

| ?- man(M), not dead(M).

M = john ;

M = adam

The present library definition of not/1 warns you when you would get the wrong answer,
and offers you the choice of aborting the computation or accepting possible incorrect results.

12.6.4 Inequality

DEC-10 Prolog, C-Prolog, and Quintus Prolog provide two inequality operations:

Term1 \== Term2

Term1 is not currently identical to Term2

Expr1 =\= Expr2

Expr1 and Expr2 are arithmetic expressions with different values

=\=/2 is reasonably straightforward. Either it is true, and will remain true, or it is false,
and will remain false, or the Prolog system will report an error if it cannot determine which.
Thus 1 =\= 2 is true, 1 =\= 1.0 is false, and _ =\= 3 will result in an error exception.

\==/2 is not really a logical relation, but a meta-logical relation like var/1. It tests whether
two terms are exactly identical, down to having the same variables in the same places. It
either succeeds or fails; and if it fails it will continue to do so, but if it succeeds it may fail
later on. For example,

Chapter 12: Library 597

| ?- X \== Y, % succeeds
| X = Y, % succeeds, unifying X and Y
| X \== Y. % FAILS, now that X and Y are unified

no

It is safe to use ==/2 and \==/2 to test the equality of terms when you know in advance
that the terms will be ground by the time the test is made.

12.6.4.1 Term1 \= Term2

library(not) defines another inequality predicate, as do the C-Prolog and DEC-10 Prolog
libraries:

Term1 \= Term2

Term1 and Term2 do not unify

This means exactly the same thing as

\+ Term1 = Term2

and is subject to the same problems as the use of unprovability to simulate negation.
However, when the terms are ground, it is more efficient than \==/2.

12.6.4.2 Term1 ~= Term2

Obviously, if we can have a version of \+/2 that checks whether it is safe to proceed, we
can have a version of \=/2 that does the same. So library(not) also defines a “sound
inequality” predicate

Term1 ~= Term2

Term1 and Term2 are not equal

There are three cases: it may succeed, or fail, or warn you that there is not enough infor-
mation yet to tell. Note that ~=/2 is a bit more clever than not(T1 = T2) would be:

f(X, a) ~= f(Y, b)

will succeed (correctly) even though

not(f(X,a) = f(Y,b))

would complain about the unbound variables X and Y.

As ~=/2 is sound and \=/2 is not, we recommend that you use ~=/2 rather than \=/2 in
your Prolog code.

598 Quintus Prolog

12.6.5 Forcing Goal Determinacy — once(Goal)

We have seen that

\+ Goal

and

(Goal -> false ; true)

have the same effect. The form

(Goal -> true ; false)

is also useful: it commits to the first solution of Goal.

This operation has a name:

once Goal

once/1 is useful when you have a nondeterminate definition for Goal, but in this case you
want to solve it determinately. For example, to find out if there are any married couples,
you could use

once married(_, _)

If the predicate is really determinate in concept, it is better to make it determinate in
definition as well, rather than to use once/1.

12.6.6 Summary

library(not) defines

not Goal
Term1 \= Term2
Term1 ~= Term2
once(Goal)

The tests

\+ Goal
Term1 \== Term2
Expr1 =\= Expr2

are built into Quintus Prolog already, and are described in the reference pages.

Chapter 12: Library 599

12.7 Operations on Files

12.7.1 Introduction — library(files)

The package library(files) provides operations on individual files, such as renaming,
deleting, opening, and checking for existence.

You may also find library(directory) of interest (see Section 12.8 [lib-lfi], page 607).

12.7.2 Built-in Operations on Files

The following operations on files are described in the reference pages.

absolute_file_name(+RelFileName, ?AbsFileName)
takes a filename RelFileName (typically typed in by the user of a program) and
unifies it with the normalized AbsFileName.
Beware: absolute_file_name/2 mimics the filename resolution done by com-
mands such as compile/1. It is meant primarily for looking up Prolog source
files. If you want to find the absolute filename of any other file, absolute_
file_name/2 may not be appropriate. See file_member_of_directory/2 in
Section 12.8.2 [lib-lfi-fdi], page 608.

close(+FileNameOrStream)
if FileNameOrStream is an atom, it refers to a DEC-10-compatible stream con-
nected to the file of that name; otherwise it is a stream object. In either case,
the associated stream is closed.

current_stream(?AbsFileName, ?Mode, ?Stream)
is true if Stream is a stream connected to file AbsFileName, and currently open
in mode Mode. current_stream/2 can be used to list currently open streams
and the files to which they are connected.

library_directory(?Directory)
unifies Directory with an entry from the user-modifiable table of directories to
be searched for library files.

open(+FileName, +Mode, -Stream)
opens a new Stream connected to the file named by FileName. If Mode is write
(append) it will (may) create a new file.

see(+FileNameOrStream)
opens the file or stream FileNameOrStream for input if it is not already open.

tell(+FileNameOrStream)
opens the file or stream FileNameOrStream for output if it is not already open.

600 Quintus Prolog

unix(cd(+Directory))
selects Directory as the default directory for relative file names. This is also
known as the current working directory. To find out what the default directory
currently is, type

| ?- absolute_file_name(., CurrentDirectory).

12.7.3 Renaming and Deleting Files

library(files) defines four predicates pertaining to deleting and renaming files. rename/2
and dec10_rename/2 are identical replacements for the DEC-10 Prolog/C-Prolog rename/2
command. They should only be used to convert old code to Quintus Prolog. New programs
should use delete_file/1 and rename_file/2.

delete_file(+FileName)
FileName should be an atom naming a file that currently exists and can be
deleted. If so, the file it names is deleted, and the command succeeds. If not,
an error exception is raised. and the command fails. Examples:

| ?- delete_file(’ask.otl’).

yes

| ?- delete_file(’does_not_exist’).

! Existence error in delete_file/1
! file nosuch does not exist
! O/S error : No such file or directory
! goal: delete_file(does_not_exist)

| ?- unix(system(’cat </dev/null >search.d/tmp’)),
unix(system(’chmod a-w search.d’)),

delete_file(’search.d/tmp’).

! O/S error : Permission denied
! goal: delete_file(’search.d/tmp’)

| ?- delete_file("tmp").
! Type error in argument 1 of delete_file/1
! symbol expected, but [116,109,112] found
! goal: delete_file([116,109,112])

| ?- unix(system(’rm tmp’)).

rm: override protection 444 for tmp? n

yes % did NOT delete the file

| ?- delete_file(tmp).

yes % **DID** delete the file

Chapter 12: Library 601

This last example is important: the rm command (see rm(1)) checks the per-
mission bits of the file (see chmod(1)) and asks you whether you really want
to delete a file that you do not have write permission for, even if you have
permission to delete it. delete_file/1 does not do this.

rename_file(+OldName, +NewName)
OldName should be an atom naming a file that currently exists and can be
renamed, and NewName should be a valid filename to which the file can be
renamed. If so, the file will be renamed, and the command will succeed. If not,
an error exception will be raised. Examples:

| ?- rename_file(does_not_exist, imaginary).

! Existence error in rename_file/2
! file does_not_exist does not exist
! O/S error : No such file or directory
! goal: rename_file(does_not_exist,imaginary)

rename_file/2 and delete_file/1 have no effect on currently open streams,
whether opened by open/3, see/1, or tell/1.
What will happen if you continue to use streams that used to be connected to
files affected by these commands is system-dependent. Under UNIX, input will
continue to come from a file as if it had not been renamed, and output will
continue to go to a file as if it had not been renamed. For example:

% prolog

| ?- compile(library(files)).

<output of compile/1>
yes

| ?- open(fred, write, OutputStream),

open(fred, read, InputStream),

delete_file(fred),

format(OutputStream, ’foo.~n’, []),

flush_output(OutputStream),

read(InputStream, Term),

close(OutputStream),

close(InputStream).

OutputStream = ’$stream’(10,3),
InputStream = ’$stream’(11,4),
Term = foo

rename(+OldName, +NewName)
This command is identical to dec10_rename/2 below.

dec10_rename(+OldName, +NewName)
This predicate is similar, but not identical, to the DEC-10 Prolog/C-Prolog
command rename/2, and is provided solely for the sake of compatibility. If you
are converting existing DEC-10 Prolog or C-Prolog code to Quintus Prolog, the
fact that rename/2 does close the file and is sensitive to the fileerrors flag
should be useful. In new programs we recommend the use of rename_file/2

602 Quintus Prolog

and delete_file/1. OldName and NewName must be atoms, otherwise an
error is reported and the command fails (this is not affected by the setting of
the fileerrors flag). If NewName is [], the file named by OldName is deleted,
otherwise it is renamed to NewName. If the rename cannot be performed, what
happens next depends on the setting of the fileerrors flag (see the reference
page for prolog_flag/3). If fileerrors is on, an error exception is raised. If
fileerrors is off, the command fails quietly. Examples:

| ?- prolog_flag(fileerrors, Setting).

Setting = on

| ?- dec10_rename(2, 1).

! Type error in argument 1 of dec10_rename/2
! symbol expected, but 2 found
! goal: dec10_rename(2,1)

| ?- dec10_rename(does_not_exist, []).

! Existence error in dec10_rename/2
! file does_not_exist does not exist
! O/S error : No such file or directory
! goal: dec10_rename(does_not_exist,[])

| ?- prolog_flag(fileerrors, _, off).

yes

| ?- dec10_rename("old", "new").
! Type error in argument 1 of dec10_rename/2
! symbol expected, but [111,108,100] found
! goal: dec10_rename([111,108,100],[110,101,119])

| ?- dec10_rename(does_not_exist, []).

no

12.7.4 Checking To See If A File Exists

No matter what programming language you are using, all multiple-access file systems have
the problem that the system may correctly report that a file does exist, and then when you
attempt to use it you may find that it does not, because someone has deleted or renamed
it in the meantime.

The operations below can help you avoid problems, but in the final analysis, the only way
to tell whether you can open a file is to try to open it.

Chapter 12: Library 603

file_exists(+FileName)
FileName must be an atom. file_exists/1 succeeds if a file of that name
exists. If there is something of that name, but it is a directory, file_exists/1
fails. You need sufficient rights to the file to be able to determine whether it is
a directory (see stat(2)). Named pipes and devices are accepted as files.

file_exists(+FileName, +Permissions)
FileName must be an atom, and Permissions must be one of the following, or
a list of them:

exists does the file exist?

read can the file be read?

write can the file be over-written?

N N is an integer(N); see access(2)

file_exists/2 succeeds when there is a file (not a directory) named FileName
and you have each of the Permissions you named.
If Permission is an integer, it is interpreted the way that the argument to the
system call access(2) is interpreted, namely (the file must exist)

+ 1 * (’execute’ permission is wanted)
+ 2 * (’write’ permission is wanted)
+ 4 * (’read’ permission is wanted)>

This is allowed so that a C programmer who is used to writing
if (!access(FileName, 6)) {

can_read_and_write(FileName);
} else {

cannot_access_file(FileName);
}

can write
(file_exists(FileName, 6) ->

can_read_and_write(FileName)
; /* otherwise */

cannot_access_file(FileName)
)

We recommend, however, that you code this example as
(file_exists(FileName, [read,write]) ->

can_read_and_write(FileName)
; /* otherwise */

cannot_access_file(FileName)
)

Under operating systems that do not support version numbers (as UNIX and
Windows do not), file_exists/2 could fail (because there is no such FileName
) and can_open_file/2 could succeed (because you are allowed to create one).
Conversely, file_exists/2 could succeed (because there is such a FileName
) and can_open_file/2 fail (because you have so many files open that you
cannot open another).

604 Quintus Prolog

file_must_exist(+FileName)
succeeds when file_exists(FileName) succeeds; otherwise, it raises an error
exception.

| ?- file_must_exist(fred).

! Existence error in file_must_exist/1
! file fred does not exist
! O/S error : No such file or directory
! goal: file_must_exist(fred)

file_must_exist(+FileName, +Permission)
succeeds when file_exists(FileName, Permission) succeeds; otherwise, it
raises an error exception.

| ?- unix(system(’ls -l files.o’)),

file_must_exist(’files.o’, write).

-r--r--r-- 1 ok 746 Jan 24 17:58 files.o
! Permission error: cannot access file ’foo.o’
! O/S error : Permission denied
! goal: file_must_exist(’foo.o’,write)

can_open_file(+FileName, +Mode, +Quiet)
FileName is a filename. Mode is read, write, or append, just as for the open/3
command. can_open_file/2 fails quietly if the file cannot be opened. The
Quiet parameter controls the raising of an error exception when the file cannot
be opened: if Quiet is fail, can_open_file/3 fails quietly, whereas if Quiet is
warn, it raises an error exception. If Mode is

read FileName must exist and be readable

append FileName must exist and you must have permission to append to
it, or FileName must be nonexistent in a directory in which you
have permission to create a new file

write the same conditions apply as for append

This predicate actually attempts to open the file. It will, for example, create
a file in order to determine whether it can create it. But if that happens, it
immediately deletes the file again, so there should be no permanent effect on
the file system.

can_open_file(+FileName, +Mode)
equivalent to can_open_file(FileName, Mode, fail).

open_file(+FileName, +Mode, -Stream)
is the same as the built-in predicate open/3 (which is described in the reference
pages), except that it always raises an error exception if it cannot open the file,
and is not sensitive to the fileerrors flag.

current_dec10_stream(?FileName, ?See_or_Tell)
is true when See or Tell is see and FileName is a file that was opened by
see(FileName) and has not yet been closed, or when See or Tell is tell and

Chapter 12: Library 605

FileName is a file that was opened by tell(FileName) and has not yet been
closed. It is a version of current_stream/3, which just tells you about the Dec-
10-compatible streams. It relies on two facts: (1) all the streams you opened
are in the current_stream/3 table. (2) seeing/1 (telling/1) return an atom
if and only if the current input (output) stream was opened by see/1 (tell/1),
and the atom it returns is the one given to see/1 (tell/1).

close_all_streams
closes all the current streams except the standard streams.

None of the predicates described in this section is affected by the fileerrors flag. Indeed,
they exist so that you can check for errors before they happen.

See the summary description of library(ask) (Section 12.9 [lib-uin], page 612) for two
useful predicates that use can_open_file/3.

12.7.5 Other Related Library Files

Several other library files do things to or with files. This section lists those files and the
file-related predicates in them. library(ask) and library(directory) are documented
in this manual. The remaining files contain in-line comments, which you can read.

12.7.5.1 library(aropen)

ar_open(+Archive, +Member, -Stream)
opens a stream reading a particular member of a UNIX archive. See ar(1).

12.7.5.2 library(ask)

ask_file(+Prompt, -FileName)
Reads FileName from the terminal, having prompted for it with Prompt. It con-
tinues prompting until a FileName is read for which can_open_file(FileName,
read, warn) is true, or until an empty line is typed (in the latter case it fails
quietly).

ask_file(+Prompt, +Mode, -FileName)
Reads FileName from the terminal, having prompted for it with Prompt. It con-
tinues prompting until a FileName is read for which can_open_file(FileName,
Mode, warn) is true, or until an empty line is typed (in the latter case it fails
quietly).

12.7.5.3 library(big_text)

This is a package for keeping large chunks of text in files. See Section 12.13 [lib-abs],
page 641.

606 Quintus Prolog

12.7.5.4 library(crypt)

crypt_open(+FileName, +Password, +Mode, -Stream)
is the same as open(FileName, Mode, Stream) except that the external file is
encrypted, using Password as the key.

crypt_open(+FileName, +Mode, -Stream)
prompts for Password and proceeds as crypt_open/4.

These predicates do not use any of the encryption features of the operating system, so a
separate C program for managing encrypted files is included.

12.7.5.5 library(directory)

This module provides operations for finding files in directories and for finding properties of
files and directories.

See Section 12.8 [lib-lfi], page 607 for details.

12.7.5.6 library(fromonto)

This package provides a suite of I/O redirection operators, which allow the user to execute
a goal with the current input or output stream temporarily redirected to a specified stream,
file, or list of characters. See Section 12.13 [lib-abs], page 641.

12.7.5.7 library(unix)

This package provides a set of UNIX-like commands. They take character lists as well as
atoms.

| ?- cd. % same as cd "~".
| ?- cd Dir. % Dir is atom or chars.

| ?- csh. % runs an interactive /bin/csh
| ?- csh Cmd. % interprets Cmd with /bin/csh
| ?- ls. % runs /bin/ls with no arguments.

| ?- pg F. % same as sh(’/usr/bin/pg F’).

| ?- sh. % runs an interactive /bin/sh
| ?- sh Cmd. % interprets Cmd with /bin/sh
| ?- shell. % runs an interactive $SHELL
| ?- shell Cmd. % interprets Cmd with $SHELL

Chapter 12: Library 607

12.8 Looking Up Files

12.8.1 Introduction — library(directory)

For the most part, Prolog programs have little need to examine directories or to inquire
about file properties. However, the need does occasionally arise. For example, an expert-
system shell might offer the option of either loading a single file into its knowledge base,
or of loading all the files in a directory having a particular extension. The Quintus Prolog
library file library(directory) provides the tools you need to do this. For example, we
might define

kb_load(File) :-
(directory_property(File, searchable) ->

forall(file_member_of_directory(File,’*.kb’,_,Full),
kb_load(Full))

; file_property(File, readable) ->
kb_load_file(File)

; format(user_error, ’~N! cannot read ~w.~n’, [File]),
fail

).

The routines in this package were designed to be a complete toolkit for safely wandering
around a UNIX-like file system. Although there are quite a few of them, they do actually
fit together in a coherent group. For information on operations relating to individual files
rather than to directories, see library(files) (Section 12.7 [lib-ofi], page 599).

The following principles have been observed:

• An absolute distinction is drawn between files and directories. The set of operations
one can usefully perform on a directory is different from the set one can perform on a
file: for example, having write permission to a directory allows the user to create new
files in it, not to rewrite the entire directory! If any routine in this package tells you
that a “file” exists, you can be sure that it means a “regular” file.

• The directory scanning routines do not actually open the files they find. Thus finer
discriminations, such as that between source and object code, are not made.

• The predicate names are made up of complete English words in lowercase, separated
by underscores, with no abbreviations.

• Every predicate acts like a genuine logical relation insofar as it possibly can.
• Like those in the library(unix) package, if anything goes wrong, the predicates in

library(directory) raise an error exception. Any time that a predicate fails quietly,
it should mean “this question is meaningful, but the answer is no”; any exception to
this should be regarded as a bug.

• The directory scanning routines insist that the directory argument name a searchable
directory. But the “property” routines are to be read as “there exists a thing of such
a type with such a property”, and quietly fail if there is no such file or directory.

608 Quintus Prolog

12.8.2 Finding Files in Directories

The basic directory scanning routine is

file_member_of_directory(?Directory, ?FileName, ?FullName) is true
when
1. Directory is an atom naming a directory;
2. FileName is an atom conforming to the rules for file names without direc-

tory components;
3. Directory contains an entry with name FileName, and the current process

is allowed to know this fact; and
4. FullName is an atom naming the file, combining both the Directory and

the FileName, and FullName names a regular file.

Directory can be an absolute filename or a relative one. FullName will be
absolute if Directory is absolute, relative if Directory is relative.
We return the FileName component because that is the component on which
pattern matching is generally done. We return the FullName component in or-
der to remove from the user the burden of manipulating the (system-dependent)
rules for putting together a directory name and a file name.
This predicate acts as much like a logical relation as it can. Here are some of
the ways of using it:

| ?- file_member_of_directory(foo, Name, Full),

write(Name=Full), nl, fail.

% to enumerate members of the directory

| ?- file_member_of_directory(baz, ’ugh.pl’, Full).

% to test whether a file ’ugh.pl’ is visible in
% directory ’baz’, and if so return the full name

| ?- file_member_of_directory(Dir, Nam, ’baz/jar.log’).

% if there is a visible regular file baz/jar.log,
% to return its directory in Dir and name in Nam.

file_member_of_directory/3 has two variants:

file_member_of_directory(?FileName, ?FullName)
is the same as file_member_of_directory/3, except that it checks the current
directory. You could obtain this effect quite easily by calling file_member_of_
directory/3 with first argument ‘.’, but in other operating systems the current
directory is denoted differently. This provides an operating-system-independent
way of searching the current directory. There is one other difference, which is of
great practical importance: ‘.’ is a relative directory name, but file_member_
of_directory/2 uses the absolute name for the current directory, so that the
FullName you get back will also be absolute. See the description of absolute_
file_name/2 in the reference pages. Note the difference between calling

Chapter 12: Library 609

absolute_file_name(FileName, FullName)

and calling
file_member_of_directory(FileName, FullName)

The former will accept any filename, but the FileName must be instantiated.
The latter will only accept simple file names with no directory component, and
insists that the file must already exist, but in return will generate FileName.

file_member_of_directory(?Directory, ?Pattern, ?FileName, ?FullName)
is the same as file_member_of_directory/3, except that it filters out all the
FileNames that do not match Pattern. Pattern is an atom that may contain
‘?’ and ‘*’ wildcards. ‘?’ matches any character and ‘*’ matches any sequence
of characters (cf. UNIX csh(1) and sh(1)). The main use for this routine is
to select files with a particular extension. Thus,

| ?- file_member_of_directory(foo,’*.pl’,Short,Full).

matches files ‘foo/*.pl’.

To summarize, the three routines discussed so far are

file_member_of_directory([Directory, [Pattern,]]Short, Full)

They enumerate FileName-FullName pairs one at a time: in alphabetic order, as it happens.

There is another set of three predicates finding exactly the same solutions, but returning
them as a set of FileName-FullName pairs. We follow here the general convention that
predicates that return one “thing” have ‘thing’ in their name, and predicates that return
the set of “things” have ‘things’ in their name.

file_members_of_directory([?Directory, [?Pattern,]]?Set)
unifies Set with a list of FileName-FullName pairs that name visible files in the
given Directory matching the given Pattern. Thus, instead of

| ?- file_member_of_directory(foo, ’*.pl’, S, F).

S = ’bat.pl’,
F = ’foo/bat.pl’ ;

S = ’fly.pl’,
F = ’foo/fly.pl’ ;

no

one would find
| ?- file_members_of_directory(foo, ’*.pl’, Set).

Set = [’bat.pl’-’foo/bat.pl’, ’fly.pl’-’foo/fly.pl’]

610 Quintus Prolog

12.8.3 Finding Subdirectories

Corresponding to the above set of six predicates for matching files in a particular directory,
there is another set of six for matching subdirectories. They have the forms

directory_member_of_directory([?Directory, [?Pattern,]]?Short, ?Full)
directory_members_of_directory([?Directory, [?Pattern,]]?Set)

They are exactly like the ‘file_member...’ predicates in every way, except that
they insist that the files thus located should instead be proper subdirectories
of Directory. This means that not only should Full name a directory, but also
Short should not be ‘.’ or ‘..’. The reason for this is to allow you to easily
write routines that explore an entire directory tree, as in

explore(Directory, FullName) :-
file_member_of_directory(Directory, _, FullName).

explore(Directory, FullName) :-
directory_member_of_directory(Directory, _, SubDir),
explore(SubDir, FullName).

| ?- explore(., FullName), write(FullName), nl, fail.

If the self (‘.’) and parent (‘..’) entries were not concealed from the search, this
code would go into an infinite loop exploring ‘Directory/./././././././.’
and so on. Note that this does not preclude using ‘.’ and ‘..’ in the Directory
name itself.

12.8.4 Finding Properties of Files and Directories

Once you have obtained a file or directory name, you can ask about the properties of that
file or directory. The set of properties available is inherently operating-system-dependent.
This section describes the facilities currently available under UNIX and the restrictions in
the Windows version.

Properties fall into several classes. The current classes are

boolean having values true and false

integer having non-negative integer values
In the Windows version no ‘_id’ information, such as user_id, is obtained.

who (UNIX only) values are subsequences of [user,group,other] — that is, the
order of the elements must be preserved. Subsets will not do — [other,user]
is not a possible value.

date values are date(Year, Month, Day) terms. The arguments are this way round
so you can use them for sorting.

Chapter 12: Library 611

time values are date(Year, Month, Day, Hour, Minute, Second) terms, with Hour
on a 24-hour clock. The arguments are in this order so you can use them for
sorting. The times given are local times, not GMT times. See ctime(3).

user (UNIX only) values are user names

group (UNIX only) values are group names

The properties, with their types, are

readable : boolean
writable : boolean
executable : boolean file only
searchable : boolean directory only
set_user_id : boolean file only
set_group_id : boolean file only
save_text : boolean file only
only_one_link : boolean file only
who_can_read : who
who_can_write : who
who_can_execute : who file only
who_can_search : who directory only
access_date : date
modify_date : date
create_date : date
access_time : time
modify_time : time
create_time : time
owner_user_name : user
owner_group_name: group
owner_user_id : integer
owner_group_id : integer
number_of_links : integer file only
size_in_bytes : integer file only
size_in_blocks : integer file only
block_size : integer file only

The properties readable, writable, executable, and searchable ask the question “can
this process do such-and-such to the file”. For more information, see access(2). For more
information on the other properties, see stat(2).

The basic routine for determining the properties of files is

file_property(+File, ?Property, ?Value)
file_property/3 is true when File is the name of a visible regular file, Property
is one of the properties listed in the table above, other than those specific
to directories, and Value is the actual value of Property for that File. File
must be specified; there may be tens of thousands of files with a particular

612 Quintus Prolog

attribute! However, you can enumerate all the properties of a given File (by
leaving Property uninstantiated) if you like.

file_property/3 has the following variant:

file_property(+File, ?Property)
is only allowed when Property is a boolean property, and is otherwise equivalent
to the call

file_property(File, Property, true)

(Note that if there is a user with login name true, file_property(F,owner_
user_name,true) is possible, but file_property(F,owner_user_name) is not;
the Property really must be a boolean property, not just have true as its value.)
In particular, a quick way to check whether File names a file that this process
can read is to ask

file_property(File, readable)

See also can_open_file/3 in library(files). Note that
file_property(File, writable)

asks whether a writable File already exists; if you want to know whether
open(File, write, Stream) will be allowed, use can_open_file/3 (see Sec-
tion 12.7 [lib-ofi], page 599).

To match these two predicates, which access properties of files, there are two predicates for
asking about the properties of directories:

• directory_property(?Directory, ?Property, ?Value)

• directory_property(?Directory, ?Property) % boolean only

12.8.5 Summary

library(directory) provides Prolog routines for scanning directories and checking prop-
erties of files. See also absolute_file_name/2 in the reference pages, and library(files).

12.9 Obtaining User Input

12.9.1 Introduction

Quintus Prolog, DEC-10 Prolog, SICstus Prolog, and other similar Prolog systems offer
only two methods of input:

1. reading Prolog terms using read/1

2. reading single characters using get0/1

Chapter 12: Library 613

There is a large gap between the two, and sometimes the input requirements of application
programs lies in the gap. The Prolog library contains two sets of packages to fill the gap.

• library(readin) and library(readsent) are for reading English sentences. They
return a list of words, which you can then parse using a Definite Clause Grammar
(built into the Prolog system).

• library(ctypes), library(prompt), library(readconst), library(continued),
library(lineio), and library(ask) are more general in purpose.

12.9.2 Classifying Characters — library(ctypes)

One of the problems facing anyone who uses Prolog on more than one system is that different
operating systems use different characters to signal the end of a line or the end of a file. We
have

Dialect DEC-10 Prolog SICStus Prolog Quintus Prolog
OS (TOPS-10) (UNIX,Windows) (UNIX,Windows)

end-of-line 31 (^_) 10 (LF, ^J) 10 (LF, ^J)
end-of-file 26 (^Z) -1 -1

Windows note: From an application program’s point of view, each line in the
file is terminated with a single 〈LFD〉. However, what’s actually stored in the
file is the sequence 〈RET〉〈LFD〉.

A prudent Prolog programmer will try to avoid writing these constants into his program.
Indeed, a prudent Prolog programmer will try to avoid relying too much on the fact that
Prolog uses the ASCII character set.

Quintus Prolog addresses these problems by imitating the programming language C. The
package library(ctypes) defines predicates that recognize or enumerate certain types of
characters. Where possible, the names and the character sets have been borrowed from C.

Except as indicated, all of the predicates in library(ctypes) check the type of a given
character, or backtrack over all the characters of the appropriate type if given a variable.

is_endfile(-Char)
Char is the end-of-file character. There is only one such character. If get0/1
returns it, the end of the input file has been reached, and the file should not be
read further. No special significance is attached to this character on output; it
might not be a valid output character at all (as in Quintus Prolog) or it might
simply be written out along with other text.
The need for this predicate is largely obviated by the built-in predicate at_
end_of_file/[0,1] in Release 3.

614 Quintus Prolog

is_newline(-Char)
Char is the end-of-line character. There is only one such character. You can
rely on it not being space, tab, or any printing character. It is returned by
get0/1 at the end of an input line. The end-of-line character is a valid output
character, and when written to a file ends the current output line. It should
not be used to start lines, only to end them.
The need for this predicate is largely obviated by the built-in predicate skip_
line/[0,1] in Release 3.

is_newpage(-Char)
Char is the end-of-page character. There is at most one such character, and
when it is defined at all it is the ASCII “formfeed” character. On some systems
there may be no end-of-page character. This character is returned by get0/1
at the end of an input page. It is a valid output character, and when written to
a file ends the current output page. It should not be used to start pages, only
to end them.

is_endline(+Char)
Some systems permit more than one end-of-line character for terminal input;
one of them is always C’s “newline” character, another is the end-of-file char-
acter (^D or ^Z) if typed anywhere but as the first character of a line, and the
last is the “eol” character, which the user can set with the stty(1) command.
is_endline/1 accepts most ASCII control characters, but not space, tab, or
delete, which covers all the line terminators likely to arise in practice. It should
only be used to recognize line terminators; if passed a variable, it will raise an
error exception.
The need for this predicate is largely obviated by the built-in predicate at_
end_of_line/[0,1] in Release 3.

is_alnum(?Char)
is true when Char is the ASCII code of a letter or digit. It may be used
to recognize alphanumerics or to enumerate them. Underscore ‘_’ is not an
alphanumeric character. (See is_csym/1 below.)

is_alpha(?Char)
is true when Char is the ASCII code of a letter. It may be used to recognize
letters or to enumerate them. Underscore ‘_’ is not a letter. (See is_csymf/1
below.)

is_ascii(?Char)
is true when Char is in the range 0..127. If Char is a variable, is_ascii/1
(like most of the predicates in this section) will try to bind it to each of the
acceptable values in turn (that is, it will enumerate them). Whether the end-
of-file character satisfies is_ascii/1 or not is system-dependent.

is_char(?Char)
is true when Char is a character code in whatever the range happens to be. (In
this version: ISO 8859/1.)

Chapter 12: Library 615

is_cntrl(?Char)
is true when Char is an ASCII control character; that is, when Char is the code
for DEL (127) or else is in the range 0..31. Space is not a control character.

is_csym(?Char)
is true when Char is the code for a character that can appear in an identifier.
C identifiers are identical to Prolog identifiers that start with a letter. Put
another way, Char is a letter, digit, or underscore. There are C compilers that
allow other characters in identifiers, such as ‘$’. In such a system, C’s version
of iscsym/1 will accept those additional characters, but Prolog’s will not.

is_csymf(?Char)
is true when Char is the code for a character that can appear as the first
character of a C or Prolog identifier. Put another way, Char is a letter or an
underscore.

is_digit(?Char)
is true when Char is the code for a decimal digit; that is, a character in the
range 0..9.

is_digit(?Char, ?Weight)
is true when Char is the character code of a decimal digit, and Weight is its
decimal value.

is_digit(?Char, ?Base, ?Weight)
is true when Char is the code for a digit in the given Base. Base should be
an integer in the range 2..36. The digits (that is, the possible values of Char
) are 0..9, A..Z, and a..z, where the case of a letter is ignored. Weight is the
value of Char considered as a digit in that base, given as a decimal number.
For example,

is_digit(97 /* a */, 16, 10)
is_digit(52 /* 4 */, 10, 4)
is_digit(70 /* F */, 16, 15)

This is a genuine relation; it may be used all possible ways. You can even use
it to enumerate all the triples that satisfy the relation. Each argument must be
either a variable or an integer.

is_graph(?Char)
is true when Char is the code for a “graphic” character, that is, for any printing
character other than space. The graphic characters are the letters and digits,
plus

! " # $ % & ’ () * ; < = > ? @
[\] ^ _ ‘ { | } ~ + , - . / :

is_lower(+Char)
is true when Char is the code for a lowercase letter, a..z.

is_paren(?Left, ?Right)
is true when Left and Right together form one of the delimiter pairs ‘(’ and ‘)’,
‘[’ and ‘]’, or ‘{’ and ‘}’.

616 Quintus Prolog

is_period(?Char)
is_period/1 recognizes each of the three punctuation marks that can end an
English sentence. That is, is_period(Char) is true when Char is an exclama-
tion point (‘!’), a question mark (‘?’), or a period (‘.’). Note that if you want
to test specifically for a period character, you should use the goal

Char is "."

is_print(?Char)
is true when Char is any of the ASCII “printing” characters, that is, anything
except a control character. All the “graphic” characters are “printing” charac-
ters, and so is the space character. When written to ordinary terminals, each
printing character takes exactly one column, and Prolog code for lining up out-
put in nice columns is entitled to rely on this. The width of a tab, and the
depiction of other control characters than tab or newline, is not defined.

is_punct(?Char)
is true when Char is the code for a non-alphanumeric printing character; that
is, Char is a space or one of the characters listed explicitly under is_graph/1.
Note that underscore is a “punct” and so is the space character. The reason
for this is that C defines it that way, and this package eschews innovation for
innovation’s sake.

is_quote(?Char)
is true when Char is one of the quotation marks ‘‘’ (back-quote), ‘’’ (single-
quote), or ‘"’ (double-quote).

is_space(?Char)
is true when Char is the code for a white space character. This includes tab (9,
^I), linefeed (10, ^J), vertical tab (11, ^K), formfeed (12, ^L), carriage return
(13, ^M), and space (32). These constitute the C definition of white space.
For compatibility with DEC-10 Prolog, is_space/1 also accepts the (31, ^)
character.

is_upper(?Char)
is true when Char is the code for an uppercase letter, A..Z.

is_white(?Char)
is true when Char is a space or a tab. The reason for distinguishing between
this and is_space/1 is that if you skip over characters satisfying is_space/1
you will also be skipping over the ends of lines and pages (though at least you
will not run off the end of the file), while if you skip over characters satisfying
is_white/1 you will stop at the end of the current line.

to_lower(?Char, ?Lower)
is true when Char is any ASCII character code, and Lower is the lowercase
equivalent of Char. The lowercase equivalent of an uppercase letter is the
corresponding lowercase letter. The lowercase equivalent of any other character
is the same character. If you have a string (list of character codes) X, you can
obtain a version of X with uppercase letters mapped to lowercase letters and
other characters left alone by calling the library routine

Chapter 12: Library 617

maplist(to_lower, X, LowerCasedX)

In normal use of to_lower/2, Char is bound. If Char is uninstantiated, to_
lower/2 will still work correctly, but will be less efficient. If you want to convert
a lowercase letter Kl to its uppercase version Ku, do not use to_lower/2; to_
lower(Ku, 97) has two solutions: 65 (A) and 97 (a). Use to_upper/2 instead.

to_upper(?Char, ?Upper)
is true when Char is any ASCII character code, and Upper is the uppercase
equivalent of Char. The uppercase equivalent of a lowercase letter is the cor-
responding uppercase letter. The uppercase equivalent of any other character
is the same character. If you have a string (list of character codes) X, you can
obtain a version of X with lowercase letters mapped to uppercase and other
characters left alone by calling the library routine

maplist(X, to_upper, UpperCasedX)

The System V macro isxdigit() is not represented in this package because isdigit/3 sub-
sumes it. The System V macros _tolower() and _toupper() are not represented because
to_lower/2 and to_upper/2 subsume them.

The predicates needed for portability between operating systems are

• is_endfile/1

• is_endline/1

• is_newline/1

• is_newpage/1

Remember: is_endfile/1 and is_endline/1 are for recognizing the end of an input file
or the end of an input line, while is_newline/1 and is_newpage/1 return the character
that you should give to put/1 to end a line or page of output.

12.9.3 Reading and Writing Lines — library(lineio)

library(lineio) defines some commands for reading and writing lines of text.

get_line(-Chars, -Terminator)
reads characters from the current input stream until it finds an end-of-line
character. Chars is unified with a list containing all the character codes other
than the end-of-line character, and Terminator is unified with the end-of-line
character. This allows you to check which character ended the line; in particular
you should be prepared to handle the is_endfile(Terminator) case. When
the end of a file is encountered, there may have been a partial line preceding it;
so when is_endfile(Terminator), Chars may or may not be the empty list.
get_line/2 is normally called with Chars unbound. A call to get_line/2
with Chars bound will behave similarly to get0/1 in that even if the line of
characters does not unify with Chars, nevertheless the entire line is consumed

618 Quintus Prolog

and is irretrievable. Thus, if you call get_line("fred", Eol) and the next
line of input is in fact ‘jim’ or ‘frederica’, the entire line will have been read
before the call to get_line/2 fails. Only call get_line/2 with Chars bound
when you want the line to be thrown away if it does not match. For example,
if you want to skip until you encounter a line containing only a single ‘.’ (a
convention some editors and some mailers use for the end of terminal input),
you can write

...
skip_through_line(".")

where
skip_through_line(X) :-

repeat,
get_line(X, _),

!.

(skip_through_line/1 is not in the library.)

get_line(-Chars)
is used for the common case in which you are uninterested in what the end-of-
line character was, provided it was not end-of-file. get_line/1 reads a whole
line, just like get_line/2, then checks that the line terminator was not the end-
of-file character, and unifies the list of character codes with Chars. If Chars is
instantiated and does not match the line that is read, or if the line terminator
was end-of-file, get_line/1 fails quietly (with the same consequences regarding
the loss of the non-matching text as with get_line/2 above).

fget_line(+Stream, ?Chars, ?Terminator)
like get_line/2 except that Stream is specified.

fget_line(+Stream, ?Chars)
like get_line/1 except that Stream is specified.

put_chars(+Chars)
is a generalization of put/1. Chars should be instantiated to a (possibly empty)
list of character codes. The corresponding characters are written to the current
output stream. If you know the characters in advance, it is better to use
write/1; for example,

put_chars("they do the same thing")

and
write(’they do the same thing’)

both write exactly the same characters to the current output stream, but the
latter is more efficient. Use put_chars/1 when you already have the text you
want to write as a list of character codes, write/1 when you have the text as
an atom.

put_line(+Chars)
writes the list of character codes Chars, then writes a newline character. It
produces exactly the same output that

Chapter 12: Library 619

put_chars(Chars), nl

would, but is generally more convenient. If you are reading lines from one file
using get_line/1 and writing them to another, put_line/1 is the predicate
to use.

12.9.4 Reading Continued Lines — library(continued)

library(continued) is an extension of library(lineio). It defines two commands for
reading continued lines.

read_oper_continued_line(-Line)
reads a line of text, using a convention rather like that of BCPL: an input line
that ends with ‘<op, newline>’ where op is a left parenthesis ‘(’, left bracket
‘[’, left brace ‘{’, or a binary infix character from the set

+ * - / # = < > ^ | & : ,

is taken to be continued; the op character is included in the combined Line, but
the newline is not included.

| ?- compile([library(printchars),library(continued)]).

. . .
| ?- read_oper_continued_line(Line).

|: command /option1=value1,

|: /option2=value2

Line = "command /option1=value1, /option2=value2"

| ?- read_oper_continued_line(Line).

|: Not continued!

Line = "Not continued!"

| ?- read_oper_continued_line(Line).

|: x^2+
|: 2*x+
|: 1

Line = "x^2+2*x+1"

It is likely that this will not be exactly the set of characters you want to act
as continuation indicators, and you may want some op characters retained and
others discarded. That is why we make the source code available: this file is
intended mainly as an example.

read_unix_continued_line(-Line)
uses the UNIX convention (understood by sh, csh, cc, and several other pro-
grams) that a line terminated by a ‘<backslash, newline>’ pair is continued,

620 Quintus Prolog

and the backslash and newline do not appear in the combined Line. For exam-
ple,

| ?- read_unix_continued_line(Line).

|: ab\

|: cde\

|: f

Line = "abcdef"

The following example is an extract from ‘/etc/termcap’:
| ?- unix(system(’cat termcap-extract’)).

dw|vt52|dec vt52:\
:cr=^M:do=^J:nl=^J:bl=^G:\
:le=^H:bs:cd=\EJ:ce=\EK:cl=\EH\EJ:cm=\EY%+ %+ :\
:co#80:li#24:nd=\EC:ta=^I:pt:sr=\EI:up=\EA:\
:ku=\EA:kd=\EB:kr=\EC:kl=\ED:kb=^H:

dx|dw2|decwriter II:\
:cr=^M:do=^J:nl=^J:bl=^G:\
:kb=^h:le=^H:bs:co#132:hc:os:

| ?- see(’termcap-extract’),

| read_unix_continued_line(Line),

| seen.

Line = "dw|vt52|dec vt52: :cr=^M:do=^J:nl=^J:bl=^G:
:le=^H:bs:cd=\EJ:ce=\EK:cl=\EH\EJ:cm=\EY%+ %+ :

:co#80:li#24:nd=\EC:ta=^I:pt:sr=\EI:up=\EA: :ku=\E
A:kd=\EB:kr=\EC:kl=\ED:kb=^H:"

Note that only the backslashes at the ends of the lines have been discarded,
and that the spaces at the beginning of the following lines have been retained.

12.9.5 Reading English Sentences

12.9.5.1 Overview

There are two library files for reading sentences. One of them is library(readin), which
defines the single predicate read_in/1. library(readin) was written to be used.

library(readsent) was originally written to be read and modified, as everyone has a
different idea of how sentence reading should be done. Nevertheless, you may find read_
sent/1 to be quite useful.

Both sentence readers work by reading characters until some termination condition and
then parsing a list of character codes using a Definite Clause Grammar. You can have any

Chapter 12: Library 621

number of grammars in one Prolog program. You will probably find that read_in/1 does
most of what you want, but if you want to do something different you may find it easier to
modify read_sent/1.

12.9.5.2 library(readin)

read_in(-Sentence)
reads characters from the current input stream until it finds end-of-file or a
sentence terminator (see is_period/1) at the end of a line. There may be any
number of tabs and spaces between that stop and the end of the line. It then
breaks the characters up into “words”, where a “word” is
• a sequence of letters (see is_alpha/1), which is converted to lowercase and

returned as a Prolog atom
• a sequence of decimal digits (see is_digit/1), which is returned as a Prolog

integer (plus and minus signs become separate atoms).
• any graphic character other than a letter or digit, which is returned as a

single-character Prolog atom

The resulting list is returned in Sentence. The punctuation mark that termi-
nated the sentence is included in the list. Here is an example:

| ?- read_in(X).

|: This is an example. An example of read-in. In

|: it there are +00003 sentences!

X = [this,is,an,example,.,an,example,of,read,-,
in,.,in,it,there,are,+,3,sentences,!]

Note that the end-of-line character, and any spaces and tabs following the sen-
tence terminator, are consumed. It is important that the end-of-line character
be consumed; otherwise subsequent prompts will behave unpredictably.

12.9.5.3 library(readsent)

read_until(?Delimiters, -Answer)
reads characters from the current input until a character in the Delimiters string
is read. The characters are accumulated in the Answer string, and include the
closing delimiter. The end-of-file character always acts as a delimiter, even if it
is not in the list of characters you supply.

trim_blanks(+RawInput, ?Cleaned)
removes leading and trailing layout characters from RawInput, and replaces
internal groups of layout characters by single spaces.

chars_to_words(+Chars, ?Words)
parses a list of characters (read by read until) into a list of tokens, where a
token is

X X a full stop or other punctuation mark

622 Quintus Prolog

atom(X) X a sequence of letters, e.g. atom(the)

integer(X)
X a sequence of digits, e.g. integer(12)

apost ‘’’

aposts ‘’’s

string(X)
X "..sequence of any.."

Thus the string ‘the "Z-80" is on card 12.’ would
be parsed as [atom(the),string(’Z-80’),atom(is),atom(on),atom(card),
integer(12),’.’]. It is up to the sentence parser to decide what to do with
these. Note that the final full stop, if any, is retained, as the parser may need
it.

case_shift(+Mixed, ?Lower)
converts all the upper case letters in Mixed to lower case. Other charac-
ters (not necessarily letters!) are left alone. If you decide to accept other
characters in words only chars_to_atom has to alter. See also lower/2 in
library(caseconv).

read_line(-Chars)
reads characters up to the next newline or the end of the file, and returns them
in a list, including the newline or end-of-file. Usually you want multiple spaces
conflated to one, and the newline dropped. To do this, call trim_blanks on the
result. For a routine that does not include the newline character in the result,
see the predicate get_line/1 in library(lineio).

read_sent(-Sentence)
reads a single sentence from the current input stream. It reads characters up to
the first sentence terminator (as defined by is_period/1) it finds, then throws
characters away until it has reached the end of a line. The characters read are
then broken up into “words”, where a “word” is
• a sequence of letters, which is converted to lowercase and returned as a

compound term atom(Word). For example, ‘THIS’ would be returned as
atom(this)

• a sequence of decimal digits, which is returned as a compound
term integer(Value). For example, ‘0123’ would be returned as
integer(123). Plus and minus signs become separate atoms.

• a sequence of characters in double quotes, which is returned as a compound
term string(X), where X is an atom containing the characters between the
quotes. Two adjacent quotes are read as one, so the input string ‘Double
"" Quote’ is returned as string(’Double " Quote’).

• apostrophe s (‘’s’) is returned as the atom aposts.
• apostrophe not followed by s (‘’’) is returned as the atom apost.
• any other graphic character is returned as a single-character Prolog atom.

The resulting string is returned in Sentence. Here is an example.

Chapter 12: Library 623

| ?- read_sent(X).

|: The predicate read_sent/1 accepts sentences

|: that span more than 1 line, but not lines

|: that contain +2 or more sentences. trash trash

X = [atom(the),atom(predicate),string(read_sent),
atom(accepts),atom(sentences),atom(that),
atom(span),atom(more),atom(than),integer(1),
atom(line),’,’,atom(but),atom(not),atom(lines),
atom(that),atom(contain),+,integer(2),atom(or),
atom(more),atom(sentences),.]

This is more unwieldy than the output of read_in/1, but it does mean that
your parser can tell the difference between words, numbers, and strings by
pattern matching rather than having to use the meta-logical predicates atom/1,
integer/1, and so forth.

12.9.6 Yes-no Questions, and Others — library(ask)

The file library(ask) defines a set of commands for asking questions whose answer is a sin-
gle character, and for asking for file names (see Section 12.7.5.2 [lib-ofi-oth-ask], page 605).

library(ask) uses several commands from library(prompt), but if you want to use them
in your program you should explicitly include the directive

:- ensure_loaded(library(prompt)).

in your program. The principal such command is prompt/1, which is used to print the
question or prompt.

yesno(+Question)
writes Question (using write/1) to the terminal, regardless of the current out-
put stream, and reads an answer. The prompt is followed by ‘? ’, so you should
not put a question mark in the question yourself. The answer is the first charac-
ter typed in response; anything following on the same line will be thrown away.
If the answer is y or Y, yesno/1 succeeds. If the answer is n or N, yesno/1
fails. Otherwise it repeats the question. The user has to explicitly type a y or
n before it will stop. Because the rest of the line is thrown away, the user can
type yes, Yes, You’d better not, and so forth with exactly the same effect as
a plain y. If the user just presses 〈RET〉, that is not taken as yes.

yesno(+Question, +Default)
is like yesno/1 except that
• Default may be an atom (the first character of whose name will be used),

a string (whose first character will be used) or an ASCII code, and will be
written in brackets before the question mark; and

• if the user just presses 〈RET〉, Default will be used as the answer.

624 Quintus Prolog

For example,
yesno(’Do you want an extended trace’, yes)

prints
Do you want an extended trace [y]? _

and leaves the terminal’s cursor where the underscore is. If the user presses
〈RET〉, this call to yesno/1 will succeed. If the user answers yes it will succeed.
If the user answers no it will fail. If the first non-layout character of the user’s
answer is neither n, N, y, nor Y, the question will be repeated.

ask(+Question, -Answer)
writes Question to the terminal as yesno/1 would, and reads a single character
Answer. Answer must be a “graphic” character (a printing character other
than space). ask/2 will continue asking until it is given such a character. The
remainder of the input line will be thrown away.

ask(+Question, +Default, -Answer)
uses Default as the default character the way that yesno/2 does, and mentions
the default in brackets just before the question mark. If the user presses carriage
return, Default will be returned as his Answer. Answer can be instantiated, in
which case the call to ask/2 or ask/3 will fail if the user does not give that
answer. For example, yesno/2 could (almost) have been defined as

yesno(Question, Default) :-
ask(Question, Default, 0’y).

ask_chars(+Prompt, +MinLength, +MaxLength, -Answer)
writes Prompt to the terminal, and reads a line of characters from it. This re-
sponse must contain between MinLength and MaxLength characters inclusive,
otherwise the question will be repeated until an answer of satisfactory length
is obtained. Leading and/or trailing layout characters are retained in the re-
sult, and are counted when determining the length of the answer. The list of
character codes read is unified with Answer. Note that a colon and a space
(‘: ’) are added to the Prompt, so don’t add such punctuation yourself. The
end-user can find out what sort of input is required by typing a line that starts
with a question mark. Therefore it is not possible to read such a line as data.
See prompted_line/2 in library(prompt).
Examples:

Chapter 12: Library 625

| ?- ask_chars(’Label’, 1, 8, Answer).

Label: 213456789

Please enter between 1 and 8 characters.
Do not add a full stop unless it is part of the answer.
Label: four

Answer = "four"

| ?- ask_chars(’Heading’, 1, 30, Answer).

Heading: ?

Please enter between 1 and 30 characters.
Do not add a full stop unless it is part of the answer.
Heading: three leading spaces

Answer = " three leading spaces"

ask_number(+Prompt, +Default, -Answer)
writes Prompt on the terminal, and reads a line from it in response. If, after
“garbage” characters are thrown away, the line read represents a Prolog number,
that number is unified with Answer. The “garbage” characters that are thrown
away are layout characters (including spaces and tabs), underscores ‘_’, and
plus signs ‘+’. For example, the input ‘+ 123_456’ would be treated as if the
user had typed ‘123456’. The conversion is done by number_chars/2. If the
user entered an integer, Answer will be unified with an integer. If the user
entered a floating-point number, Answer will be unified with a floating-point
number. No conversion is done. If the line contains only “garbage” characters
and there is a Default argument, Answer is unified with Default. This happens
regardless of whether or not Default is a number. If the input is unacceptable,
the question will be repeated after an explanation of what is expected. The
user can type ? for help. Examples:

626 Quintus Prolog

| ?- ask_number(’Pick a number’, X).

Pick a number: ?

Please enter a number followed by RETURN
Pick a number: 27

X = 27

| ?- ask_number(’Say cheese’, X).

Say cheese:
Please enter a number followed by RETURN
Say cheese: 3 . 141 _ 593

X = 3.14159

| ?- ask_number(’Your guess’, ’100%’, X).

Your guess [100%]: 38.

Please enter a number followed by RETURN
Your guess [100%]: 38

X = 38

| ?- ask_number(’Your guess’, ’100%’, X).

Your guess [100%]: 〈RET〉

X = ’100%’

ask_number(+Prompt, +Lower, +Upper[, +Default], -Answer)
These two predicates are a combination of ask_between/[4,5] and ask_
number/[2,3]. They write the prompt to the terminal, read a line from it
in response, throw away “garbage” characters, try to parse the result as a num-
ber, and check that it is between the Lower and Upper bounds. Lower and
Upper may severally be integers or floating point numbers. Answer will be uni-
fied with an integer if the user typed an integer, with a floating-point number
if the user typed a floating-point number, or with whatever Default happens
to be if there is a Default and the user entered an empty line. If you want
a floating-point result whatever the user typed, you will have to do your own
conversion with is/2. Examples:

| ?- ask_number(’Enter temperature in Fahrenheit’,

32.0, 212.0, 77.0, Temp).

Enter temperature in Fahrenheit [77.0]: 10

Please enter a number between 32.0 and 212.0 followed
by RETURN
Enter temperature in Fahrenheit [77.0]: 68

Temp = 68

ask_file(+Question, -Filename)
same as ask_file/3.

Chapter 12: Library 627

ask_file(+Question, +Mode, -FileName)
writes Question to the terminal and reads a filename from the terminal, regard-
less of the current I/O streams. If the user presses 〈RET〉, ask_file/3 just fails;
an empty filename is taken as an indication that the user has finished entering
file names. A reply beginning with a question mark will cause a brief help mes-
sage to be printed (explaining that a filename is wanted, and how to enter one),
and the question will be repeated. Otherwise, ask_file/3 checks that the file
can be opened in the mode specified by Mode (read, write, or append). If it is
not possible to open the file in mode Mode, the operating system’s error result
is reported and the question is repeated. If it is possible to open the file in this
mode, the name of the file is returned as FileName. However, ask_file/3 does
not open the file for you, it simply checks that it is possible to open the file.
Here is an example “dialogue”:

| ?- ask_file(’Where should the cross-reference go? ’,

write, File).

Where should the cross-reference go? ?

Please enter the name of a file that can be opened
in write mode, followed by 〈RET〉. To end this
operation, just type 〈RET〉 with no filename.
Where should the cross-reference go? call.pl

! Permission error: cannot access file ’call.pl’
! O/S error : Permission denied
! goal: can_open_file(’call.pl’,write,warn)

| ?- ask_file(’Where should the cross-reference go? ’,

write, File).

Where should the cross-reference go? call.xref

File = ’call.xref’

| ?- ask_file(’Next file: ’, read, File).

Next file: call.pl

! Permission error: cannot access file ’call.pl’
! O/S error : Permission denied
! goal: can_open_file(’call.pl’,read,warn)

| ?- ask_file(’Next file: ’, read, File).

Next file: call.xref

! Existence error in can_open_file/3
! file call.xref does not exist
! O/S error : No such file or directory
! goal: can_open_file(’call.xref’,read,warn)

Points to note:
• ask_file/3 does not add a question mark and space to the prompt; you

must put them in the question yourself.

628 Quintus Prolog

• Although the first call to ask_file/3 found that it was possible to open
‘call.xref’ for output, it did not open it, so the second call to ask_file/3
could not find any such file.

ask_between(+Prompt, +Lower, +Upper[, +Default], -Answer)
writes Prompt on the terminal, and reads a line in response. If the line read
represents a Prolog integer between Lower and Upper inclusive, this line is
unified with Answer. The line may contain only digits and perhaps a leading
minus sign. If the line is empty and there is a Default argument, Answer is
unified with Default. This happens regardless of whether Default is an integer
or in the indicated range. If the answer read is not acceptable, the user is
told what sort of answer is wanted and is prompted again. For example, after
defining

p(X) :-
ask_between(’Number of samples’,1,20,

[none],X),
integer(X).

the following conversation might take place.
| ?- p(X).

Number of samples [none]: ?

Please enter an integer between 1 and 20
Do not add a full stop.
Number of samples [none]: 0

Please enter an integer between 1 and 20
Do not add a full stop.
Number of samples [none]: 9

X = 9

| ?- p(X).

Number of samples [none]: 〈RET〉
no

The prompt that is printed is ‘Prompt [Default]: ’ if there is a Default argu-
ment, ‘Prompt: ’ otherwise, so that you can use the same prompt whether or
not there is a default argument.

ask_oneof(+Prompt, +Constants[, +Default], -Answer)
prints Prompt on the terminal, and reads a line in response. Constants should
be a list of constants (terms that are acceptable as the first argument of name/2).
If the user’s response is the full name of one of the constants, Answer is unified
with that constant. Failing that, if the user’s response is a prefix of exactly one
of the constants, Answer is unified with that constant. If the response is just
〈RET〉, and there is a Default argument, Answer is unified with Default (which
need not be a constant, nor need it be an element of Constants). If nothing else
works, the user is told what sort of response is wanted, and is prompted again.

Chapter 12: Library 629

The prompt that is printed is ‘Prompt [Default]: ’ if there is a Default argu-
ment, ‘Prompt: ’ otherwise, so that you can use the same prompt whether or
not there is a default argument.

You should find it straightforward to define your own simple queries using this kit. As a
general rule, try to arrange things so that if the user types a question mark s/he is told
what sort of response is wanted. All the queries defined in this section do that.

The commands for reading English sentences do nothing special when their input is a single
question mark. Here is an example of how you can build a query from them that does
something sensible in this case.

ask_sentence(Prompt, Sentence) :-
repeat,

prompt(Prompt),
read_in(X),
(X = [?] ->

format(user_output,
’Please enter an English sentence.~n’, []),

fail
; true
),

!,
Sentence = X.

12.9.7 Other Prompted Input — library(prompt)

library(prompt) defines several commands for reading prompted input from the terminal.
In fact, library(ask) is built on top of this package.

prompt(+Prompt)
is used by all the commands in library(ask) to print the prompt or question.
You may find it useful in constructing your prompted input commands. If
Prompt is any term except a list, it is written to the terminal using write/1;
if Prompt is a list of terms, each element of the list is written to the terminal
using write/1, with no additional layout or punctuation. After writing Prompt
to the terminal, the terminal output is flushed, so that Prompt will appear on
the terminal before the user has to type an answer. prompt/1 ensures that
Prompt always starts at the beginning of a line.

prompted_char(+Prompt, -Char)
writes Prompt to the terminal, and reads a line of characters from it. The first
of these characters is returned as Char; the rest are discarded. The original
case of the character is preserved. Note that Char might be a newline character
or the end-of-file character.

630 Quintus Prolog

prompted_line(+Prompt, -Chars)
prompted_line(+Prompt, -Chars, -Terminator)

These predicates write Prompt to the terminal, regardless of the current output
stream; and read a list of character codes from the terminal, regardless of the
current input stream. Prompt is written using write/1; it is normally a single
atom, and should never be a list of character codes. prompted_line/3 also
returns the end-of-line character, while prompted_line/2 simply checks that
the end-of-line character is not end-of-file. When you want to ask the user of
your program a question, use prompted_line/[2,3] instead of changing I/O
streams yourself, or using ttyget0/1 and its associates. In order to ask the
user of your program “Do you really want to stop?” and stop if the user says
yes or anything else beginning with a lowercase y, simply write

conditional_halt :-
prompted_line(’Do you really want to stop? ’,

[0’y|_]),
halt.

You can use prompted_line/[2,3] without worrying what the current I/O
streams are, or whether you need to call ttyflush/0 or not. Also, as with
get_line/[1,2], an input line ends with the line terminator character. The
user does not have to end prompted_line/[2,3] input with a ., just with
〈RET〉.

12.9.8 Pascal-like Input — library(readconstant)

library(readconst) provides a set of Pascal-like input commands. The commands are

• read_constant(X)

• read_constant(Stream,X)

• read_constants([X1,...,Xn])

• read_constants(Stream,[X1..Xn])

• prompted_constant(Prompt, X)

• prompted_constants(Prompt, [X1,...,Xn])

• skip_constant

• skip_constant(Stream)

• skip_constants(N)

• skip_constants(Stream,N)

The idea is that these commands consume some number of “tokens” from the in-
put stream (for read_constant/1, skip_constant/0, read_constants/1, and skip_
constants/1 this is the current input stream; for read_constant/2, skip_constant/1,
read_constants/2, and skip_constants/2 it is the Stream argument; for prompted_
constant/2 and prompted_constants/2 it is the user_input stream). prompted_
constant/1 and prompted_constants/2 resemble Pascal’s readln command; the others
resemble Pascal’s read command.

Chapter 12: Library 631

These commands skip initial layout (spaces and control characters). There are two kinds
of tokens: quoted tokens and unquoted tokens.

A quoted token starts with a single quote (‘’’) or a double quote (‘"’). It ends with the
same character that it starts with. To include a quote in such a token, write the quote
twice. This is the same as Prolog with the character_escapes flag off. (There is currently
no way of making read_constant/1 use C-style character escapes.) A token that starts
with a single quote will be returned as a Prolog atom, even if it looks like a number. Again,
this is the same as Prolog. For example, ‘5’ will be returned as the atom 5, not the integer
5. A token that starts with a double quote will be returned as a list of character codes.
For example, ‘""""’ (four double quotes) will be returned as the list [34]. Both ‘’’’ (two
single quotes) and ‘""’ (two double quotes) are acceptable tokens, meaning the atom with
no characters in its name (’’) and the empty list ([]) respectively.

The character following the closing quote of a quoted token is always discarded. This
character is normally a space, tab, newline, or comma.

An unquoted token is anything else. Characters are read until a layout character or a comma
is found. The comma or layout character that terminates the token is discarded. The other
characters are given to the built-in predicate name/2, so the token will be returned as a
number if it looks like a number; otherwise it will be returned as an atom. The syntax of
numbers is perforce identical to the syntax of numbers in Quintus Prolog.

In both cases, we have leading layout, which is skipped, the token proper, and a terminating
character, which is discarded. If, for example, the input looks like

fred, 1.2 ’ ’, last〈LFD〉

and we call ‘read_constants([A,B,C,D])’, the bindings will be ‘A=fred, B=1.2, C=’ ’,
D=last’, and the entire line will have been consumed. But if the input looks like

fred, 1.2 ’ ’, last〈SPC〉〈SPC〉〈LFD〉

the last 〈SPC〉 and 〈LFD〉 will be left in the input stream.

The input stream can contain end-of-line comments, which begin with a percent sign (‘%’)
just as they do in Prolog. A comment will terminate an unquoted token, and will be skipped.
Suppose you want a data file that contains a number and a filename. The file could look
like this:

% This is the data file.
137 % is the number
foobaz/other-file % is the filename

You could read it by calling

| ?- see(’the-file’), read_constants([Nbr,File]), seen.

The following predicates are defined in library(readconst):

632 Quintus Prolog

read_constant(-Constant)
reads a single constant from the current input stream, then unifies Constant
with the result.

read_constant(+Stream, -Constant)
reads a single constant from Stream, then unifies Constant with the result.

read_constants(-[X1,...,XN])
The argument must be a proper list. N constants are read from the current
input stream, then [X1,. . . ,XN] is unified with a list of the results.

read_constants(+Stream, -[X1,...,XN])
The second argument must be a proper list. N constants are read from Stream,
then [X1,. . . ,XN] is unified with a list of the results.

skip_constant
reads a single constant from the current input stream, then throws it away. This
produces the same effect as calling read_constant(_), but is more efficient,
as it doesn’t convert the constant from character form to Prolog form before
discarding it.

skip_constant(+Stream)
reads a single constant from Stream and discards it. This produces the same
effect as calling read_constant(Stream, _) but is more efficient.

skip_constants(+N)
reads N constants from the current input stream and discards them. N must
be a non-negative integer.

skip_constants(+Stream, +N)
reads N constants from Stream and discards them. N must be a non-negative
integer.

prompted_constant(+Prompt, -Constant)
writes Prompt to the terminal (to user_output) and reads one constant from
it (from user_input) in response, then unifies Constant with the result. This
command will flush the rest of the input line after it has read Constant, just
like the commands in library(ask). Here is an example:

| ?- prompted_constant(’Guess the magic number: ’, X),

| integer(X).

Guess the magic number: 27 is my guess

X = 27

The words ‘is my guess’ and the new-line are discarded.

prompted_constants(+Prompt, -[X1,...,XN])
writes a prompt to the terminal (to user_output) and reads N constants from
it (from user_input) in response, then unifies [X1,. . . ,XN] with a list of the
results. This command will flush the rest of the input line after it has read
[X1,. . . ,XN], just like the commands in library(ask).

Chapter 12: Library 633

12.10 Interface to Math Library

12.10.1 Introduction — library(math)

library(math) is an interface to the math(3m) library.

All of the predicates in this module take some number of numeric arguments and yield
a numeric result as their last argument. For example, the predicate call sin(X, Result)
unifies Result with sin(X). The predicates provided are

sign(X, Result)
Result is +/-1, agreeing with sign of X.

sign(X, Y, AbsX_SignY)
abs(X, Result)

Result has same type as X

fabs(X, Result)
Result is a float

hypot(X, Y, Result)
Result is sqrt(X*X+Y*Y)

max(X, Y, Result)
If X and Y are different types,

min(X, Y, Result)
Result may be of either type; see NOTE #1, below.

log(X, Result)
natural logarithm

log10(X, Result)
common logarithm; see NOTE #2, below.

pow(X, Y, Result)
Result is X**Y; see NOTE #2, below.

exp(Y, Result)
Result is e**Y

sqrt(X, Result)
Result is X**0.5

scale(X, Integer, Result)
X and Result) are floats, Result = X*2^N.

floor(+X, ?Result)
floor(+X, Result, Fraction)
ffloor(X, Result)

Result is float(floor(X))

634 Quintus Prolog

ffloor(X, Result, Fraction)
truncate(X, I)
truncate(X, I, F)
ftruncate(X, I)
ftruncate(X, I, F)
ceiling(+X, ?Result)
ceiling(+X, ?Result, Fraction)

like ceiling/2, with a fraction present.

fceiling(X, Result)
Result is float(ceiling(X))

fceiling(X, Result, Fraction)
like fceiling/2, with a fraction present.

round(X, Result)
round(X, Result, Fraction)
fround(X, Result)
fround(X, Result, Fraction)
fremainder(X, Y, Remainder)
decode_float(?Number, ?Sign, ?Significand, ?Exponent)

j0(X, Result)
These are Bessel functions,

y0(X, Result)
see j0(3m)

j1(X, Result)
y1(X, Result)
jn(N, X, Result)

N is an integer.

yn(N, X, Result)
See NOTE #3, below.

sin(X, Result)
asin(X, Result)
sinh(X, Result)
asinh(X, Result)

See NOTE #4, below.

cos(X, Result)
acos(X, Result)
cosh(X, Result)
acosh(X, Result)

See NOTE #4, below.

tan(X, Result)
atan(X, Result)
atan2(X, Y, Result)
tanh(X, Result)
atanh(X, Result)

See NOTE #4, below.

Chapter 12: Library 635

gamma(X, Result)
This is really ln(gamma(X)); see NOTE #5, below.

Notes:

1. If an arithmetic operation like ‘X+Y’ is given mixed arguments, it will convert the integer
argument to a floating-point number. In this release, max(X, Y, Max) and min(X, Y,
Min) do not do this. For example,

| ?- min(1, 2.3, X).

X = 1

This is likely to change.
2. The names of these functions are copied from C. In a later release, the functions will

be

^(X, N, Result)
Result is X^N (N integer)

exp(Y, Result)
Result is e**Y

exp(X, Y, Result)
Result is X**Y, as exp(Y*log(X))

log(X, Y, Result)
Result is the base X logarithm of Y

log(Y, Result)
Result is the base e logarithm of Y

3. The Bessel functions will be moved into another file. They are not generally available
on non-UNIX versions of Quintus Prolog. They are retained as is in this release for
compatibility with previous releases.

4. The inverse hyperbolic trigonometric functions are not provided in most systems. We
have provided C code to compute them. It is suggested that you satisfy yourself as to
their accuracy before relying on them.

5. The function that UNIX calls gamma() is in fact the natural logarithm of the gamma
function. It is not generally available on non-UNIX versions of Quintus Prolog. It is
retained in this release for compatibility with previous releases.

12.11 Miscellaneous Packages

12.11.1 library(ctr)

library(ctr) provides an array of 32 global integer variables. It was written some time
ago for compatibility with another dialect of Prolog. The operations provided on these
variables are

636 Quintus Prolog

ctr_set(+Ctr, +N)
ctr[Ctr] := N

ctr_set(+Ctr, +N, ?Old)
Old is ctr[Ctr], ctr[Ctr] := N

ctr_inc(+Ctr)
ctr[Ctr] := ctr[Ctr] + 1

ctr_inc(+Ctr, +N)
ctr[Ctr] := ctr[Ctr] + N

ctr_inc(+Ctr, +N, ?Old)
Old is ctr[Ctr], ctr[Ctr] := ctr[Ctr] + N

ctr_dec(+Ctr)
ctr[Ctr] := ctr[Ctr] - 1

ctr_dec(+Ctr, +N)
ctr[Ctr] := ctr[Ctr] - N

ctr_dec(+Ctr, +N, ?Old)
Old is ctr[Ctr], ctr[Ctr] := ctr[Ctr] - N

ctr_is(+Ctr, ?Old)
Old is ctr[Ctr]

If you want to use these counters in a nestable construct, remember to reset them properly;
for example,

count_solutions(Goal, Count) :-
ctr_set(17, 0, Old),
(call(Goal), ctr_inc(17), fail ; true),
ctr_set(17, Old, X),
Count = X.

This will work even if Goal contains a call to count_solutions/2, because the old counter
value is saved on entry to the clause, and restored on exit. Contrast this with the following
example:

count_solutions(Goal, Count) :-
ctr_set(17, 0),
(call(Goal), ctr_inc(17), fail ; true),
ctr_set(17, X),
Count = X.

In this example, if Goal contains a call to count_solutions/2, the inner call will clobber
the counter of the outer call, and the predicate will not work.

This file is provided mainly to allow you to experience (by doing your own timing tests) that
the foreign interface, not the database, is the tool for hacking global variables in Prolog,
provided that the global variables take only constants as values.

Chapter 12: Library 637

12.11.2 library(date)

library(date) is a time-stamp package.

• Dates are records of the form date(Year, Month, Day).
• Times are records of the form time(Hour, Minute, Second).
• Datimes are records of the form date(Year, Month, Day, Hour, Minute, Second).
• “When” values are 32-bit time-stamps representing the number of seconds since the

beginning of January 1st 1970, represented as integers.

The parameter ranges are

Year year-1900 (e.g. 1987 -> 87)
Month 0..11 (e.g. January -> 0, September -> 8)
Day 1..31 (e.g. 27 -> 27)
Hour 0..23 (e.g. midnight -> 0, noon -> 12)
Minute 0..59
Second 0..59

These parameter ranges are compatible with the library function localtime(3). Note that
the range for months is not what you might expect.

The predicates provided are:

• now(?When)

• date(-DateNow)

• date(+When, -DateThen)

• time(-TimeNow)

• time(+When, -TimeThen)

• datime(-DatimeNow)

• datime(+When, -DatimeThen)

• datime(?Datime, ?Date, ?Time)

• date_and_time(-DateNow, -TimeNow)

• date_and_time(+When, -DateThen, -TimeThen)

• portray_date(+TimeStamp)

• time_stamp(+Format, -TimeStamp)

• time_stamp(+When, +Format, -TimeStamp)

For example,

| ?- date(X), portray_date(X).

11-Jan-90
X = date(90,0,11)

638 Quintus Prolog

Note that if you want both the current date and time, you should call either datime/1 or
date_and_time/2. It is an error to obtain the date and time in separate calls, because
midnight could intervene and put you nearly 24 hours out.

Dates and datimes are also returned by directory_property/3 and file_property/3 (see
library(directory)). All these records can be compared using term comparison.

The predicates time_stamp/[2,3] provide a way of creating a time-stamp atom using a
special kind of format string. For example,

| ?- time_stamp(’%W, %d %M %y’,Date).

Date = ’Thursday, 11 January 1990’

The details of the format strings are explained in a comment in the sources. Please note
that, in the interests of internationalization, time_stamp/[2,3] are likely to be superseded
in a future release by something based on the ANSI C operation strftime(3). The other
predicates in this package will not change at that time.

12.11.3 Arbitrary Expressions — library(activeread)

Languages such as Lisp allow you to read an expression and to evaluate it, returning a data
structure. Prolog provides “evaluation” only for arithmetic expressions, and then only in
certain argument positions. library(activeread) provides a new experimental facility for
reading an arbitrary “expression” and “evaluating” it.

| ?- active_read(InputTerm).

reads a term from the current input stream. If this term has the form

X | Goal.

then Goal is called and InputTerm is unified with X. Otherwise, InputTerm is unified with
the term that was read. Note that Goal may backtrack, in which case active_read/1 will
also backtrack.

EXAMPLES:

| ?- active_read(X).

|: T | append([1,2],[3,4], T).

X = [1,2,3,4]
yes

Chapter 12: Library 639

| ?- active_read(X).

|: Front+Back | append(Front, Back, [1,2,3,4]).

X = []+[1,2,3,4] ;

X = [1]+[2,3,4] ;

X = [1,2]+[3,4] ;

X = [1,2,3]+[4] ;

X = [1,2,3,4]+[] ;

no

| ?- active_read(X).

|: abort.

X = abort
yes

Please note: library(activeread) is not a module-file, but it is sufficiently small that
there should be no problem with including a separate copy in each module where it is
required.

12.11.4 library(addportray)

library(addportray) makes the use of portray/1 more convenient. In DEC-10 Prolog
and C Prolog, a program could contain clauses like

portray(X) :-
should_be_handled_here(X),
print_it_this_way

scattered through any number of files. In Quintus Prolog, this does not work, because
each file will wipe out every other file’s clauses for portray/1; in any case, a clause for
portray/1 in a module will do nothing at all, because it is user:portray/1 that you must
define. DEC-10 Prolog and C Prolog had a similar problem in that if you reconsulted a file
containing such clauses, you lost all the other clauses for portray/1.

Now, in order to add a link to portray/1 clauses to your program, you can do the following:

:- use_module(library(addportray)).

local_portray(X) :-
should_be_handled_here(X),
print_it_this_way(X).

:- add_portray(local_portray).

To cancel such a link, you can call

:- del_portray(local_portray).

640 Quintus Prolog

Note that if you use this package, you should not define portray/1 in any other way;
otherwise, these links will be lost.

You can link to other user-defined predicates (such as term_expansion/2) this way too.
Suppose the other predicate to be linked to is user:Pred/Arity. Then

:- add_linking_clause(Link, Pred, Arity).

ensures that there is a clause

Pred(X1,...,XArity) :- Link(X1,...,XArity).

in module user, where Link/Arity is called in the module from which add_linking_
clause/3 is called, and

:- del_linking_clause(Link, Pred, Arity).

ensures that there is no such clause. For example, you can add a case to term_expansion/2
by adding the following directive to a module:

:- add_linking_clause(local_expander, term_expansion, 2).

12.12 Tools

12.12.1 The ‘tools’ Directory

12.12.1.1 Overview

The ‘tools’ directory, qplib(tools) is a subdirectory of the library directory, (see Sec-
tion 12.1 [lib-bas], page 521). The primary tools that it contains are:

qpxref A Prolog cross-referencer

qpdet determinacy checker

12.12.2 The Cross-Referencer — qpxref

]

]

The main purpose of the qpxref program is to find undefined predicates and unreachable
code. It can also aid in the formation of module/2 and use_module/2 statements by file,
and list all cross-reference for each predicate.

Chapter 12: Library 641

See Section 2.5.9 [bas-eff-xref], page 51 for detailed information on using this tool.

12.12.3 Determinacy Checker — qpdet

]

qpdet is a tool to help you write efficient, determinate code. It is intended to be used to
look for unwanted nondeterminacy in programs that are intended to be mostly determinate.
Unintended nondeterminacy should be eradicated because

1. it may give you wrong answers on backtracking
2. it may cause a lot of memory to be wasted

See Section 2.5.5 [bas-eff-det], page 39 for detailed information on using this tool.

12.13 Abstracts

The following abstracts are meant to describe the functionality of each package, not to
serve as documentation. Whatever documentation exists is included in comments within
each package. Refer to Section 12.1.3.1 [lib-bas-dlp-acc], page 526 to find out how to locate
the source files if you wish to read the code comments. All the files abstracted in the
following pages are found in the library directory.

library(aggregate)
defines aggregate/3, an operation similar to bagof/3, which lets you calculate
sums. For example, given a table pupil(Name, Class, Age), to calculate the
average age of the pupils in each class, one would write

| ?- aggregate(sum(Age)/sum(1),

Name^pupil(Class, Name, Age),

Expr),

call(Average_Age is Expr).

library(antiunify)
Anti-unification is the mathematical dual of unification: given two terms T1
and T2 it returns the most specific term that generalizes them, T. T is the most
specific term that unifies with both T1 and T2. A common use for this is in
learning; the idea of using it that way comes from Gordon Plotkin.
The code here is based on a routine called generalise/5 written by Fernando
Pereira. The name was changed because there are other ways of generalizing
things, but there is only one dual of unification.

anti_unify(+Term1, +Term2, -Term)
binds Term to a most specific generalization of Term1 and Term2.
When you call it, Term should be a variable.

642 Quintus Prolog

anti_unify(+Term1, +Term2, -Subst1, -Subst2, -Term)
binds Term to a most specific generalization of Term1 and Term2,
and Subst1 and Subst2 to substitutions such that

Subst1(Term) = Term1
Subst2(Term) = Term2

Substitutions are represented as lists of Var=Term pairs, where Var
is a Prolog variable, and Term is the term to substitute for Var.
When you call anti_unify/5, Subst1, Subst2, and Term should be
variables.

library(arity)
Provides support for Arity code translated by arity2quintus.

library(aritystring)
provides support for Arity’s string operations.

library(aropen)
lets you open a member of a UNIX archive file (see UNIX ar(1)) without having
to extract the member. You cannot compile or consult such a file, but you can
read from it. This may be useful as an example of defining Prolog streams from
C. Not available under Windows.

library(arrays)
provides constant-time access and update to arrays. It involves a fairly unpleas-
ant hack. You would be better off using library(logarr) or library(trees).

library(assoc)
A binary tree implementation of “association lists”.

library(avl)
AVL trees in Prolog.

library(bags)
provides support for the data type bag.

library(benchmark)
Users can easily obtain information about the performance of goals: time and
memory requirements.

library(between)
provides routines for generating integers on backtracking.

library(big_text)
Defines a big text data type and several operations on it. The point of this
module is that when writing an interactive program you often want to display
to (or acquire from) the user large amounts of text. It would be inadvisable
(though possible) to store the text in Prolog’s database. With this package
you can store text in a file, copy text to a stream, acquire new text from a
stream, and/or have Emacs edit a big text file. See the file ‘big_text.txt’ in
the library area for more details.

library(bitsets)
Operations on sets of integers (bitsets). Contains analogs for most operations
in library(ordsets).

Chapter 12: Library 643

library(break)
Prints an error message and enters a break level (if possible), avoiding the
problem of break/0 in QPC.

library(call)
provides a number of predicates that are useful in programs that pass goals as
arguments.

library(caseconv)
is mainly intended as an example of the use of library(ctypes). Here you’ll
find predicates to test whether text is in all lowercase, all uppercase, or mixed-
case, and to convert from one case to another.

library(charsio)
lets you open a list of character codes for input as a Prolog stream and, having
written to a Prolog stream, collect the output as a list of character codes. There
are three things you can do with library(charsio):
1. You can open an input stream reading from a (ground) list of characters.

This is the predicate chars_to_stream.
2. You can run a particular goal with input coming from a (ground) list of

characters. The predicates with_input_from_chars/[2,3] do this.
3. You can run a particular goal with output going to a list of characters

(the unification is done after the goal has finished). The with_output_to_
chars/[2,3] predicates do this.

library(clump)
Group adjacent related elements of lists.

library(count)
The purpose is to count predicate calls. Instead of loading a program by calling
compile/1, use count/1. The program will do what it always used to, except
that it may run twice as slowly. The output of library(count) is a file that
contains a record of predicate calls, and is suitable for processing by awk(1) or
similar utilities.

library(critical)
provides a critical-region facility.

library(crypt)
defines two operations similar to open/3:
crypt_open(+FileName[, +Password, +Mode, -Stream)]
If you do not supply a Password, crypt_open/3 will prompt you for it. Note
that the password will be echoed. If there is demand, this can be changed. The
Stream will be clear text as far as Prolog is concerned, yet encrypted as far as
the file system is concerned.
‘encrypt.c’ is a stand-alone program (which is designed to have its object code
linked to three names: encrypt, decrypt, and recrypt), and can be used to
read and write files using this encryption method.
This encryption method was designed, and the code was published, in Edin-
burgh, so it is available outside the USA.

644 Quintus Prolog

library(decons)
provides a set of routines for recognizing and building Prolog control structures.
The only predicate that is likely to be useful is prolog_clause(Clause, Head,
Body).

library(demo)
Defines the demo file_search_path.

library(det)
Aids in determinacy checking by locating places where cuts are really necessary.

library(environ)
provides access to the operating system’s environment variables.
environ(?Varname, ?Value) is a genuine relation. Note that if you include
this file in a saved state, the values of environment variables are those current
when the saved state was run, not when it was saved. There is also an argv/1
in this file, which is superseded by unix(argv(_)).

library(environment)
Portability aid for UNIX (BSD, System V), Windows, VMS, VM/SP (CMS),
MVS, MS-DOS, Macintosh.

library(expansion)
This library “takes over” term_expansion/2 and provides more powerful hooks
that enable multiple, “simultaneously active” and recursive program transfor-
mations to be achieved in an effcient manner.

library(fft)
Performs a fast fourier transform in Prolog. This file was written to demonstrate
that a FFT could be written in Prolog with the same O(N*log(N)) asymptotic
cost as in Fortran. There are several easy things that could be done to make
it faster, but you would be better off for numerical calculations like this using
library(vectors) to call a Fortran subroutine.

library(filename)
Portable filename manipulation. Documentation on ‘filename.txt’.

library(flatten)
provides predicates for flattening binary trees into lists.

library(foreach)
defines two iteration forms.

forall(Generator, Test)
foreach(Generator, Test)

forall/2 is the standard double-negation “there is no proof of Generator for
which Test is not provable”, coded as ‘\+ (Generator, \+ Test)’.
foreach/2 works in three phases: first each provable instance of Generator is
found, then each corresponding instance of Test is collected in a conjunction,
and finally the conjunction is executed.
If, by the time a Test is called, it is always ground — apart from explicitly
existentially quantified variables — the two forms of iteration are equivalent,

Chapter 12: Library 645

and forall/2 is cheaper. But if you want Test to bind some variables, you
must use foreach/2.

library(freevars)
This is an internal support package. Users will probably have no direct use for
it.

library(fromonto)
defines some “pretty” operators for input/output redirection. Examples:

| ?- (repeat, read(X), process(X))

from_file ’fred.dat’.

| ?- read(X) from_chars "example. ".

X = example

| ?- write(273.4000) onto_chars X.

X = "273.4"

library(gauss)
Gaussian elimination.

library(getfile)
defines get_file(+FileName, -ListOfLines), which reads an entire file into
memory in one go.

library(graphs)
a collection of utilities for manipulating mathematical graphs. The collection
is incomplete. Please let us know which operations in this collection are most
useful to you, and which operations that you would find useful have not been
included.
The P-representation of a graph is a list of (from-to) vertex pairs, where the
pairs can be in an arbitrary order. This form is convenient for input and output.
The S-representation of a graph is a list of (vertex-neighbors) pairs, where the
pairs are in standard order (as produced by keysort/2) and the neighbors of
each vertex are also in standard order (as produced by sort/2). This form is
convenient for many calculations.
See also library(mst) (Section 12.13 [lib-abs], page 641), which is soon to be
merged into library(graphs).

library(heaps)
provides support for the data type heap (heaps are also known as priority
queues).

library(knuth_b_1)
is a table of constants taken from Appendix B1 of D.E. Knuth’s The Art of
Computer Programming, Volume 1. The point is not to provide the constants
— you could have calculated them yourselves easily enough — but to illustrate
the recommended way of building such constants into your programs.

646 Quintus Prolog

library(listparts)
exists to establish a common vocabulary for names of parts of lists among Prolog
programmers.

library(lpa)
Compatibility library for LPA Prologs. See also ‘quintus.mac’, ‘quintus.dec’.

library(logarr)
is an implementation of “arrays” as 4-way trees. See also library(trees).

library(long)
This is a rational arithmetic package.
rational(N) recognizes arbitrary-precision rational numbers: this includes
integers, infinity, neginfinity, & undefined. whole(N) recognizes ar-
bitrary precision integers. eval(Expr, Result) evaluates an expression us-
ing arbitrary precision rational arithmetic; it does not accept floats at all.
{eq,ge,gt,le,lt,ne}/2 are infix predicates like </2 that compare rationals
(or integers, not expressions). succ/2, plus/3, and times/3 are relational
forms of arithmetic, which work on rational numbers (not floats). To have
rational numbers printed nicely, put the command

:- assert((portray(X) :- portray_number(X)))

in your code. See ‘long.doc’ and the comments in ‘long.pl’.

library(mapand)
provides mapping routines over &-trees. See also ‘maplist.pl’.

library(maplist)
is built on top of library(call), and provides a collection of meta-predicates
for applying predicates to elements of lists.

library(maps)
implements functions over finite domains, which functions are represented by
an explicit data structure.

library(menu)
illustrates how to drive the Emacs interface from Prolog. The sample appli-
cation involves choosing items from a menu. See also the ‘menu_example.pl’
program in the demo directory. Not available under Windows.

library(mst)
is a preliminary version of a minimal spanning tree package, that will eventually
be merged into library(graphs).
library(mst) currently provides two predicates:

first_mst(+Nodes, +Cost, -Root, -MST)
mst(+Nodes, +Cost, -Root, -MST)

• Nodes is a list of nodes.
• Cost is a predicate that takes three extra arguments. A predi-

cate from library(call), call(Cost, X, Y, Dist) calculates
the distance Dist between nodes X and Y.

Chapter 12: Library 647

• Root is the root of a minimal spanning tree and MST is a list
of the arcs in that minimal spanning tree.

Please note: mst/4 has been carefully written so that it will find
all the minimal spanning trees of a graph. mst/4 finds many trees,
especially as it is blind to redundant representations of isomorphic
trees. If you will be satisfied with any MST at all, use first_mst/4
instead. first_mst/4 will try to keep the arcs in the same order
as the nodes if at all possible.

library(multil)
provides multiple-list routines.

library(newqueues)
provides support for the queue data type. The library(newqueues) package
replaces library(queues), and should be used in new programs.

library(nlist)
Interface to the UNIX library function nlist(3). Not available under Windows.

library(note)
The built-in predicates and commands pertaining to the “recorded” (or “in-
ternal”) database have an argument called the “key”. All that matters about
this key is its principal functor. That is, fred(a, b) and fred(97, 46) are
regarded as the same key.
library(note) defines a complete set of storing, fetching, and deleting com-
mands where the “key” is a ground term all of which is significant, using the
existing recorded database. Note that this package is no better indexed than
the existing recorded database.

library(order)
The usual convention for Prolog operations is INPUTS before OUTPUTS. The
built-in predicate compare/3 violates this. This package provides an additional
interface to provide comparison predicates with the usual order. The package
contains predicates to compare numbers, terms, sets and ordered lists.

library(ordered)
is a collection of predicates for doing things with a list and an ordering pred-
icate. See also library(ordsets) (Section 12.2.7 [lib-lis-ordsets], page 547),
library(ordprefix) below, and library(samsort) (Section 12.13 [lib-abs],
page 641).

library(ordprefix)
is for extracting initial runs from lists, perhaps with a user-supplied ordering
predicate. See also library(ordered) above.

‘quintus.mac’
version of ‘lpa.pl’ to be used on Mac.

‘quintus.dec’
version of ‘lpa.pl’ to be used on DEC.

648 Quintus Prolog

library(pipe)
Quintus streams may be connected to pipes using library(pipe), which pro-
vides a single predicate:

popen(+Command, +Mode, -Stream)
Mode may be either:

read Stream will be bound to a new input stream, connected
to the standard output of the Command. The standard
input stream of the Command is left the same as the
standard input stream of Prolog. So we have

user_input -> Command -> Stream

write Stream will be bound to a new output stream, con-
nected to the standard input of the Command. The
standard output stream of the Command is left the
same as the standard output stream of Prolog. So we
have

Stream -> Command -> user_output

The behavior of popen/3 is defined by the system function popen(3S). There
is no special pclose/1 command: the existing close/1 will call pclose(3S).
Commands are executed by sh(1) under UNIX and by the default command
interpreter under Windows, e.g. cmd.exe under Windows XP. Under Windows,
the underlying popen() C library function, and therefore also popen/3, only
works in console applications, e.g. in prolog but not in qpwin.

library(plot)
This package generates UNIX plot(5) files.

library(pptree)
This file defines pretty-printers for (parse) trees represented in the form

<tree> --> <node label>/[<son>,...<son>]
| <leaf label> -- anything else

Two forms of output are provided: a human-readable form and a Prolog term
form for reading back into Prolog.

pp_tree(+Tree)
prints the version intended for human consumption, and

pp_term(+Tree)
prints the Prolog-readable version.

There is a new command ps_tree/1, which prints trees represented in the form
<tree> --> <node label>(<son>,...,<son>)

| <leaf> -- constants

The output of ps_tree/1 is readable by Prolog and people both. You may find
it useful for things other than parse trees.

Chapter 12: Library 649

library(printchars)
extends portray/1 (using library(addportray)) so that lists of character
codes are written by print/1, by the top level, and by the debugger, between
double quotes.

| ?- X = "fred".

X = [102,114,101,100]

| ?- use_module(library(printchars)),

X = "fred".

X = "fred"

library(printlength)
provides predicates for determining how wide a term would be if written.

library(putfile)
Uses C stream functions to copy the contents of a file to the the current output
stream. This is the fastest known method for copying the contents of a file to
the current output stream.

library(qerrno)
Defines error codes specific to Quintus Prolog, which do not have any standard
errno assignment.

library(qsort)
provides a stable version of quicksort. Note that quicksort is not a good sorting
method for a language like Prolog. If you want a good sorting method, see
library(samsort) below.

library(queues)
provides support for the queue data type. This library has been made obsolete
in release 3 by the introduction of library(newqueues). It is retained for
backward compatibility, but should not be used in new programs.

library(random)
provides a random number generator and several handy interface routines. The
random number generators supplied by various operating systems are all dif-
ferent. It is useful to have a random number generator that will give the same
results in all versions of Quintus Prolog, and this is the one.

library(ranstk)
This is a Prolog implementation of the algorithms in Eugene W. Myers’ An
Applicative Random-Access Stack.

library(read)
This code was originally written at the University of Edinburgh. David H. D.
Warren wrote the first version of the parser. Richard A. O’Keefe extracted it
from the Dec-10 Prolog system and made it use only user-visible operations.
He also added the feature whereby ‘P(X,Y,Z)’ is read as call(P,X,Y,Z). Alan

650 Quintus Prolog

Mycroft reorganized the code to regularize the functor modes. This is easier
to understand (there are no more ‘?’s), and it also fixes bugs concerning the
curious interaction of cut with the state of parameter instantiation. O’Keefe
then took it over again and made a number of other changes.
There are three intentional differences between this library and the Dec-10
Prolog parser:
• “Predicate variables” serve as syntactic saccharine for call/N.
• When there is a syntax error, DEC-10 Prolog will backtrack internally

and read the next term. This fails. If you call portable_read/1 with an
uninstantiated argument, failure means a syntax error. You can rely on it.

• ‘, ..’ is not accepted in place of ‘|’. This was always a parser feature, not
a tokeniser feature: any amount of layout and commentary was allowed
between the ‘,’ and the ‘..’. It wouldn’t be hard to allow this again.

library(retract)
This file adds more predicates for accessing dynamic clauses and the recorded
database. The built-in predicate retract/1 will backtrack through a predicate,
expunging each matching clause until the caller is satisfied. This is not a bug.
That is the way retract/1 is supposed to work. But it is also useful to have a
version that does not backtrack.
library(retract) defines, among many other commands, retract_first/1,
which is identical to retract/1 except that it expunges only the first matching
clause, and fails if asked for another solution.

library(samsort)
provides a stable sorting routine, which exploits existing order, both ascending
and descending. (It is a generalization of the natural merge.) samsort(Raw,
Sorted) is like sort(Raw, Sorted) except that it does not discard duplicate
elements. samsort(Order, Raw, Sorted) lets you specify your own comparison
predicate, which the built-in sorting predicates sort/2 and keysort/2 do not.
This file also exports two predicates for merging already-sorted lists: merge/3
and merge/4. See also library(ordered) and library(qsort).

library(setof)
provides additional predicates related to the built-in predicate setof/3. Note
that the built-in predicates bagof/3 and setof/3 are much more efficient than
the predicates in this file. See also library(findall).

library(show)
The built-in command listing/1 displays dynamic predicates. But there is
no built-in command for displaying the terms recorded under a given key.
library(show) defines two predicates: show(Key) displays all the terms
recorded under the given Key, and show/0 displays all the Keys and terms
in the recorded database.

library(showmodule)
provides a command for displaying information about a loaded module. show_
module(Module) prints a description of the Module, what it exports, and what
it imports. The command

Chapter 12: Library 651

| ?- show_module(_), fail ; true.

will print a description of every loaded module. To backtrack through all current
modules and print information about the predicates they define, import, and
export, use

| ?- ensure_loaded(library(showmodule)),

show_module(Module).

To print information about a particular module m, use
| ?- show_module(m).

library(statistics)
The full_statistics/[0,2] predicates are exactly like the built-in
statistics/[0,2] predicates except that
• Integers are written out with commas every three digits.
• The number of page faults is reported (if known).

library(stchk)
This package allows local style-check modifications in a file. This module pro-
vides an alternative interface to the style check flags. The idea is that a file
that uses it will look like

<usual heading>

:- push_style.
:- set_style(StyleFlag, Value).
...

<clauses>

:- pop_style.

Some combination of this with the existing style check interface will be safe: no
matter what style check changes are made, the original values will be restored.
The initial state (assumed) is that all checks are ON.

library(terms)
The foreign code interface provides means of passing constants between Prolog
and C, FORTRAN, Pascal, etc.
library(terms) lets you pass copies of terms from Prolog to C, and receive
copies of terms from C. For example, the new built-in predicate copy_term/2
could have been defined this way:

’copy term’(Term, Copy) :-
prolog_to_c(Term, Pointer_to_C_version),
c_to_prolog(Pointer_to_C_version, Temp),
erase_c_term(Pointer_to_C_version),
Copy = Temp.

The C code in ‘terms.c’ is just as much a part of this package as the Prolog
code. In particular, the comments in that file describe the representation used

652 Quintus Prolog

on the C side of the interface and there are routines and macros (see ‘terms.h’)
for accessing terms-in-C.

library(termdepth)
Many resolution-based theorem provers impose a depth bound on the terms
they create — not least to prevent infinite loops. library(termdepth) provides
predicates that find the depth, length and size of a term, which can even be
used on cyclic terms.

library(tokens)
This package is a public-domain tokeniser in reasonably standard Prolog. It is
meant to complement the library READ routine. It recognizes Dec-10 Prolog
with the following exceptions:
• ‘%(’ is not accepted as an alternative to ‘{’
• ‘%)’ is not accepted as an alternative to ‘}’
• ‘,..’ is not accepted as an alternative to ‘|’
• large integers are not read in as xwd(Top18Bits,Bottom18Bits)
• After a comma, ‘(’ is read as ‘ (’ rather than ‘(’. This does the parser no

harm at all, and the Dec-10 tokeniser guarantees never to return ‘(’ except
immediately after an atom, yielding ‘ (’ everywhere else.

BEWARE: this file does not recognize floating-point numbers.

library(trees)
is an implementation of arrays as binary trees.

library(types)
This file is support for the rest of the library, and is not really meant for
general use. The type tests it defines are almost certain to remain in the
library or to migrate to the system. The error checking and reporting code
is certain to change. The library predicates must_be_compound/3, must_be_
proper_list/3, must_be_var/3, and proper_list/1 are new in this release.

library(update)
provides utilities for updating “database” relations.

library(vectors)
The Quintus Prolog foreign code interface provides means of passing scalars
between Prolog and C, FORTRAN, Pascal, etc.
library(vectors) provides routines you can use to pass one-dimensional nu-
meric arrays between Prolog and C, Pascal, or FORTRAN. See the comments
in the code. Briefly,

list_to_vector(+ListOfNumbers, +Type, -Vector)
creates a vector, which you can pass to C. C will declare the
argument as Type*, and Prolog will declare the argument as
+address(Type). FORTRAN will declare the argument as an ar-
ray of Type.

make_vector(+Size, +Type, -Vector)
creates a vector, which the foreign routine is to fill in. C will declare
the argument as Type*, and Prolog will declare the argument as

Chapter 12: Library 653

+address(Type). FORTRAN will declare the argument as an array
of Type.

vector_to_list(+Vector, ?List)
extracts the elements of the Vector as a list of numbers; if the Vector
contains chars or ints, the List will contain integers, otherwise it
will contain floating-point numbers.

kill_vector(+Vector)
frees a vector. Don’t forget to do this! You can still call vector_to_
list/2 on a dead vector, until the next time memory is allocated.
All that you can really rely on is that it is safe to create some
vectors, call a C routine, kill all the vectors, and then extract the
contents of the interesting ones before doing anything else.

library(writetokens)
This package converts a term to a list of tokens. This is essentially the same
as the public-domain ‘write.pl’, except that instead of writing characters to
the current output stream, it returns a list of tokens. There are three kinds of
tokens: punctuation marks, constants, and atoms. There is nothing to indicate
spacing; the point of this package is to let the caller do such formatting.

library(xml)
is a package for parsing XML with Prolog, which provides Prolog applications
with a simple “Document Value Model” interface to XML documents.

654 Quintus Prolog

Chapter 13: The Structs Package 655

13 The Structs Package

The structs package allows Prolog to hold pointers to C data structures, and to access and
store into fields in those data structures. Currently, the only representation for a pointer
supported by Quintus Prolog is an integer, so it isn’t possible to guarantee that Prolog can’t
confuse a pointer with an ordinary Prolog term. What this package does is to represent
such a pointer as a term with the type of the structure or array as its functor and the
integer that is the address of the actual data as its only argument. We will refer such terms
as foreign terms.

Important caveats:

You should not count on future versions of the struct package to continue to
represent foreign terms as compound Prolog terms. In particular, you should
never explicitly take apart a foreign term using unification or functor/3 and
arg/3. You may use the predicate foreign_type/2 to find the type of a foreign
term, and cast/3 (casting a foreign term to address) to get the address part of
a foreign term. You may also use cast/3 to cast an address back to a foreign
term. You should use null_foreign_term/2 to check if a foreign term is null,
or to create a null foreign term of some type.

It should never be necessary to explicitly take apart foreign terms.

13.1 Foreign Types

There are two sorts of objects that Prolog may want to handle: atomic and compound.
Atomic objects include numbers and atoms, and compound objects include data structures
and arrays. To be more precise about it, an atomic type is defined by one of the following.
A long integer is 64 bits on DEC Alpha platforms and 32 bits on other Quintus Prolog
platforms. Long integers are however truncated to 32 bits (sign-extended) by the Prolog
system:

long long signed integer (but see above)

integer 32 bit signed integer

short 16 bit signed integer

char 8 bit signed integer

unsigned_long
long unsigned integer (but see above)

unsigned_integer
32 bit unsigned integer (but Prolog can only handle 31 bits unsigned)

unsigned_short
16 bit unsigned integer

656 Quintus Prolog

unsigned_char
8 bit unsigned integer

float 32 bit floating-point number

double 64 bit floating-point number

atom 32 bit Prolog atom number. Unique for different atoms, but not consistent
across Prolog sessions.

string long pointer to 0-terminated character array. Represented as an atom in Prolog.

address an untyped address. Like pointer(_), but structs does no type checking for
you. Represented as a Prolog integer.

opaque Unknown type. Cannot be represented in Prolog. A pointer to an opaque
object may be manipulated.

And compound types are defined by one of:

pointer(Type)
a long pointer to a thing of type Type.

array(Num,Type)
A chunk of memory holding Num (an integer) things of type Type.

array(Type)
A chunk of memory holding some number of things of type Type. This type
does not allow bounds checking, so it should be used with great care. It is also
not possible to use this sort of array as an element in an array, or in a struct
or union.

struct(Fields)
A compound structure. Fields is a list of Field name:Type pairs. Each Field
name is an atom, and each Type is any valid type.

union(Members)
A union as in C. Members is a list of Member name:Type pairs. Each Member
name is an atom, and each Type is any valid type. The space allocated for

one of these is the maximum of the spaces needed for each member. It is not
permitted to store into a union (you must get a member of the union to store
into, as in C).

C programmers will recognize that the kinds of data supported by this package were designed
for the C language. They should also work for other languages, but programmers must
determine the proper type declarations in those languages. The table above makes clear
the storage requirements and interpretation of each type.

Note that there is one important difference between the structs package and C: the
structs package permits declarations of pointers to arrays. A pointer to an array is dis-
tinguished from a pointer to a single element. For example

pointer(array(char))

Chapter 13: The Structs Package 657

is probably a more appropriate declaration of a C string type than

pointer(char)

which is the orthodox way to declare a string in C. Note that the structs_to_c tool
described below does generate proper (identical) C declarations for both of these structs
declarations.

13.1.1 Declaring Types

Programmers may declare new named data structures with the following procedure:

:- foreign_type
Type_name = Type,
...,
Type_name = Type.

Where Type name is an atom, and Type defines either an atomic or compound type, or is
a previously-defined type name.

In Prolog, atomic types are represented by the natural atomic term (integer, float, or atom).
Compound structures are represented by terms whose functor is the name of the type, and
whose only argument is the address of the data. So a term foo(123456) represents the
thing of type foo that exists at machine address 123456. And a term integer(123456)
represents the integer that lives in memeory at address 123456, not the number 123456.

For types that are not named, a type name is generated using the names of associated types
and the dollar sign character (‘$’), and possibly a number. Therefore, users should not use
‘$’ in their type names.

13.2 Using Structs with QPC

The structs package is divided into two parts:

• the part necessary to process foreign declarations
• the part that defines all the structs predicates (other than the foreign_type/2 dec-

laration predicate).

The former file is not (usually) needed while your application is running, while the latter
part certainly is. By separating structs into two files, you may avoid including the structs
declaration code in your application.

In order to declare a foreign type or use foreign types in a foreign function declaration, you
must first load the file library(structs_decl). Ordinarily, you would probably do this
by including an ensure_loaded/1 or use_module/[1,2,3] call in your file. Unfortunately,
this will not allow qpc to compile your file. In order both to use your file in the development

658 Quintus Prolog

system, and to compile it with qpc, put the following line in your files that define foreign
types or use foreign types in foreign function declarations:

:- load_files(library(structs_decl),
[when(compile_time),if(changed)]).

The when(compile_time) tells qpc to load library(structs_decl) into qpc, and not to
record a dependency on it. This means that library(structs_decl) will not be part of
your statically linked application.

If you accidentally use

:- ensure_loaded(library(structs_decl)).

it will compile in the development system, but when you qpc the file you will get a warning.

Files that just use structs are much simpler. Just add this to those files:

:- ensure_loaded(library(structs)).

There is another important complication. If you have type declarations in one file (call it
A) that use types declared in another file (B), you must declare (at least) a compile time
dependency. So in file A, you’d need to have the line:

:- load_files(’B’, [when(compile_time),if(changed)]).

This does not allow predicates in A to call predicates in B. If you need this, too, you should
instead include in file A the line:

:- load_files(’B’, [when(both),if(changed)]).

You will also need to ensure that B is compiled to a QOF file before trying to qpc A. This
requires that if A is a module-file, so must B be. If A is not a module-file, then B need not
be a module-file (but it may be). If you use the make utility to maintain object files, you
might then want to add the following line to your ‘Makefile’:

A.qof: B.qof

13.3 Checking Foreign Term Types

The type of a foreign term may determined by the goal

foreign_type(+Foreign_term, -Type_name)

Note that foreign_type/2 will fail if Foreign term is not a foreign term.

Chapter 13: The Structs Package 659

13.4 Creating and Destroying Foreign Terms

Prolog can create or destroy foreign terms using

new(+Type, -Datum),
new(+Type, +Size, -Datum) and
dispose(+Datum)

where Type is an atom specifying what type of foreign term is to be allocated, and Datum
is the foreign term. The Datum returned by new/[2,3] is not initialized in any way.
dispose/1 is a dangerous operation, since once the memory is disposed, it may be used for
something else later. If Datum is later accessed, the results will be unpredictable. new/3 is
only used to allocate arrays whose size is not known beforehand, as defined by array(Type
), rather than array(Type,Size).

13.5 Accessing and Modifying Foreign Term Contents

Prolog can get or modify the contents of a foreign term with the procedures

get_contents(+Datum, +Part, -Value)
get_contents(+Datum, *Part, *Value)
put_contents(+Datum, +Part, +Value).

It can also get a pointer to a field or element of a foreign term with the procedure

get_address(+Datum, +Part, -Value).
get_address(+Datum, *Part, *Value).

For all three of these, Datum must be a foreign term, and Part specifies what part of Datum
Value is. If Datum is an array, Part should be an integer index into the array, where 0 is the
first element. For a pointer, Part should be the atom contents and Value will be what the
pointer points to. For a struct, Part should be a field name, and Value will be the contents
of that field. In the case of get_contents/3 and get_address/3, if Part is unbound, then
get_contents/3 will backtrack through all the valid parts of Datum, binding both Part
and Value. A C programmer might think of the following pairs as corresponding to each
other:

get_contents(Foo, Bar, Baz)
Baz = Foo->Bar

put_contents(Foo, Bar, Baz)
Foo->Bar = Baz

get_address(Foo, Bar, Baz)
Baz = &Foo->Bar.

660 Quintus Prolog

The hitch is that only atomic and pointer types can be got and put by get_contents/3
and put_contents/3. This is because Prolog can only hold pointers to C structures, not
the structures themselves. This isn’t quite as bad as it might seem, though, since usually
structures contain pointers to other structures, anyway. When a structure directly contains
another structure, Prolog can get a pointer to it with get_address/3.

Access to most fields is accomplished by peeking into memory (see Section 8.8.4.2 [ref-ari-
aex-pee], page 236), so it is very efficient.

13.6 Casting

Prolog can “cast” one type of foreign term to another. This means that the foreign term is
treated just as if it where the other type. This is done with the following procedure:

cast(+Foreign0, +New_type, -Foreign)

Foreign is the foreign term that is the same data as Foreign0, only is of foreign type
New type. Foreign0 is not affected. This is much like casting in C.

Casting a foreign term to address will get you the raw address of a foreign term. This is
not often necessary, but it is occasionally useful in order to obtain an indexable value to use
in the first argument of a dynamic predicate you are maintaining. An address may also be
casted to a proper foreign type.

This predicate should be used with great care, as it is quite easy to get into trouble with
this.

13.7 Null Foreign Terms

“NULL” foreign terms may be handled. The predicate

null_foreign_term(+Term, -Type)
null_foreign_term(-Term, +Type)

holds when Term is a foreign term of Type, but is NULL (the address is 0). At least one of
Term and Type must be bound. This can be used to generate NULL foreign terms, or to
check a foreign term to determine whether or not it is NULL.

13.8 Interfacing with Foreign Code

Foreign terms may be passed between Prolog and other languages through the foreign
interface.

Chapter 13: The Structs Package 661

To use this, all foreign types to be passed between Prolog and another language must be
declared with foreign_type/2 before the foreign/[2,3] clauses specifying the foreign
functions.

The structs package extends the foreign type specifications recognized by the foreign
interface. In addition to the types already recognized by the foreign interface, any atomic
type recognized by the structs package is understood, as well as a pointer to any named
structs type.

For example, if you have a function

char nth_char(string, n)
char *string;
int n;
{

return string[n];
}

You might use it from Prolog as follows:

:- foreign_type cstring = array(char).

foreign(nth_char, c, nth_char(+pointer(cstring), +integer,
[-char])).

This allows the predicate nth_char/3 to be called from Prolog to determine the nth char-
acter of a C string.

Note that all existing foreign interface type specifications are uneffected, in particular
address/[0,1] continue to pass addresses to and from Prolog as plain integers.

13.9 Examining Type Definitions at Runtime

The above described procedures should be sufficient for most needs. This module does,
however, provide a few procedures to allow programmers to access type definitions. These
may be a convenience for debugging, or in writing tools to manipulate type definitions.

The following procedures allow programmers to find the definition of a given type:

type_definition(+Type, -Definition)
type_definition(*Type, *Definition)
type_definition(+Type, -Definition, -Size)
type_definition(*Type, *Definition, *Size)

Type is an atom naming a type, Definition is the definition of that type, and Size is the
number of bytes occupied by a foreign term of this type. Size will be the atom unknown if
the size of an object of that type is not known. Such types may not be used as fields in

662 Quintus Prolog

structs or unions, or in arrays. However, pointers to them may be created. If Type is not
bound at call time, these procedures will backtrack through all current type definitions.

A definition looks much like the definition given when the type was defined with type/1,
except that it has been simplified. Firstly, intermediate type names have been elided. For ex-
ample, if foo is defined as foo=integer, and bar as bar=foo, then type_definition(bar,
integer) would hold. Also, in the definition of a compound type, types of parts are always
defined by type names, rather than complex specifications. So if the type of a field in a
struct was defined as pointer(fred), it will show up in the definition as ’$fred’. Of
course, type_definition(’$fred’, pointer(fred)) would hold, also.

The following predicates allow the programmer to determine whether or not a given type
is atomic:

atomic_type(+Type)
atomic_type(*Type)

atomic_type(+Type, -Primitive_type)
atomic_type(*Type, *Primitive_type)

atomic_type(+Type, -Primitive_type, -Size)
atomic_type(*Type, *Primitive_type, *Size)

Type is an atomic type. See Section 13.1 [str-fty], page 655 for the definition of an atomic
type. Primitive type is the primitive type that Type is defined in terms of. Size is the
number of bytes occupied by an object of type Type, or the atom unknown, as above. If
Type is unbound at call time, these predicates will backtrack through all the currently
defined atomic types.

13.10 Structs to C

Included with structs is the program structs_to_c. This program reads in a Prolog file
containing structs declarations, and generates a ‘.h’ file containing equivalent declarations
to be #included in your C programs. Each type you declare in your ‘.pl’ file will have a
corresponding typedef in the ‘.h’ file.

If you wish to use this tool, you will have to build an executable yourself, as the de-
fault installation procedure doesn’t build structs_to_c, in order to save space. To build
structs_to_c, visit the structs library directory, and type

% make structs_to_c

This will make a host and operating system specific executable file structs_to_c, which
you should move to an appropriate directory, for example ‘/usr/local/bin’.

Chapter 13: The Structs Package 663

13.11 Tips

1. Most important tip: don’t subvert the structs type system by looking inside foreign
terms to get the address, or use functor/3 to get the type. This has two negative ef-
fects: firstly, if the structs package should change its representation of foreign terms,
your code will not work. But more importantly, you are more likely to get type mis-
matches, and likely to get unwrapped terms or even doubly wrapped terms where you
expect wrapped ones.

2. Remember that a foreign term fred(123456) is not of type fred, but a pointer to
fred. Looked at another way, what resides in memory at address 123456 is of type
fred.

3. The wrapper put on a foreign term signifies the type of that foreign term. If you declare
a type to be pointer(opaque) because you want to view that pointer to be opaque,
then when you get something of this type, it will be printed as opaque(456123). This
is not very informative. It is better to declare

fred = opaque,
thing = struct([...,

part:pointer(fred),
...

]).

so that when you get the contents of the part member of a thing, it is wrapped as
fred(456123).

664 Quintus Prolog

Chapter 14: The Quintus Objects Package 665

14 The Quintus Objects Package

The Quintus Objects package enables programmers to write object-oriented programs in
Quintus Prolog. The objects in Quintus Objects are modifiable data structures that provide
a clean and efficient alternative to storing data in the Prolog database.

14.1 Introduction

The Quintus Objects package enables programmers to write object-oriented programs in
Quintus Prolog. The objects in Quintus Objects are modifiable data structures that provide
a clean and efficient alternative to storing data in the Prolog database.

This user’s guide is neither an introduction to object-oriented programming nor an intro-
duction to Quintus Prolog. A number of small, sample programs are described in this
manual, and some larger programs are in the ‘demo’ directory.

14.1.1 Using Quintus Objects

One of the basic ideas of object-oriented programming is the encapsulation of data and
procedures into objects. Each object belongs to exactly one class, and an object is referred
to as an instance of its class. A class definition determines the following things for its
objects:

• slots, where an object holds data
• messages, the commands that can be sent to an object
• methods, the procedures the object uses to respond to the messages

All interaction with an object is by sending it messages. The command to send a message
to an object has the form

Object MessageOp Message

where Object is an object, MessageOp is one of the message operators (‘<<’, ‘>>’, or ‘<-’)
and Message is a message defined for the object’s class. Roughly speaking, the ‘>>’ message
operator is used for extracting information from an object, ‘<<’ is for storing information
into an object, and ‘<-’ is for any other sort of operation.

For example, using the point class defined in the next section, it would be possible to give
the following command, which demonstrates all three message operators.

666 Quintus Prolog

| ?- create(point, PointObj),

PointObj >> x(InitX),

PointObj >> y(InitY),

PointObj << x(2.71828),

PointObj << y(3.14159),

PointObj <- print(user),

nl(user).

(2.71828,3.14159)
PointObj = point(23461854),
InitX = 1.0,
InitY = 2.0

First it binds the variable PointObj to a newly created point object. Then, the two get
messages (sent with the ‘>>’ operator) fetch the initial values of the point’s x and y slots,
binding the variables InitX and InitY to these values. Next, the two put messages (sent
with the ‘<<’ operator) assign new values to the object’s x and y slots. Finally, the send
message (sent with the ‘<-’ operator) instructs the point object to print itself to the user
stream, followed by a newline. Following the goal, we see the point has been printed in
a suitable form. Following this, the values of PointObj, InitX, and InitY are printed as
usual for goals entered at the Prolog prompt.

Because this goal is issued at the Prolog prompt, the values of the variables PointObj, InitX
and InitY are not retained after the command is executed and their values are displayed,
as with any goal issued at the Prolog prompt. However, the point object still exists, and
it retains the changes made to its slots. Hence, objects, like clauses asserted to the Prolog
database, are more persistent than Prolog variables.

Another basic idea of object-oriented programming is the notion of inheritance. Rather
than defining each class separately, a new class can inherit the properties of a more general
superclass. Or, it can be further specialized by defining a new subclass, which inherits
its properties. (C++ uses the phrase “base class” where we use “superclass.” It also uses
“derived class” where we use “subclass.”)

Quintus Objects uses term expansion to translate object-oriented programs into ordinary
Prolog. (This is the same technique that Prolog uses for its DCG grammar rules.) As much
as possible is done at compile time. Class definitions are used to generate Prolog clauses
that implement the class’s methods. Message commands are translated into calls to those
Prolog clauses. And, inheritance is resolved at translation time.

Quintus Objects consists of two modules, obj_decl and objects. The obj_decl module
is used at compile time to translate the object-oriented features of Quintus Objects. Any
file that defines classes or sends messages should include the command

:- load_files(library(obj_decl),
[when(compile_time), if(changed)]).

Chapter 14: The Quintus Objects Package 667

The objects module provides runtime support for Quintus Objects programs. A file that
sends messages or asks questions about what classes are defined or to what class an object
belongs should include the command:

:- use_module(library(objects)).

You will probably include both in most files that define and use classes.

You must have a license to use the obj_decl module, but you may include the objects
module in programs that you will distribute.

14.1.2 Defining Classes

A class definition can restrict the values of any slot to a particular C-style type. It can
specify whether a slot is private (the default, meaning that it cannot be accessed except
by that methods of that class), protected (like private, except that the slot can also be
accessed by subclasses of the class), or public (meaning get and put methods for the slot
are generated automatically), and it can specify an initial value. The class definition also
may contain method clauses, which determine how instances of the class will respond to
messages. A class definition may also specify one or more superclasses and which methods
are to be inherited.

The point object created in the previous example had two floating point slots, named x
and y, with initial values of 1.0 and 2.0, respectively. As we have seen, the point class also
defined put and get methods for x and y, as well as a send method for printing the object.
The put and get methods for x and y can be automatically generated simply by declaring
the slots public, but the print method must be explicitly written. In addition, in order to
be able to create instances of this class, we must define a create method, as explained in
Section 14.2.3.4 [obj-scl-meth-credes], page 679. We also provide a second create method,
taking two arguments, allowing us to specify an x and y value when we first create a point
object.

668 Quintus Prolog

:- class point =
[public x:float = 1.0,
public y:float = 2.0].

Self <- create.

Self <- create(X, Y) :-
Self << x(X),
Self << y(Y).

Self <- print(Stream) :-
Self >> x(X),
Self >> y(Y),
format(Stream, ’(~w,~w)’, [X,Y]).

:- end_class point.

The variable name Self in these clauses is arbitrary—any variable to the left of the message
operator in the head of a method clause refers to the instance of the class receiving the
message.

14.1.3 Using Classes

Given this definition, the following command creates an instance of the point class, assigning
values to its x and y slots, and prints a description of the point.

| ?- create(point(3,4), PointObj),

PointObj <- print(user).

The print message prints (3.0,4.0). The variable PointObj is bound to a Prolog term of
the form

point(Address)

where Address is essentially a pointer to the object.

In general, an object belonging to a class ClassName will be represented by a Prolog term
of the form

ClassName(Address)

The name ClassName must be an atom. This manual refers to such a term as if it were the
object, not just a pointer to the object. Users are strongly discouraged from attempting to
do pointer arithmetic with the address.

After execution of this command, the point object still exists, but the variable PointObj
can no longer be used to access it. So, while objects resemble clauses asserted into the
Prolog database in their persistence, there is no automatic way to search for an object.

Chapter 14: The Quintus Objects Package 669

Objects are not automatically destroyed when they are no longer needed. And, there is no
automatic way to save an object from one Prolog session to the next. It is the responsibility
of the programmer to keep track of objects, perhaps calling the destroy/1 predicate for
particular objects that are no longer needed or asserting bookkeeping facts into the Prolog
database to keep track of important objects.

14.1.4 Looking Ahead

The next few sections of this manual describe the Quintus Objects package in greater detail.
In particular, they describe how to define classes, their methods and their slots, and how to
reuse class definitions via inheritance. Small sample programs and program fragments are
provided for most of the features described.

Experienced Prolog programmers may choose to skip over these sections and look at the
sample programs in this package’s demo directory, referring to the reference pages as neces-
sary. Everyone is encouraged to experiment with the sample programs before writing their
own programs.

14.2 Simple Classes

This section is about simple classes that inherit nothing—neither slots nor methods—from
more general superclasses. Everything about these classes is given directly in their defini-
tions, so they are the best starting point for programming with Quintus Objects.

The use of inheritance in defining classes is described in the next section. Classes that
inherit properties from superclasses are called derived classes in some systems, such as C++.
In general, the use of inheritance extends the properties of the simple classes in this section.

14.2.1 Scope of a Class Definition

A simple class definition begins with a statement of the form

:- class ClassName = [SlotDef, ...].

The class’s slots are described in the list of SlotDef terms. It is possible, though not often
useful, to define a class with no slots, by specifying the empty list. In that case the ‘=’ and
the list may be omitted.

The class’s methods are defined following the class/1 directive, by Prolog clauses. Most
of this section is about defining and using methods.

The class definition ends with any of the following:

:- end_class ClassName.

670 Quintus Prolog

or

:- end_class.

or the next class/1 directive or the end of the file. The ClassName argument to end_
class/1 must match the class name in the corresponding class/1 directive. It is not
possible to nest one class definition inside another.

14.2.2 Slots

A slot description has the form

Visibility SlotName:SlotType = InitialValue

where Visibility and ‘= InitialValue’ are optional. Each slot of a class must have a distinct
name, given by the atom SlotName. The Visibility, SlotType and InitialValue parts of the
slot description are described separately.

14.2.2.1 Visibility

A slot’s visibility is either private, protected, or public. If its visibility is not specified, the
slot is private. The following example shows all four possibilities:

:- class example = [w:integer,
private x:integer,
protected y:integer,
public z:integer]

Slot z is public, y is protected, and both x and w are private.

Direct access to private slots is strictly limited to the methods of the class. Any other
access to such slots must be accomplished through these methods. Making slots private will
allow you later to change how you represent your class, adding and removing slots, without
having to change any code that uses your class. You need only modify the methods of the
class to accomodate that change. This is known as information hiding.

Protected slots are much like private slots, except that they can also be directly accessed
by subclasses. This means that if you wish to modify the representation of your class, you
will need to examine not only the class itself, but also its subclasses.

Public slots, in contrast, can be accessed from anywhere. This is accomplished through
automatically generated get and put methods named for the slot and taking one argument.
In the example above, our example class would automatically support a get and put method
named z/1. Note, however, that unlike other object oriented programming languages that
support them, public slots in Quintus Objects do not violate information hiding. This is
because you may easily replace a public slot with your own get and put methods of the

Chapter 14: The Quintus Objects Package 671

same name. In this sense, a public slot is really only a protected slot with automatically
generated methods to fetch and store its contents.

Within a method clause, any of the class’s slots can be accessed via the fetch_slot/2 and
store_slot/2 predicates. These are the only way to access private and protected slots.
They may be used to define get and put methods for the class, which provide controlled
access to the protected slots. But, they can only be used within the method clauses for the
class, and they can only refer to slots of the current class and protected and public slots of
superclasses.

In the slot description, public, protected and private are used as prefix operators. The
obj_decl module redefines the prefix operator public, as follows:

:- op(600, fy, [public]).

Unless you use the obsolete public/1 directive in your Prolog programs, this should cause
no problems.

14.2.2.2 Types

A slot’s type restricts the kinds of values it may contain. The slot is specified in the slot
description by one of the following Prolog terms with the corresponding meaning. Most of
these will be familiar, but the last four, address, term, Class and pointer(Type), require
some additional explanation:

Type Description

integer 32-bit signed integer

short 16-bit signed integer

char 8-bit signed integer

unsigned_short
16-bit unsigned integer

unsigned_char
8-bit unsigned integer

float 32-bit floating point number

double 64-bit floating point number

atom Prolog atom (32-bit pointer)

address 32-bit address
The address type is intended for use with foreign code. A slot of this type
might store an address returned from a foreign function. That address might,
in turn, be used in calling another foreign function or with the assign/2 pred-
icate or with arithmetic operators such as integer_at. Hence, most Prolog
programmers can safely ignore this type.

672 Quintus Prolog

term Prolog term
The term type is for general Prolog terms. Such a slot can hold any of the
other types. However, if you know a slot will be used to hold only values of a
particular type, it is more efficient to specify that type in the class definition.
Storing a term containing free variables is similar to asserting a clause con-
taining free variables into the Prolog database. The free variables in the term
are replaced with new variables in the stored copy. And, when you fetch the
term from the slot, you are really fetching a copy of the term, again with new
variables.

Class where Class is the name of a defined class
The class type is for any object in a class defined with Quintus Objects. Such
a slot holds an object of its class or one of that class’s descendants, or the null
object (see Section 14.2.2.4 [obj-scl-slt-null], page 673).

pointer(Type)
where Type is an atom
The pointer type is intended for use with the Structs Package, ProXT or ProXL.
It is similar to the address type, except that access to this slot yields, and
update to this slot expects, a term of arity 1 whose functor is Type and whose
argument is the address. Again, most Prolog programmers can safely ignore
this type.

Please note that there is no unsigned_int or unsigned_long type, because Prolog itself
currently cannot represent such a number. You should represent such numbers as type
integer with care. Arithmetic operations on unsigned integers represented this way will
work as expected, however comparisons will not! This is inherent in using Prolog to ma-
nipulate 32 bit unsigned numbers in general; it is not specific to Quintus Objects.

14.2.2.3 Initial Values

A slot description may optionally specify an initial value for the slot. The initial value is
the value of the slot in every instance of the class, when the object is first created. The
initial value must be a constant of the correct type for the slot.

If an initial value is not specified, a slot is initialized to a value that depends on its type. All
numbers are initialized to 0, of the appropriate type. Atom and term slots are initialized to
the empty atom (’’). Addresses and pointers are initialized to null pointers. And, objects
are initialized to the null object (see Section 14.2.2.4 [obj-scl-slt-null], page 673).

More complicated initialization—not the same constant for every instance of the class—
must be performed by create methods, which are described later.

Chapter 14: The Quintus Objects Package 673

14.2.2.4 The null object

The null object is a special object that is not an instance of any class, but that can be
stored in a slot intended for any class of object. This is very much like the NULL pointer in
C. This is useful when you do not yet have an object to store in a particular slot.

In Prolog, the null is represented by the atom null.

Note that because the null object is not really an object of any class, you cannot determine
its class with class_of/2. Unless noted otherwise, when we write of an object in this
document, we do not include the null object.

14.2.3 Methods

Some methods are defined by method clauses, between the class/1 directive and the end of
the class’s definition. Others are generated automatically. There are three kinds of messages
in Quintus Objects, distinguished by the message operator they occur with:

‘>>’ A get message, which is typically used to fetch values from an object’s slots.

‘<<’ A put message, which is typically used to store values in an object’s slots.

‘<-’ A send message, which is used for other operations on or involving an object.

Quintus Objects automatically generates some get and put methods. And, it expects par-
ticular message names with the send operator for create and destroy methods. For the most
part, however, you are free to use any message operators and any message names that seem
appropriate.

A method clause has one of these message operators as the principal functor of its head. Its
first argument, written to the left of the message operator, is a variable. By convention, we
use the variable Self. Its second argument, written to the right of the message operator, is
a term whose functor is the name of the message and whose arguments are its arguments.

For example, in the class whose definition begins as follows, a 0-argument send message
named increment is defined. No parentheses are needed in the clause head, because the
precedence of the ‘<-’ message operator is lower than that of the ‘:-’ operator.

:- class counter = [public count:integer = 0].

Self <- increment :-
Self >> count (X0),
X1 is X0 + 1,
Self << count (X1).

Its definition uses the automatically generated get and put methods for the public slot
count.

674 Quintus Prolog

It may look as though this technique is directly adding clauses to the >>/2, <</2 and <-/2
predicates, but the method clauses are transformed by term expansion, at compile time.
However, the method clauses have the effect of extending the definitions of those predicates.

Methods are defined by Prolog clauses, so it is possible for them to fail, like Prolog predi-
cates, and it is possible for them to be nondeterminate, producing multiple answers, upon
backtracking. The rest of this section describes different kinds of methods.

14.2.3.1 Get and Put Methods

Get and put methods are generated automatically for each of a class’s public slots. These
are 1-argument messages, named after the slots.

In the point class whose definition begins with

:- class point =
[public x:float=0,
public y:float=0].

the get and put methods are automatically generated for the x and y slots. If the class
defines a create/0 method, then the command

| ?- create(point, PointObj),

PointObj >> x(OldX),

PointObj >> y(OldY),

PointObj << x(3.14159),

PointObj << y(2.71828).

creates a point object and binds both OldX and OldY to 0.0E+00, its initial slot values.
Then, it changes the values of the x and y slots to 3.14159 and 2.71828, respectively. The
variable PointObj is bound to the point object.

It is possible, and sometimes quite useful, to create get and put methods for slots that do
not exist. For example, it is possible to add a polar coordinate interface to the point class
by defining get and put methods for r and theta, even though there are no r and theta
slots. The get methods might be defined as follows:

Chapter 14: The Quintus Objects Package 675

Self >> r(R) :-
Self >> x(X),
Self >> y(Y),
R2 is X*X + Y*Y,
sqrt(R2, R).

Self >> theta(T) :-
Self >> x(X),
Self >> y(Y),
A is Y/X,
atan(A, T).

This assumes that library(math), which defines the sqrt/2 and atan/2 predicates, has
been loaded. The put methods are left as an exercise.

In the rational number class whose definition begins with

:- class rational =
[public num:integer,
public denom:integer].

get and put methods are automatically generated for the num and denom slots. It might be
reasonable to add a get method for float, which would provide a floating point approxi-
mation to the rational in response to that get message. This is left as an exercise.

It is also possible to define get and put methods that take more than one argument. For
example, it would be useful to have a put method for the point class that sets both slots of
a point object. Such a method could be defined by

Self << point(X,Y) :-
Self << x(X),
Self << y(Y).

Similarly, a 2-argument get method for the rational number class might be defined as

Self >> (N/D) :-
Self >> num(N),
Self >> denom(D).

Note that the name of the put message is (/)/2, and that the parentheses are needed
because of the relative precedences of the ‘>>’ and ‘/’ operators.

Put messages are used to store values in slots. Get messages, however, may be used either
to fetch a value from a slot or to test whether a particular value is in a slot. For instance,
the following command tests whether the do_something/2 predicate sets the point object’s
x and y slots to 3.14159 and 2.71828, respectively.

676 Quintus Prolog

| ?- create(point, PointObj),

do_something(PointObj),

PointObj >> x(3.14159),

PointObj >> y(2.71828).

The fetch_slot/2 predicate can similarly be used to test the value of a slot.

The effects of a put message (indeed, of any message) are not undone upon backtracking.
For example, the following command fails:

| ?- create(point, PointObj),

PointObj << x(3.14159),

PointObj << y(2.71828),

fail.

But, it leaves behind a point object with x and y slots containing the values 3.14159 and
2.71828, respectively. In this, storing a value in an object’s slot resembles storing a term in
the Prolog database with assert/1.

Some care is required when storing Prolog terms containing unbound variables in term slots.
For example, given the class definition that begins with

:- class prolog_term = [public p_term:term].

Self <- create.

the following command would succeed:

| ?- create(prolog_term, TermObj),

TermObj << p_term(foo(X,Y)),

X = a,

Y = b,

TermObj >> p_term(foo(c,d)).

The reason is that the free variables in foo(X,Y) are renamed when the term is stored in
the prolog_term object’s p_term slot. This is similar to what happens when such a term
is asserted to the Prolog database:

| ?- retractall(foo(_,_)),

assert(foo(X,Y)),

X = a,

Y = b,

foo(c,d).

However, this goal would fail, because c and d cannot be unified:

| ?- create(prolog_term, TermObj),

TermObj << p_term(foo(X,X)),

TermObj >> p_term(foo(c,d)).

Chapter 14: The Quintus Objects Package 677

14.2.3.2 Direct Slot Access

Get and put methods are not automatically generated for private and protected slots. Those
slots are accessed by the fetch_slot/2 and store_slot/2 predicates, which may only
appear in the body of a method clause and which always operate on the object to which the
message is sent. It is not possible to access the slots of another object with these predicates.

You may declare a slot to be private or protected in order to limit access to it. However, it
is still possible, and frequently useful, to define get and put methods for such a slot.

For example, if numerator and denominator slots of the rational number class were private
rather than public, it would be possible to define put methods to ensure that the denom-
inator is never 0 and that the numerator and denominator are relatively prime. The get
methods merely fetch slot values, but they need to be defined explicitly, since the slots are
private. The new definition of the rational number class might start as follows:

:- class rational =
[num:integer=0,
denom:integer=1].

Self >> num(N) :-
fetch_slot(num, N).

Self >> denom(D) :-
fetch_slot(denom, D).

Self >> (N/D) :-
Self >> num(N),
Self >> denom(D).

One of the put methods for the class might be

Self << num(NO) :-
fetch_slot(denom, DO)
reduce(NO, DO, N, D),
store_slot(num, N),
store_slot(denom, D).

where the reduce/4 predicate would be defined to divide NO and DO by their greatest
common divisor, producing N and D, respectively.

The definition of reduce/4 and the remaining put methods is left as an exercise. The put
methods should fail for any message that attempts to set the denominator to 0.

678 Quintus Prolog

14.2.3.3 Send Methods

Messages that do something more than fetch or store slot values are usually defined as
send messages. While the choice of message operators is (usually) up to the programmer,
choosing them carefully enhances the readability of a program.

For example, print methods might be defined for the point and rational number classes,
respectively, as

Self <- print(Stream) :-
Self >> x(X),
Self >> y(Y),
format(Stream, "(~w,~w)", [X, Y]).

and

Self <- print(Stream) :-
fetch_slot(num, N),
fetch_slot(denom, D),
format(Stream, "~w/~w", [N, D]).

These methods are used to access slot values. But, the fact that the values are printed
to an output stream makes it more reasonable to define them as send messages than get
messages.

Frequently send methods modify slot values. For example, the point class might have
methods that flip points around the x and y axes, respectively:

Self <- flip_x :-
Self >> y(Y0),
Y1 is -1 * Y0,
Self << y(Y1).

Self <- flip_y :-
Self >> x(X0),
X1 is -1 * X0,
Self << x(X1).

And, the rational number class might have a method that swaps the numerator and denom-
inator of a rational number object. It fails if the numerator is 0.

Self <- invert :-
fetch_slot(num, N)
N =\= 0,
fetch_slot(denom, D)
store_slot(num, D),
store_slot(denom, N).

Chapter 14: The Quintus Objects Package 679

These methods modify slot values, but they do not simply store values that are given in
the message. Hence, it is more reasonable to use the send operator.

It is possible for a method to produce more than one answer. For example, the class whose
definition begins with

:- class interval =
[public lower:integer,
public upper:integer].

might define a send method

Self <- in_interval(X) :-
Self >> lower(L),
Self >> upper(U),
between(L, U, X).

which uses the between/3 predicate from library(between). The in_interval message
will bind X to each integer, one at a time, between the lower and upper slots, inclusive. It
fails if asked for too many answers.

The rest of this section describes particular kinds of send messages.

14.2.3.4 Create and Destroy Methods

Objects are created with the create/2 predicate. When you define a class, you must specify
all the ways that instances of the class can be created. The simplest creation method is
defined as

Self <- create.

If this method were defined for Class, then the command

| ?- create(Class, Object).

would create an instance of Class and bind the variable Object to that instance. All slots
would receive their (possibly default) initial values.

More generally, if the definition for Class contains a create method

Self <- create(Arguments) :-
Body.

then the command

| ?- create(Class(Arguments), Object).

will create an instance of Class and execute the Body of the create method, using the
specified Arguments. The variable Object is bound to the new instance.

680 Quintus Prolog

If a simple class definition has no create methods, then it is impossible create instances of
the class. While the absence of create methods may be a programmer error, that is not
always the case. Abstract classes, which are classes that cannot have instances, are often
quite useful in defining a class hierarchy.

Create methods can be used to initialize slots in situations when specifying initial slot values
will not suffice. (Remember that initial values must be specified as constants at compile
time). The simplest case uses the arguments of the create message as initial slot values.
For example, the definition of the point class might contain the following create method.

Self <- create(X,Y) :-
Self << x(X),
Self << y(Y).

If used as follows

| ?- create(point(3.14159, 2.71828), PointObj),

PointObj >> x(X),

PointObj >> y(Y).

it would give X and Y the values of 3.14159 and 2.71828, respectively.

In some cases, the create method might compute the initial values. The following (partial)
class definition uses the date/1 predicate from library(date) to initialize its year, month
and day slots.

:- class date_stamp =
[year:integer,
month:integer,
day:integer].

Self <- create :-
date(date(Year, Month, Day)),
store_slot(year, Year),
store_slot(month, Month),
store_slot(day, Day).

All three slots are private, so it will be necessary to define get methods in order to retrieve
the time information. If no put methods are defined, however, the date cannot be modified
after the date_stamp object is created (unless some other method for this class invokes
store_slot/2 itself).

Create methods can do more than initialize slot values. Consider the named_point class,
whose definition begins as follows:

Chapter 14: The Quintus Objects Package 681

:- class named_point =
[public name:atom,
public x:float=1,
public y:float=0].

Self <- create(Name, X, Y) :-
Self << name(Name),
Self << x(X),
Self << y(Y),
assert(name_point(Name, Self)).

Not only does the create/3 message initialize the slots of a new named_point object, but
it also adds a name_point/2 fact to the Prolog database, allowing each new object to be
found by its name. (This create method does not require the named_point object to have
a unique name. Defining a uniq_named_point class is left as an exercise.)

An object is destroyed with the destroy/1 command. Unlike create/2, destroy/1 does
not require that you define a destroy method for a class. However, destroy/1 will send
a destroy message (with no arguments) to an object before it is destroyed, if a destroy
method is defined for the object’s class.

If a named_point object is ever destroyed, the address of the object stored in this name
point/2 fact is no longer valid. Hence, there should be a corresponding destroy method
that retracts it.

Self <- destroy :-
Self >> name(Name),
retract(name_point(Name, Self)).

Similar create and destroy methods can be defined for objects that allocate their own
separate memory or that announce their existence to foreign code.

14.2.3.5 Instance Methods

Instance methods allow each object in a class to have its own method for handling a specified
message. For example, in a push-button class it would be convenient for each instance (each
push-button) to have its own method for responding to being pressed.

The declaration

:- instance_method Name/Arity,

inside a class definition states that the message Name/Arity supports instance methods. If
the class definition defines a method for this message, it will be treated as a default method
for the message.

The define_method/3 predicate installs a method for an object of the class, and the
undefine_method/3 predicate removes that method.

682 Quintus Prolog

Suppose that the date_stamp class, defined earlier, declared an instance method to print
the year of a date_stamp instance.

:- instance_method print_year/1.

Self <- print_year(Stream) :-
Self >> year(Y0),
Y1 is YO + 1970,
format(Stream, "~d", [Y1]).

The arithmetic is necessary because UNIX dates are based on January 1, 1970.

If a particular date_stamp object’s date were to be printed in Roman numerals, it could
be given a different print_year method, using the define_method/3 predicate.

| ?- create(date_stamp, DateObj),

define_method(DateObj,

print_year(Stream),

print_roman_year(Stream, DateObj)).

If this date_stamp object is created in 1994, then a print_year message sent to it would
print the current year as

MCMXCIV

Defining the predicate print_roman_year/2 is left as an exercise. It must be able to access
the year slot of a date_stamp object. Because it is not defined by a method clause within
the class definition, print_roman_year/2 cannot use the get_slot/2 predicate.

None of instance_method/1, define_method/3, undefine_method/3 specify a message
operator. Instance methods can only be defined for send messages.

14.3 Inheritance

This section describes the additional features (and the additional complexity) of defining
classes with inheritance in Quintus Objects. Most of what was said about classes in the
previous section remains true in these examples.

14.3.1 Single Inheritance

The simplest case is when a new class inherits some properties (slots and methods) from a
single superclass. That superclass may, in turn, be defined in terms of its superclass, etc.
The new class, its superclass, its superclass’s superclass (if any) and so on are all ancestors
of the new class.

Chapter 14: The Quintus Objects Package 683

14.3.1.1 Class Definitions

The definition of a class with a single superclass begins with a class/1 directive of the form

:- class ClassName = [SlotDef, ...] + SuperClass.

where the list of SlotDef descriptions may be empty. In that case, the definition can sim-
plified to

:- class ClassName = SuperClass.

The class SuperClass must be a defined class when this definition is given.

In Quintus Objects, a subclass inherits all the slots of its superclass. And, by default, it
inherits all the methods of its superclass. The remainder of this section describes what the
programmer can do to control this inheritance.

14.3.1.2 Slots

A class’s slots are a combination of those explicitly defined in its slot description list and
the slots it inherits from its superclass. In Quintus Objects, a class inherits all the slots of
its superclass. It follows that a class inherits all the slots of all its ancestors.

The programmer’s control over inheritance of slots is limited. It is not possible to rename
an inherited slot, nor is it possible to change its type, unless it is a class slot. It is possible
to change a slot’s initial value. And, it is possible to effectively change a slot’s visibility.

To change the initial value or the type (when allowed) of a slot, include a new SlotDef
in the list of slot descriptions for the class, with the same slot name and a new type or
initial value. The type of a class slot can only be changed to a subclass of the type of the
superclass’s slot. The new initial value must still be a constant of the appropriate type.

The named_point class, defined earlier, could have better been defined from the point class,
which began as follows:

:- class point =
[public x:float=0,
public y:float=0].

The definition of the named_point class would then begin with

:- class named_point =
[public name:atom,
public x:float=1.0] + point.

This named_point class has public slots named name, x and y, with the same types and
initial values as the earlier named_point definition, which did not use inheritance. This

684 Quintus Prolog

named_point class also inherits all the methods of the point class, which saves us from
having to write them again (and maintain them).

A slot that was private or protected in a superclass may be defined as public. This will cause
get and put methods to be generated in the subclass. A slot that was public in a superclass
may be defined as protected or private, but this does not prevent it from inheriting the get
and put methods of the superclass. For that, the uninherit/1 directive, defined below, is
needed.

14.3.1.3 Methods

In Quintus Objects, by default, a class inherits all the methods of its superclass. The
programmer has more control over the inheritance of methods than the inheritance of slots,
however. In particular, methods can be uninherited and they can be redefined.

To prevent a method from being inherited, use the uninherit/1 directive. For example,
suppose that the class point is defined as before. That is, its definition begins as follows:

:- class point =
[public x:float=0,
public y:float=0].

Because both slots are public, a put method is automatically generated for each, which
allows their values to be changed.

The definition of a new class fixed_point might begin as follows:

:- class fixed_point = point.

:- uninherit
point << (x/l),
point << (y/l).

Self <- create(X, Y) :-
store_slot(x, X),
store_slot(y, Y).

The parentheses are necessary because of the precedences of the ‘<<’ and ‘/’ operators.

Because the put methods from point are not inherited, no instance of the fixed_point
class can change its x and y values once created—unless the class definition contains another
method for doing so. The get methods are inherited from point, however.

To redefine a method, simply include method clauses for its message within a class’s defi-
nition. The new method clauses replace, or shadow, the inherited method clauses for this
class.

Chapter 14: The Quintus Objects Package 685

Another way to prevent the x and y slots of the fixed_point class from being modified
would be to shadow the put methods. For example, they might be redefined as

Self << x(_) :-
format(user_error, "cannot modify x slot value.~n.", []),
fail.

Self << y(_) :-
format(user_error, "cannot modify y slot value.~n", []),
fail.

Now attempts to modify the x or y values of a fixed point object generate a specific error
message and fail. A more complicated version would raise an appropriate exception.

14.3.1.4 Send Super

Even when a superclass’s method is shadowed or uninherited, it is possible to use the
superclass’s method inside a method clause for the new class. This makes it possible to
define a “wrapper” for the superclass’s method, which invokes the superclass’s method
without having to duplicate its code. This technique works with all message types.

Sending a message to a superclass is done with a command of the form

super MessageOp Message

where MessageOp is one of the message operators (‘<<’, ‘>>’ or ‘<-’) and Message is a
message defined for the superclass. A generalization of this syntax may be used to specify
which superclass to send the message to. This is discussed in Section 14.3.2.3 [obj-inh-mih-
meth], page 686.

Sending a message to a class’s superclass can only be done within a message clause.

14.3.2 Multiple Inheritance

It is possible for a class to be defined with more than one superclass. Because the class
inherits properties from multiple superclasses, this is referred to as multiple inheritance.

Multiple inheritance is a complex and controversial topic. What should be done about
conflicting slot or method definitions? (This is sometimes called a “name clash.”) What
should be done about slots that are inherited from two or more superclasses, but that
originate with a common ancestor class? (This is sometimes called “repeated inheritance”.)
Different systems take different approaches.

Quintus Objects supports multiple inheritance in a limited but still useful way. It does not
allow repeated inheritance, and it places all the responsibility for resolving name clashes

686 Quintus Prolog

on the programmer. This section describes the multiple inheritance features of Quintus
Objects.

14.3.2.1 Class Definitions

The definition of a class with multiple superclasses begins with a class/1 directive of the
form

:- class ClassName = [SlotDef, ...] + SuperClass +

The list of slot descriptions and the superclasses to the right of the ‘=’ can appear in
any order, without changing the class being defined. In fact, the slot descriptions can be
partitioned into more than one list, without changing the class. However, it is best to adopt
a fairly simple style of writing class definition and use it consistently.

Just as the slot names in a list of slot descriptions must be distinct, superclass names should
not be repeated.

14.3.2.2 Slots

In Quintus Objects, the programmer has no control over multiple inheritance of slots. All
slots from all superclasses are inherited. And, the superclasses should have no slot names
in common.

As a consequence, in Quintus Objects no superclasses of a class should have a common
ancestor. The only exception would be the unusual case where that common ancestor has
no slots.

14.3.2.3 Methods

By default, all methods are inherited from all superclasses. Any of the superclasses’ methods
can be uninherited, as described earlier, by using the uninherit/1 directive.

If the same message is defined for more than one superclass, however, you must choose at
most one method to inherit for the message. You may choose none. You may do this by
defining a new method for the message (shadowing the superclasses’ methods), or by using
the uninherit/1 directive, or by using the inherit/1 directive.

The following is considered a classic example of multiple inheritance.

Chapter 14: The Quintus Objects Package 687

:- class toy. % no slots in this class

Self >> size(small).

Self >> rolls(false).

:- end_class toy.

:- class truck. % no slots in this class

Self >> size(large).

Self >> rolls(true).

:- end_class truck.

The idea expressed in these definitions is that most toys are small and do not roll. On the
other hand, most trucks are large, but they do roll. A toy truck shares one feature with
each class, but we can hardly expect a compiler to choose the correct one.

The definition of a new class, toy truck, might begin with

:- class toy_truck = toy + truck.

Rather than redefine the get methods for size and rolls, we can specify which to inherit
in two ways. One way is positive, stating which to inherit, and the other way is negative,
stating which not to inherit.

The positive version would be

:- inherit
toy >> (size/1),
truck >> (rolls/1).

This is more convenient when a message is defined in several superclasses, because all but
the chosen method are uninherited. And, it is probably easier to understand.

The negative version would be

:- uninherit
toy >> (rolls/1),
truck >> (size/1).

The toy_truck class would exhibit the same behavior with either definition.

It is possible to define methods that access the shadowed or uninherited methods of the
superclasses, by sending the message to the superclasses. In the case of multiple inheritance,
however, it may be necessary to specify which superclass to send the message to.

The toy_truck class, for example, might define these methods:

688 Quintus Prolog

Self >> uninherited_size(S) :-
super(truck) >> size(S).

Self >> uninherited_rolls(R) :-
super(toy) >> rolls(R).

They provide access to the unchosen methods from toy_truck’s superclasses.

While these examples with the toy truck class are clearly “toy” examples, the same tech-
niques can be used in more realistic cases.

14.3.2.4 Abstract and Mixin Classes

While Quintus Objects only supports a limited form of multiple inheritance, its facilities
are sufficient for working with so-called mixin classes.

The idea is to construct similar classes by first defining a class that contains the things the
desired classes have in common. Typically, this will be an abstract class, which will have
no instances itself. Then, provide the features that differentiate the desired classes with a
set of mixin classes

Mixin classes that have nothing in common can safely be mixed together, to build the
desired classes. The mixin classes will usually be abstract classes, also, because they are
too specialized for their instances to be useful on their own.

The date stamp class defined earlier would make a good mixin class. A similar time_stamp
class might be (partially) defined as follows:

:- class time_stamp =
[hour:integer,
minute:integer,
second:integer].

Self <- create :-
time(time(Hour, Minute, Second)),
store_slot(hour, Hour),
store_slot(minute, Minute),
store_slot(second, Second).

Another mixin class might be used to “register” objects in the Prolog database.

Chapter 14: The Quintus Objects Package 689

:- class registry = [name:atom].

Self <- create(Name) :-
Self << name(Name),
assert(registered(Name, Self)).

Self <- destroy :-
Self >> name(Name),
retract(registered(Name, Self)).

The registry mixin class could have been used with the point class to define the named_
point class, which was an example from an earlier section.

The ability to send a message to an object’s superclass is useful when working with mixin
classes. Suppose the definition of a new class begins with

:- NewClass = OldClass + date + time + registry.

where OldClass is some previously defined class that lacks the features provided by the date,
time and registry classes. (In fact, they should not have any slot names in common.) Then
its create method can be defined by

Self <- create(Name) :-
super(OldClass) <- create,
super(date) <- create,
super(time) <- create,
super(registry) <- create(Name).

This avoids the need to duplicate the code in the create methods of OldClass and all three
mixin classes.

14.3.3 Asking About Classes and Objects

It is possible to determine, at run time, what classes are defined, how they are related by
inheritance, what class an object belongs to, etc. This section describes the predicates used
for those purposes. Most of the predicates involve the class hierarchy, so they are properly
described in the section on inheritance. But, several can be useful even in programs that
use only simple classes.

Most of these predicates come in pairs, where one predicate involves one class or its di-
rect superclasses, and the other predicate involves all ancestors. For example, the class_
superclass/2 and class_ancestor/2 predicates connect a currently defined class to its
superclass(es) and to all its ancestors, respectively.

In all of these predicates, the ancestors of a class include not only superclasses and their
ancestors, but also the class itself. A class cannot be a superclass of itself, by the rules
of defining classes. However, it is convenient to consider every class an ancestor of itself,

690 Quintus Prolog

because then we may say that every property of a class is defined in one of its ancestors,
without having to say “the class itself or a superclass or a superclass of a superclass, etc.”

14.3.3.1 Objects

The class_of/2 predicate is used to test whether an object is of a particular type or to
determine the type of an object. Similarly, the descendant_of/2 predicate relates an object
to all ancestors of its class. (Remember that the object’s class is, itself, an ancestor class
of the object.)

Both require the first argument (the object) to be instantiated. That is, the predicates
cannot be used to find objects of a given class. If you need to search among all the objects
of a class, you must provide a way to do it. One way to do this is to assert a fact connecting
the class name to every object, when it is created. The named point example of the previous
section took that idea a step further by allowing each object to have a different name.

The pointer_object/2 predicate relates an object’s address (a pointer) to the object.
Remember that an instance of Class is represented by a term of the form

Class(Address)

The pointer_object/2 predicate requires that one of its arguments be instantiated, but
it may be either one. Hence, just by knowing the address of an object (which possibly was
returned by a foreign function) it is possible to determine the object’s type.

Most Prolog programmers can safely ignore the pointer_object/2 predicate, unless they
are using Quintus Objects with foreign functions or with the Structs package.

14.3.3.2 Classes

The current_class/1 predicate is used to ask whether a class is currently defined or to
get the names of all currently defined classes.

The class_superclass/2 predicate is used to test whether one class is a superclass of
another, or to find a class’s superclasses, or to find a class’s subclasses, or to find all
subclass-superclass pairs. The class_ancestor/2 predicate is used in the same ways for
the ancestor relation between currently defined classes.

As an example, the following goal finds all the ancestors of each currently defined class.

| ?- setof(C-As,

(current_class(C),

setof(A, class_ancestor(C,A), As)),

L).

Chapter 14: The Quintus Objects Package 691

It binds L to a list of terms of the form Class-AncestorList, with one term for each currently
defined class.

Arguably, this predicate violates the principle of information hiding, by letting you ask
about how a class is defined. Therefore, you should generally avoid it. It may be useful,
however, in debugging and in building programmer support tools.

14.3.3.3 Messages

The message/4 predicate is used to ask whether a message is defined for a class or to find
what messages are defined for a class, etc. It does not distinguish between messages whose
methods are defined in the class itself and those that are inherited from a superclass.

The direct_message/4 predicate is used to ask whether a message is not only defined for a
class, but whether the method for that message is defined in the class itself. It can also be
used to determine which methods are defined in a class. This ability to look inside a class
definition makes direct_message/4 an egregious violator of the principle of information
hiding. Thus it, like class_ancestor/2, should mainly be confined to use in programmer
support applications.

Both message/4 and direct_message/4 take the message operator as an argument, along
with the class, message name and arity. Hence it is possible to use these predicates to ask
about get, put or send messages.

It is not possible to ask about a class’s slots, nor should it be. However, it is possible (and
quite reasonable) to ask about the get and put messages that are defined for a class. For
example, the following goal finds all the 1-argument messages that are defined for both the
get and put message operators in the class Class.

| ?- setof(Message,

(message(Class, <<, Msg, 1),

message(Class, >>, Msg, 1)),

L).

There may or may not be slots corresponding to these messages; that detail is hidden in the
definition of Class. However, it should be possible to use Class as if the slots were there.

As an example, recall the polar coordinate interface to the point class, which defined get
and put methods for r and theta, even though data was represented inside an object by
rectangular coordinates x and y.

14.4 Term Classes

Sometimes it is convenient to be able to send messages to ordinary Prolog terms as if
they were objects. Prolog terms are easier to create than objects, and unlike objects, they
are automatically garbage collected (see Section 14.5.2.2 [obj-tech-lim-gc], page 697). Of

692 Quintus Prolog

course, unlike objects, Prolog terms cannot be modified. However, when a particular class
of objects never needs to be dynamically modified, and doesn’t need to be subclassed, it
may be appropriate to define it as a term class.

A term class is defined much like an ordinary class: it begins with a ‘:- class’ directive
defining the class and its slots, follows with clauses defining the methods for this class, and
ends with an ‘:- end_class’ directive, the end of the file, or another ‘:- class’ directive.
The only difference is in the form of the ‘:- class’ directive introducing a term class
definition.

14.4.1 Simple Term Classes

The simplest sort of term class declaration has the following form:

:- class ClassName = term(Term).

This declares that any term that unifies with Term is an instance of class ClassName. For
example, you might declare:

:- class rgb_color = term(color(_Red,_Green,_Blue)).

color(R,_G,_B) >> red(R).
color(_R,G,_B) >> green(G).
color(_R,_G,B) >> blue(B).

:- end_class rgb_color.

This would declare any term whose principal functor is color and arity is three to be an
object of class rgb_color. Given this declaration, entering the goal

color(0.5, 0.1, 0.6) >> blue(B)

would bind B to 0.6.

Note that you cannot use create/2 to create a term class instance. Since they are just
ordinary terms, you can create them the same way you’d create any ordinary Prolog term.
Similarly, you cannot modify an existing term class instance.

You may specify a term class as the type of a slot of an ordinary class. This is effectively
the same as specifing the type to be term. In particular, fetching and storing term class
slots is not very efficient. Also, the default value for slots of term class type is ’’; this is
because not enough is known about a simple term class to determine a better default. For
an explanation of how to avoid these pitfalls, see Section 14.4.3 [obj-tcl-tce], page 693.

Chapter 14: The Quintus Objects Package 693

14.4.2 Restricted Term Classes

The intention of the rgb_color class presented above is to represent a color as a triple of
floating point numbers between 0.0 and 1.0. But the above definition does not restrict the
arguments of the color term in any way: any color/3 term is considered to be an instance
of the rgb_color class.

The second form of term class declaration allows you to specify constraints on instances of
a term class. The form of such a declaration is as follows:

:- class ClassName = term(Term, Constraint).

This declares that any term that unifies with Term and satisfies Constraint is an instance of
class ClassName. The Constraint term is an ordinary Prolog goal, which will usually share
variables with Term.

To extend our rgb_color class example so that only color/3 terms whose arguments are all
floats between 0.0 and 1.0 are instances of rgb_color, we would instead begin the definition
as follows:

:- class rgb_color =
term(color(Red,Green,Blue),

(float(Red), Red >= 0.0, Red =< 1.0,
float(Green), Green >= 0.0, Green =< 1.0,
float(Blue), Blue >= 0.0, Blue =< 1.0)).

Note the parentheses around the constraint in this example. Whenever the constraint
contains multiple goals separated by commas, you will need to surround the goal with
parentheses.

With this definition of the rgb_color class, only color/3 terms whose arguments are all
floating point numbers between 0 and 1 inclusive will be considered to be instances of
rgb_color.

14.4.3 Specifying a Term Class Essence

As mentioned above, it is possible to specify a term class as the type of a slot of some other
object. For example, we might declare

:- class colored_rectangle = [
public origin:point,
public size:size,
public color:rgb_color].

This will store an rgb_color object (i.e., a color/3 term) in the color slot of each colored_
rectangle object. Unfortunately, though, Quintus Objects cannot tell what is the best way
to store a term object, and therefore it stores it the same way it stores a slot declared to be

694 Quintus Prolog

of term type: using the Prolog database. This has all the efficiency disadvantages of term
slots. In this case, however, we know that all that really needs to be saved in order to save
an rgb_color object is the three arguments. We also know that each of these arguments
is a floating point number, and because precision isn’t terribly critical in representating
colors, each of these numbers can be stored as a float, rather than a double. In effect, we
know that the essence of a rgb_color object is these three numbers; if we have them, we
can easily construct the color/3 term. If we provide this information in the declaration of
the rgb_color class, then Quintus Objects can store instances of the rgb_color class as 3
separate floats, rather than as a term, significantly improving the performance of creating
or destroying a colored_rectangle object, as well as accessing or modifying its color slot.

The essence of a term class is specified with the following form of class declaration:

:- class ClassName = term(Term, Constraint, Essence).

where Essence is of the form

[Name1:Type1=i[Variable1], Name2:Type2=i[Variable2], ...]

and each Name is a distinct atom naming a slot, each Type is a slot type as specified
in Section 14.2.2.2 [obj-scl-slt-typ], page 671, and each Variable is an unbound variable
appering in Term. Providing a term essence not only makes storage of terms in ordinary
object slots more efficient, it also gives a name to each “essential” slot of the term class.
This allows you to use fetch_slot to fetch the slots of this class.

To extend our rgb_color example, we might introduce the rgb_color class with this
declaration:

:- class rgb_color =
term(color(Red,Green,Blue),

(float(Red), Red >= 0.0, Red =< 1.0,
float(Green), Green >= 0.0, Green =< 1.0,
float(Blue), Blue >= 0.0, Blue =< 1.0),
[red:float=Red, green:float=Green, blue:float=Blue]).

This declaration defines the rgb_color class exactly as the example declaration of the pre-
vious section: every color/3 term whose arguments are all floating point numbers between
0.0 and 1.0 inclusive are instances of rgb_color. The difference is that with this declara-
tion, ordinary classes that have slots of type rgb_color, such as the colored_rectangle
example above, will be stored more efficiently, and their rgb_color slots will be accessed
and modified much more efficiently. Also, it will be possible to use fetch_slot(red, Red)
in the methods of the rgb_color class to fetch to red component of the message recipient,
and similarly for green and blue.

Chapter 14: The Quintus Objects Package 695

14.5 Technical Details

This section will be expanded in future versions of Quintus Objects. For now, it provides
a BNF grammar for the syntax of class definitions and a short list of some limitations of
Quintus Objects.

14.5.1 Syntax of Class Definitions

The following BNF grammar gives a concise description of the syntax of class definitions.
It assumes an understanding of Prolog syntax for the following items: variable, atom,
compound term, and constant. Slot types, particularly the address, class and pointer
types, were discussed in an earlier section.

class def ::= class begin { clause | method } class end

class begin ::= :- class class name opt class spec .

opt class spec ::= empty | = class spec

class spec ::= multi parent or slots | term class spec

clause ::= head opt body .

head ::= atom | compound term .

method ::= message head opt body .

message head ::= message goal

class end ::= :- end_class opt class name .
| empty /* if followed by class begin or eof */

message ::= atom | compound term

multi parent or slots ::= parent or slots { + parent or slots }

parent or slots ::= class name | [] | [slot def {, slot def }]

slot def ::= opt visibility slot name : slot type opt init value

opt visibility ::= empty | private | protected | public

opt init value ::= empty | = constant

696 Quintus Prolog

term class spec ::= term(term opt goal essence)

opt goal essence ::= empty | , goal opt essence

opt essence ::= empty | , essence

essence ::= [variable : slot type { , variable : slot type }]

opt body ::= empty | :- body

body ::= message or goal { , message or goal }

message or goal ::= message goal | goal

message goal ::= variable message operator message

message operator ::= << | >> | <-

opt class name ::= empty | class name

class name ::= atom

slot name ::= atom

slot type ::= integer
| short
| char
| unsigned_short
| unsigned_char
| float
| double
| atom
| address
| term
| class name
| pointer(atom)

14.5.2 Limitations

This section summarizes the current limitations of Quintus Objects.

Chapter 14: The Quintus Objects Package 697

14.5.2.1 Debugging

When you debug Quintus Objects programs that were compiled using the obj_decl module,
you are tracing the translated version of your code. This includes all method clauses and
(some) message sending commands.

QUI’s source-level debugger cannot connect compiled Quintus Objects code with the source
code. This is similar to the problem of tracing Prolog’s DCG grammar rules.

14.5.2.2 Garbage Collection

There is no garbage collection of objects. It is the responsibility of the programmer to keep
track of unused objects. In particular, avoid doing the following:

| ?- create(Class, Object).

Unless the create message for Class made some provision for finding the new object again,
it is now lost. It cannot be used, and it cannot be destroyed.

14.5.2.3 Multiple Inheritance

The provisions for multiple inheritance in this version of Quintus Objects are limited. In
particular, there is no control over the inheritance of slots, which makes repeated inheritance
impossible. However, it does support the mixin style of multiple inheritance.

14.5.2.4 Persistence

While objects are more persistent than Prolog variables, there is no automatic way to save
objects from one execution of your program to the next. Hence they are less persistent than
the clauses in the Prolog database.

If you need to save a set of objects from one Prolog session to another, copy the objects
to the Prolog database as terms, and save them to a QOF file. Then, after you reload the
QOF file, rebuild the objects. Keep in mind that addresses are not valid from one session
to another.

In short, there is no way to avoid initializing objects at run time.

14.6 Exported Predicates

The following reference pages, alphabetically arranged, describe the exported Quintus Ob-
jects predicates. They can be imported by an embedded command:

698 Quintus Prolog

:- use_module(library(objects)).

Chapter 14: The Quintus Objects Package 699

14.6.1 <-/2

Synopsis

+Obj <- +*Mesg

Arguments

Obj object

Mesg term

Description

Sends Mesg to Obj. A send message. The class of Obj must have a method defined for this
message.

A clause with <-/2 as the principal functor of its head is a method definition clause. Such
clauses only occur within the scope of a class definition. They are expanded at compile
time.

Exceptions

instantiation_error
either argument is unbound.

domain_error
Mesg is not callable or Obj is not a valid object.

existence_error
Mesg is not a defined message for Obj.

Caveat

For reasons of efficiency, an existence_error exception will only be raised if the code
that sends the message is compiled with debugging enabled (see debug_message), or if the
message is not determined at compile-time. In other circumstances, the message will simply
fail.

Calls to the <-/2 predicate will be compiled into more efficient code if the obj_decl module
is loaded at compile time.

700 Quintus Prolog

See Also

<</2, >>/2, direct_message/4, message/4

Chapter 14: The Quintus Objects Package 701

14.6.2 <</2

Synopsis

+Obj << +Att

Arguments

Obj object

Att term

Description

Send a message to Obj to store the value of Att in the object. A put message. Att must
be an attribute that can be stored in objects of Obj’s class.

A clause with <</2 as the principal functor of its head is a method definition clause. Such
clauses only occur within the scope of a class definition. They are expanded at compile
time.

Put methods are automatically generated for public slots.

Exceptions

instantiation_error
either argument is unbound.

domain_error
Mesg is not callable or Obj is not a valid object.

existence_error
Mesg is not a defined message for Obj.

Caveat

For reasons of efficiency, an existence_error exception will only be raised if the code
that sends the message is compiled with debugging enabled (see debug_message), or if the
message is not determined at compile-time. In other circumstances, the message will simply
fail.

Calls to the <</2 predicate will be compiled into more efficient code if the obj_decl module
is loaded at compile time.

702 Quintus Prolog

See Also

<-/2, >>/2, direct_message/4, message/4, store_slot/2

Chapter 14: The Quintus Objects Package 703

14.6.3 >>/2

Synopsis

+Obj >> +-Att

Arguments

Obj object

Att term

Description

Send a message to Obj that fetches the value of Att from the object. A get message. Att
must be an attribute to fetch from Obj’s class.

A clause with >>/2 as the principal functor of its head is a method definition clause. Such
clauses only occur within the scope of a class definition. They are expanded at compile
time.

Get methods are automatically generated for public slots.

Exceptions

instantiation_error
either argument is unbound.

domain_error
Mesg is not callable or Obj is not a valid object.

existence_error
Mesg is not a defined message for Obj.

Caveat

For reasons of efficiency, an existence_error exception will only be raised if the code
that sends the message is compiled with debugging enabled (see debug_message), or if the
message is not determined at compile-time. In other circumstances, the message will simply
fail.

Calls to the >>/2 predicate will be compiled into more efficient code if the obj_decl module
is loaded at compile time.

704 Quintus Prolog

See Also

<-/2, <</2, direct_message/4, message/4, fetch_slot/2

Chapter 14: The Quintus Objects Package 705

14.6.4 class/1 directive

Synopsis

:- class ClassName.

:- class ClassName = [SlotDef, ...].

:- class ClassName = Super.

:- class ClassName = [SlotDef, ...] + Super +

:- class ClassName = term(Term).

:- class ClassName = term(Term, Goal).

:- class ClassName = term(Term, Goal, Essence).

Arguments

ClassName
atom

SlotDef term

Super atom

Description

The definition of class ClassName begins with this class/1 directive and ends with the next
class/1 directive, the next end_class/[0,1] directive, or the end of the file, whichever
comes first. All clauses that look like method definitions within the scope of the class
definition (that is, which have one of <-/2, <</2 or >>/2 as the principal functors of their
heads) are considered method definitions of the class.

You may provide as many slot definitions (SlotDef) and superclasses (Super) as you like.
All superclasses must be previously defined classes.

A slot definition (SlotDef) has the form

Visibility SlotName:Type = InitialValue

where Visibility and ‘= InitialValue’ are optional.

Visibility is either public, protected, or private. If it is omitted, the slot is private.

SlotName must be an atom.

706 Quintus Prolog

SlotType must be one of the following:

integer 32-bit signed integer

short 16-bit signed integer

char 8-bit signed integer

unsigned_short
16-bit unsigned integer

unsigned_char
8-bit unsigned integer

float 32-bit floating point number

double 64-bit floating point number

atom Prolog atom (32-bit pointer)

address 32-bit address

term Prolog term

Class 32-bit pointer to an instance of Class, which must be a previously defined class

pointer(Type)
like address, except that access to this slot yields, and update of this slot
expects, a unary term whose functor is Type

InitialValue may be any constant appropriate for the slot’s type.

Term, if specified, is any compound Prolog term. Class declarations of any of the last three
forms introduce a term class, which defines any term that unifies with Term as an instance
of the class being defined.

Goal, if specified, is any Prolog goal. This goal may be used to restrict which terms that
unify with Term will be considered to be instance of the class being defined. The default
Goal is true. Other than when it is true, Goal will usually share variables with Term.

Essence, if specified, is a list of terms of the form

Variable:Type

where Variable is a variable apprearing somewhere in Term and Type is one of the possible
Slottype types listed above. There should be a Variable:Type pair for every variable in
Term. By specifying an essence, you permit much more space- and time-efficient storage of
and access to term slots.

Caveat

Note that every class for which you want to be able to create instances must define at least
one create method.

Chapter 14: The Quintus Objects Package 707

Examples

The following class definition is for a class named point, with two public slots, named x
and y. Both slots are of type integer and have initial values of 1 and 2, respectively.

:- class point =
[public x:integer=1,
public y:integer=2].

Self <- create.
:- end_class point.

Because the slots are public, they have get and put methods generated automatically. Be-
cause the class has a create method defined, it is possible to create an instance with the
command

| ?- create(point, PointObj).

which creates a point object and binds the variable PointObj to it.

Using the point class, we could create a class, named_point, which has an extra public
slot, name.

:- class named_point =
[public name:atom] + point.

Self <- create(Name, X, Y) :-
Self << name(Name),
Self << x(X),
Self << y(Y).

:- end_class named_point.

The only way to create a named_point object requires specifying values for all three slots.

See Also

end_class/[0,1]

Section 14.2 [obj-scl], page 669, Section 14.4 [obj-tcl], page 691.

708 Quintus Prolog

14.6.5 class_ancestor/2

Synopsis

class_ancestor(*Class, *Anc)

Arguments

Class atom

Anc atom

Description

Anc is Class or an ancestor class of Class.

See Also

class_superclass/2

Chapter 14: The Quintus Objects Package 709

14.6.6 class_method/1 directive

Synopsis

:- class_method +Name/+Arity,

Arguments

Name atom

Arity integer

Description

Declares that a class’s method for send message Name/Arity is an ordinary method, not an
instance method.

Used when the class being defined inherits an instance method from a superclass, to allow
the class to define a non-instance method for the message. A descendent class may still
declare this to be an instance method, so the same message may be an instance method for
some classes and an ordinary class method for others.

Must occur within the scope of the class definition. Only applies to send messages.

See Also

instance_method/1

710 Quintus Prolog

14.6.7 class_superclass/2

Synopsis

class_superclass(*Class, *Super)

Arguments

Class atom

Super atom

Description

Class is an immediate subclass of Super.

See Also

class_ancestor/2

Chapter 14: The Quintus Objects Package 711

14.6.8 class_of/2

Synopsis

class_of(+Obj, -Class)

Arguments

Obj object

Class atom

Description

Class is the class of Obj.

Exceptions

instantiation_error
Obj is unbound.

type_error
Obj is not a valid object.

See Also

pointer_object/2

712 Quintus Prolog

14.6.9 create/2

Synopsis

create(+Descriptor,-Obj)

Arguments

Descriptor term

Obj object

Description

Obj is a newly created and initialized object. Descriptor is a term describing the object
to create. After memory is allocated and any slot initializations are performed, a create
message is sent to the object.

The functor of Descriptor indicates the class to create. The arguments of the create message
are the arguments of Descriptor.

Exceptions

instantiation_error
Descriptor is unbound.

domain_error
Descriptor is not a valid create descriptor.

resource_error
unable to allocate enough memory for object.

Caveat

You must have a create/N method for every arity N you want to be able to use in creating
instances of a class. This includes arity 0. If no such method exists, a domain error will be
raised.

Examples

Given the class definition

Chapter 14: The Quintus Objects Package 713

:- class point =
[public x:integer=1,
public y:integer=2].

Self <- create.
Self <- create(X, Y) :-

Self << x(X),
Self << y(Y).

:- end_class point.

the command

| ?- create(point, Point1).

creates a point object, with the default slot values for x and y, and binds variable Point1
to the new object. The command

| ?- create(point(10,15), Point2).

creates a point object with values 10 and 15 for slots x and y, respectively, and binds
variable Point2 to the new object.

See Also

destroy/1

714 Quintus Prolog

14.6.10 current_class/1

Synopsis

current_class(*Class)

Arguments

Class atom

Description

Class is the name of a currently defined class.

Chapter 14: The Quintus Objects Package 715

14.6.11 debug_message/0 directive

Synopsis

:- debug_message.

Description

Prolog clauses following this directive will be compiled to send messages “carefully.”

That is, a message sent to an object that does not understand the message will raise an
exception, which describes both the message and the object receiving it. This also catches
attempts to send an unbound message, to send a message to an unbound object, and similar
errors.

See Also

nodebug_message/0

716 Quintus Prolog

14.6.12 define_method/3

Synopsis

define_method(+Obj, +Message, +Body)

Arguments

Obj object

Message term

Body callable

Description

Install Body as the method for Message in the instance Obj. Following the execution of
this goal, sending Message to Obj will execute Body, rather than the default method or a
method previously defined with define_method/3.

Message must have been declared to be an instance method for the class of Obj.

Exceptions

instantiation_error
any argument is unbound.

type_error
Obj is not a compound term, or Message or Body is not callable.

domain_error
Message does not specify an instance method for the class of Obj, or Body
include a goal to fetch or store a non-existent slot.

See Also

instance_method/1, undefine_method/3

Chapter 14: The Quintus Objects Package 717

14.6.13 descendant_of/2

Synopsis

descendant_of(+Obj, *Class)

Arguments

Obj object

Class atom

Description

Obj is an instance of Class or of a descendant of Class.

Exceptions

instantiation_error
Obj is unbound.

type_error
Object is not a valid object.

See Also

class_ancestor/2, class_of/2, class_superclass/2

718 Quintus Prolog

14.6.14 destroy/1

Synopsis

destroy(+Obj)

Arguments

Obj object

Description

Dispose of Obj.

First send a destroy message to Obj, if such a message is defined for its class. A destroy
message takes no argument. Unlike create/2, it is possible to destroy instances of a class
even if it defines no destroy methods.

Exceptions

instantiation_error
Obj is unbound.

type_error
Object is not a valid object.

See Also

create/2

Chapter 14: The Quintus Objects Package 719

14.6.15 direct_message/4

Synopsis

direct_message(*Class, *Op, *Name, *Arity)

Arguments

Class atom

Op message operator

Name atom

Arity integer

Description

Name/Arity is an Op message directly understood (defined rather than inherited) by in-
stances of Class. This predicate is used to test whether a message is defined for a class.

Op is one of <-, >>, or <<, specifying the kind of message.

This predicate violates the principle of information hiding by telling whether the method
for a message is defined within a class or inherited. Hence its use in ordinary programs is
discouraged. It may be useful, however, during debugging or in developing programming
support tools.

See Also

<-/2, <</2, >>/2, message/4

720 Quintus Prolog

14.6.16 end_class/[0,1] directive

Synopsis

:- end_class.

:- end_class +ClassName.

Arguments

ClassName
atom

Description

A class definition continues until the next end_class/[0,1] directive, the next class/1
directive, or the end of the file, whichever comes first.

It is not possible to nest one class definition within another.

All clauses that look like method definitions (that is, which have one of <-/2, <</2 or >>/2
as the principal functors of their heads) are considered to be method definitions for the
class.

Caveat

The argument to end_class/1, if specified, must match the class name of the preceding
class/1 directive.

See Also

class/1

Chapter 14: The Quintus Objects Package 721

14.6.17 fetch_slot/2

Synopsis

fetch_slot(+SlotName, -Value)

Arguments

SlotName atom

Value term

Description

Fetch Value from the slot specified by SlotName.

This predicate may only appear in the body of a method clause, and it always operates on
the object to which that message is sent. It cannot be used to directly access the slots of
another object.

Exceptions

instantiation_error
Slot is unbound.

domain_error
Slot is not the name of a slot of the current class.

permission_error
Slot is a private slot of a superclass.

See Also

>>/2, store_slot/2

722 Quintus Prolog

14.6.18 inherit/1 directive

Synopsis

:- inherit +ClassName +Op +Name/+Arity,

Arguments

ClassName
atom

Op message operator

Name atom

Arity integer

Description

ClassName names the class from which the message should be inherited, Op indicates which
kind of message it is, and Name and Arity indicate the name and arity of the message to
be inherited. You may include several inheritance specifications in one directive.

Caveat

Be careful of the precedences of the message operator and the / operator. You may need
to use parentheses.

Examples

Suppose classes toy and truck are defined as follows:

:-class toy.
Self <- create.
Self >> size(small).
Self >> rolls(false).
:- end_class toy.

:- class truck.
Self <- create.
Self >> size(small).
Self >> rolls(true).
:- end_class truck.

Chapter 14: The Quintus Objects Package 723

Then toy_truck inherits its size from toy and the fact that it rolls from truck:

:- class toy_truck = toy + truck.
:- inherit

toy <- (create/O),
toy <- (size/1),
truck <- (rolls/1).

:- end_class toy_truck.

Note that this is just a toy example.

See Also

uninherit/1

724 Quintus Prolog

14.6.19 instance_method/1 directive

Synopsis

:- instance_method +Name/+Arity.

Arguments

Name atom

Arity integer

Description

The message Name/Arity is declared to support instance methods in a class. This means
that instances of this class, and its descendants, may each define their own methods for this
message.

A method defined for this message by the class is considered the default method for the
message. An instance that does not define its own method uses the default. Defining a new
method overrides this default method; there is no need to explicitly remove it.

An instance method is installed in an instance of the class with the define_method/3
predicate. An instance method is removed from an instance of the class, reverting to the
default method, with the undefine_method/3 predicate.

Must occur within the scope of the class definition. Only applies to send messages.

See Also

class_method/1, define_method/3, undefine_method/3

Chapter 14: The Quintus Objects Package 725

14.6.20 message/4

Synopsis

message(*Class, *Op, *Name, *Arity)

Arguments

Class atom

Op message operator

Name atom

Arity integer

Description

Name/Arity is an Op message understood by instances of Class. This predicate is used to
test whether a message is either defined for or inherited by a class.

Op is one of <-, >>, or <<, specifying the kind of message.

See Also

<-/2, <</2, >>/2, direct_message/4

726 Quintus Prolog

14.6.21 nodebug_message/0 directive

Synopsis

:- nodebug_message.

Description

Prolog clauses following this directive are no longer compiled to send messages "carefully."

See Also

debug_message/0

Chapter 14: The Quintus Objects Package 727

14.6.22 pointer_object/2

Synopsis

pointer_object(+Addr,-Obj)

pointer_object(-Addr,+Obj)

Arguments

Addr integer

Obj object

Description

Addr is the address of object Obj. This can be used to get the address of an object or to
get an object given its address.

Exceptions

instantiation_error
both Obj and Addr are unbound.

type_error
Addr is not an integer.

728 Quintus Prolog

14.6.23 store_slot/2

Synopsis

store_slot(+SlotName, +NewValue)

Arguments

SlotName atom

NewValue term

Description

Store NewValue in the slot specified by SlotName.

This predicate may only appear in the body of a method clause, and it always operates on
the object to which that message is sent. It cannot be used to directly modify the slots of
another object.

Exceptions

instantiation_error
either argument is unbound.

type_error
NewValue is not of the appropriate type for Slotname.

domain_error
Slotname is not the name of a slot of the current class.

permission_error
Slotname is a private slot of a superclass.

See Also

<</2, fetch_slot/2

Chapter 14: The Quintus Objects Package 729

14.6.24 undefine_method/3

Synopsis

undefine_method(+Obj, +Name, +Arity)

Arguments

Obj object

Name atom

Arity integer

Description

Remove Obj’s current instance method for the Name/Arity message. After executing this
goal, sending this message to Obj executes the class’s default method for the message.

Name/Arity must have been declared to be an instance method for the class of Obj.

If Obj has no current instance method for the Name/Arity message, the predicate has no
effect.

Exceptions

instantiation_error
any argument is unbound.

type_error
Obj is not a compound term, Name is not an atom, or Arity is not an integer.

domain_error
Message does not specify an instance method for the class of Obj.

See Also

define_method/3, instance_method/1

730 Quintus Prolog

14.6.25 uninherit/1 directive

Synopsis

:- uninherit +Class +Op +Name/+Arity,

Arguments

Class atom

Op message operator

Name atom

Arity integer

Description

This prevents the class within whose scope this directive appears from inheriting the Name
/Arity method of type Op from ancestor Class.

If Class is unbound, the specified message is uninherited from all ancestors that define it.

Caveat

Note that if you define a message for your class, you do not need to uninherit that message
from its superclasses: it will automatically be shadowed.

Be careful of the precedences of the message operator and the / operator. You may need
to use parentheses.

Examples

:- uninherit someclass << (foo/1),
someclass >> (foo/1).

This prevents the get and put methods for the slot foo from being inherited from any
ancestors of class someclass. In effect, it makes the foo slot a protected slot for this class.

See Also

inherit/1

Chapter 14: The Quintus Objects Package 731

14.7 Glossary

abstract class
A class that cannot have instances. Abstract classes are helpful in designing a
class hierarchy, to contain the common parts of several concrete classes.

ancestor One of a class’s superclasses, one of its superclasses’s superclasses, etc. Some-
times, for convenience, ancestor includes the class itself, along with its proper
ancestors.

child A synonym for subclass.

class A class is defined by a description of the information its instances contain and
the messages they respond to. Every object is an instance of one and only one
class.

concrete class
A class that can have instances. Most classes are concrete.

create method
Specifies what actions should be taken when an instance of a class is created.
A create method frequently provides initial slot values or specifies an action to
be performed by the new object. A create message is sent to each new object
by the create/2 predicate. A create message is a kind of send message.

descendant
One of a class’s subclasses, one of its subclasses’s subclasses, etc. Sometimes
the word descendant includes the class itself, along with its proper descendants.

destroy method
Specifies what actions should be taken when an instance of a class is destroyed.
A destroy message is sent to an object by the destroy/1 predicate. A destroy
message is a kind of send message.

direct slot access
Fetching or storing a slot value without sending a message to the object. This
should be used with care!
Quintus Objects allows direct access to a class’s slots only within its method
definitions, via the fetch_slot/2 and store_slot/2 predicates.

get message
A message that inquires about some aspect of an object. Typically used to
fetch slot values. Get methods are automatically generated for public slots.
Get messages are written with the ‘>>’ operator.

inheritance
The process by which a class’s slots and methods are determined from an an-
cestor.

initial value
The value a slot is initialized to when an object is created. Every slot has a
default initial value, which depends upon its type. You may specify different
initial values in a class definition.

732 Quintus Prolog

instance Another word for object. The word instance draws attention to the class of
which the object is an instance.

instance method
A method that may be defined differently for each instance of a class. The class
may have a default method for this message, which is overridden by installing
an instance method for a particular object.

message A command to an object to perform an operation or to modify itself, or an
inquiry into some aspect of the object. In Quintus Objects, a message is either
a get message, a put message or a send message. The syntax for sending a
message to an object is

Object Operator Message

where Operator is one of the following:

>> get message

<< put message

<- send message

method A class’s implementation of a particular message. You send messages to an
object, but you define methods for a class.

method clause
A Prolog clause used to define a method for a class. A method clause has one of
<-/2, <</2 or >>/2 as the principal functor of its head, and it can only appear
within the scope of its class’s definition. A method’s definition may contain
more than one message clause.

mixin class
A class that is intended to be combined (mixed in) with other classes, via
multiple inheritance, to define new subclasses.

multiple inheritance
When a class names more than one superclass. Typically, it inherits slots
and methods from each. In Quintus Objects, two different superclasses should
not use the same slot name. And, if a message is defined by more than one
superclass, the class definition must specify which method to inherit.

object A modifiable data item that holds information and responds to messages. An-
other word for instance.

parent class
A synonym for superclass.

private slot
A private slot is, by default, only accessible within methods of the class it-
self. Not even the descendants of the class may access its private slots, except
through the class’s methods. Get and put methods are not automatically gen-
erated for a private slot, so it is only accessed via the methods you define. If the
visibility of a slot is not specified, it is private, rather than public or protected.

Chapter 14: The Quintus Objects Package 733

protected slot
A protected slot is, by default, only accessible within methods of the class itself
and its descendants. Get and put methods are not automatically generated
for a protected slot, so it is only accessed via the methods you define. If the
visibility of a slot is not specified, it is private, rather than public or protected.

Quintus Objects protected is similar to protected in C++.

public slot A public slot is accessible via its own get and put methods, which are generated
for it automatically. If no visibility is specified, a slot is private, rather than
public or protected.

put message
A message that modifies some aspect of an object. Typically used to store slot
values. Put methods are automatically generated for public slots. Put messages
are written with the ‘<<’ operator.

send message
The most common sort of message. Used for performing an operation on an
object or for performing an action that depends upon an object. Send messages
are written with the ‘<-’ operator.

send super
When a method for a class executes a shadowed superclass’s method. This
allows a class to put a “wrapper” around its superclass’s method, making it
unnecessary to duplicate the method just to make a small extension to it.

shadow When a class defines its own method for a message defined by one of its an-
cestors, the new method hides or “shadows” the ancestor’s method. The new
class’s descendants will inherit its method for that message, rather than its
ancestors. That is, a class always inherits the “closer” of two methods for a
message.

slot A part of an instance that holds an individual datum. Like a member of a C
struct or a field of a Pascal record.

subclass A class that is a more specific case of a particular class. This is the opposite of
superclass. A class does not name its subclasses; they are inferred.

superclass A class that is a more general case of a particular class. Each class lists its
superclasses.

term class A class whose instances are represented as ordinary Prolog terms. The functor
of these objects need not be the name of the class, and the arity need not be
one.

term slot A slot that can hold any Prolog term.

uninherit Specify that a method from a superclass should not be inherited. This is similar
to shadowing the superclass’s method, but does not specify a replacement for
it.

visibility A slot may be defined to be either public, protected, or private. By default,
if no visibility is specified, a slot is private.

734 Quintus Prolog

Chapter 15: The PrologBeans Package 735

15 The PrologBeans Package

15.1 Introduction

PrologBeans is a package for integrating Java and Prolog applications. The main idea is
to let Java and Prolog run in separate processes. It is usually a bad idea to let Java and
Prolog coexist in the same process, as their respective virtual machines tend to compete
over resources such as memory and UNIX signals.

The current version of the package is designed to be used when Java applications need
to send queries to a Prolog server (and less intended for showing a GUI from a Prolog
program). One typical application is to connect Java based web applications to a Prolog
server (see examples later).

PrologBeans setup where the Prolog application serves several users accessing both via a
web application server and a Java GUI.

736 Quintus Prolog

The PrologBeans package is split into the file ‘prologbeans.jar’, to be used in the Java
application, and the ‘library(prologbeans)’ module, to be used in the Prolog part of the
application, i.e. the Prolog server.

All PrologBeans examples can be found in the ‘qplib(’prologbeans/demo’)’ directory,
which is one of the directories covered by the ‘demo’ file search path.

15.2 Features

The current version of PrologBeans is designed to be used mainly as a connection from Java
to Prolog. Current features are:

• Socket based communication
• Allows Java application and Prolog server to run on different machines
• Multiple Java applications can connect to same Prolog server
• Java applications can make use of several Prolog servers
• Allows Java Applets to access Prolog server
• Platform independent (e.g. any platform where Prolog and Java exist)
• Simplifies the use of Prolog in Java application servers (Tomcat, etc)
• Prohibits unwanted use of Prolog server by host control (only specified hosts can access

the Prolog server)
• Supports Java servlet sessions
• Supports JNDI lookup (Java Naming and Directory Interface)

Coming features:

• Connection pooling (several connections in application servers and several running
Prolog servers for better performance)

• More advanced options for querying the Prolog server
• Better support for communication from Prolog to Java (e.g. a Java server that the

Prolog application can connect to)
• Support for launching Prolog and loading Prolog programs from a Java application

15.3 A First Example

This section provides an example to illustrate how PrologBeans can be used. This applica-
tion has a simple Java GUI where the user can enter expressions that will be evaluated by
an expression evaluation server.

Chapter 15: The PrologBeans Package 737

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import se.sics.prologbeans.*;

public class EvaluateGUI implements ActionListener {

private JTextArea text = new JTextArea(20, 40);
private JTextField input = new JTextField(36);
private JButton evaluate = new JButton("Evaluate");
private PrologSession session = new PrologSession();

public EvaluateGUI() {
JFrame frame = new JFrame("Prolog Evaluator");
Container panel = frame.getContentPane();
panel.add(new JScrollPane(text), BorderLayout.CENTER);
JPanel inputPanel = new JPanel(new BorderLayout());
inputPanel.add(input, BorderLayout.CENTER);
inputPanel.add(evaluate, BorderLayout.EAST);
panel.add(inputPanel, BorderLayout. SOUTH);
text.setEditable(false);
evaluate.addActionListener(this);
input.addActionListener(this);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();
frame.setVisible(true);

}

public void actionPerformed(ActionEvent event) {
try {

Bindings bindings = new Bindings().bind("E",
input.getText() + ’.’);

QueryAnswer answer =
session.executeQuery("evaluate(E,R)", bindings);

Term result = answer.getValue("R");
if (result != null) {
text.append(input.getText() + " = " + result + ’\n’);
input.setText("");

} else {
text.append("Error: " + answer.getError() + "\n");

}
} catch (Exception e) {

text.append("Error when querying Prolog Server: " +
e.getMessage() + ’\n’);

}
}

public static void main(String[] args) {
new EvaluateGUI();

}
}

738 Quintus Prolog

The Java code above first sets up the GUI with a text area for showing results, a text
field for entering expressions, and a button for requesting an evaluation (the constructor
EvaluateGUI()). It will also add itself as ActionListener on both the text field and
the button. The method actionPerformed(ActionEvent event) will be called whenever
the user has pressed 〈RET〉 or clicked on the button. actionPerformed first binds the
variable E to the value of the text field, and then sends the query to the Prolog server
with session.executeQuery("evaluate(E,R)", bindings);. If everything goes well, the
Prolog server will return an answer (bound to R), which will be appended to the text area.

:- module(evaluate,[main/0,my_predicate/2]).
:- use_module(library(prologbeans)).
:- use_module(library(charsio), [read_from_chars/2]).

%% Register acceptable queries and start the server (using default port)
main:-

register_query(evaluate(C,P), my_predicate(C,P)),
start.

%% We have received a list of characters,
%% which needs to be converted into an expression
my_predicate(Chars, P) :-

read_from_chars(Chars, X),
P is X.

The Prolog code above first defines the module and imports the needed modules. Then, in
the main/0 predicate, it configures the server to answer queries on the form evaluate(C,P)
and starts the server. The last few lines defines the predicate my_predicate(Chars, P),
which is the predicate that performs the evaluation. Note that the expression to evaluate
is represented as a list of characters and must be converted into a term before evaluation.

Please note: the environment variable QP_PATH as used here is meant to be a shorthand for
quintus-directory, and does not need to be set explicitly.

To start the
example, first start the Prolog server by going to the ‘qplib(’prologbeans/demo’)’ di-
rectory and type:

% prolog +l evaluate.pl

| ?- main.

To start the GUI type (from the same directory as above):

> java -
classpath "%QP_PATH%\java3.5\prologbeans.jar;." EvaluateGUI (Win-
dows), or
% java -
classpath "$QP_PATH/java3.5/prologbeans.jar:." EvaluateGUI (UNIX)

Chapter 15: The PrologBeans Package 739

15.4 Java Interface

The Java interface is centered around the class PrologSession, which represents a connec-
tion (or session) to a Prolog server. PrologSession contains static methods for looking
up named PrologSession instances using JNDI (Java Naming and Directory Interface) as
well as methods for querying the Prolog server. Other important classes are: QueryAnswer,
which contains the answer for a query sent to the Prolog server; Term, which represents a
Prolog term; and Bindings, which supports stuffing of variable values used in queries.

General information about Java, Servlets and JNDI is available at the Java Technology site:
http://java.sun.com/

A brief description of the methods in the provided Java classes are presented below.

The PrologSession object is the connection to the Prolog server. The constructor
PrologSession() creates a PrologSession with the default settings (host = localhost,
port = 8066. PrologSession contains the following methods:

[Method on PrologSession]static PrologSession getPrologSession (String
name)

returns the PrologSession registered in JNDI with the given name. Use this method
in application servers where services are registered using JNDI. Please note: the
application server must be configured to register the PrologSession with the given
name for this method to work. See Tomcat configuration in Section 15.6.3 [pbn-exs-
tomcat], page 747.

[Method on PrologSession]static PrologSession getPrologSession (String
name, HTTPSession session)

returns the PrologSession registered in JNDI with the given name. The
PrologSession will make use of sessions and the session id will be the same as
in the HTTPSession. Use this method in web application servers with support for
servlets and HTTPSession (and when support for sessions is desired).

[Method on PrologSession]String getHost ()
returns the host of the Prolog server (exactly as registered in setHost).

[Method on PrologSession]void setHost (String prologServerHost)
sets the host of the Prolog server (default localhost). Either IP-address or host
name is allowed.

[Method on PrologSession]int getPort ()
returns the port of the Prolog server.

[Method on PrologSession]void setPort (int port)
sets the port of the Prolog server (default 8066).

http://java.sun.com/

740 Quintus Prolog

[Method on PrologSession]void connect ()
connects to the Prolog server. By default the executeQuery will automatically con-
nect to the server when called.

[Method on PrologSession]void setAutoConnect (boolean autoConnect)
sets the connection mode of this PrologSession. If set to true it will ensure that it
is connected to the Prolog server as soon as a call to executeQuery or anything else
causing a need for communication happens. This is by default set to true

[Method on PrologSession]boolean isAutoConnecting ()
returns the state of the AutoConnect mode.

[Method on PrologSession]QueryAnswer executeQuery (String query)
sends a query to the Prolog server and waits for the answer before returning the
QueryAnswer. Anonymous variables (underscore, ‘_’), will be ignored, and thus not
accessible in the QueryAnswer. executeQuery throws IOException if communication
problems with the server occurs. Please note: executeQuery will only return one
answer.

[Method on PrologSession]QueryAnswer executeQuery (String query,
Bindings bindings)

sends a query to the Prolog server and waits for the answer before returning the
QueryAnswer. Bindings are variable bindings for the given query and will ensure
that the values are stuffed correctly. An example:

QueryAnswer answer =
executeQuery("evaluate(In,Out)",

new Bindings().bind("In","4*9."));

The QueryAnswer contains the answer (new bindings) for a query (or the error that occurred
during the query process). QueryAnswer inherits from Bindings, and extends and modifies
it with the following methods:

[Method on QueryAnswer]Term getValue (String variableName)
returns the value of the given variable. If there is a value a Term (a parsed Prolog term)
is returned, otherwise null is returned. All bindings from the query are available in
the QueryAnswer.

[Method on QueryAnswer]boolean queryFailed ()
returns true if the query failed (e.g. the Prolog returned no). In this case, there will
be no answers (no new bindings, and isError will return false).

[Method on QueryAnswer]boolean isError ()
returns true if there was an error.

Chapter 15: The PrologBeans Package 741

[Method on QueryAnswer]String getError ()
returns the error message (which is only set if there was an error, otherwise it will be
null).

The Term object is for representing parsed Prolog terms, and has the following methods:

[Method on Term]boolean isAtom ()
returns true if the Term is an atom.

[Method on Term]boolean isInteger ()
returns true if the Term is an integer.

[Method on Term]boolean isFloat ()
returns true if the Term is a floating-point number.

[Method on Term]boolean isCompound ()
returns true if the Term is a compound term.

[Method on Term]boolean isList ()
returns true if and only if Term is a compound term with principal functor ./2.

[Method on Term]boolean isString ()
returns true if the Term an instance of PBString (which can be used for fast string
access by a type-cast to PBString and the use of the method getString() that
returns the string).

[Method on Term]boolean isVariable ()
returns true if the Term is a variable.

[Method on Term]int intValue ()
returns the int value of the integer.

[Method on Term]long longValue ()
returns the long value of the integer.

[Method on Term]float floatValue ()
returns the float value of the floating-point number.

[Method on Term]double doubleValue ()
returns the double value of the floating-point number.

[Method on Term]String getName ()
returns the functor name of the Term (see functor/3). If the Term represents a
variable (isVariable() returns true), the variable name is returned.

742 Quintus Prolog

[Method on Term]int getArity ()
returns the number of arguments of this term (e.g. parent(A1,A2) would return 2)
(see functor/3). If the term is not a compound term, getArity() will return 0.

[Method on Term]Term getArgument (int index)
returns the Term representing the argument at the position given by index. If
there are no arguments, or if an argument with the specified index does not ex-
ist, IndexOutOfBoundsException will be thrown. The first argument has index one
(see arg/3).

Bindings is used for binding variables to values in a query sent to the Prolog. The values
will be automatically stuffed before they are sent to the Prolog server.

[Method on Bindings]void bind (String name, int value)
binds the variable with the given name to the given value. Please note: this method
is also available for values of type long, float, double, and Term.

[Method on Bindings]void bind (String name, String value)
binds the variable with the given name to the given value. The value will be seen as
a list of UNICODE character codes in Prolog.

[Method on Bindings]void bindAtom (String name, String value)
binds the variable with the given name to the given value. Please note: this method
will encode the String as an atom when querying the Prolog server.

15.5 Prolog Interface

The Prolog interface is based on the idea of a Prolog server that provides its service by
answering queries from external applications (typically Java applications). The Prolog in-
terface in PrologBeans is defined in ‘library(prologbeans)’, which implements the Prolog
server and exports the following predicates:

start
start(+Options)

starts the Prolog server using the options specified. Options should be a list of
zero or more of:

port(?Val)
an integer denoting the port number of the Prolog server (default:
8066). If Val is a variable then some unused port will be selected by
the OS, the actual port number can be obtained with get_server_
property/1, typically from a server_started event listener.

accepted_hosts(+Val)
a list of atoms denoting the hosts (in form of IP-addresses) that are
accepted by the Prolog server (default: [’127.0.0.1’]).

Chapter 15: The PrologBeans Package 743

session_timeout(+Val)
an integer denoting the duration of a session in seconds. The session
will be removed if it has been inactive more than this timeout when
the session garbage collect starts. If the session timeout is set to
zero there will be no garbage collect on sessions (default: 0).

session_gc_timeout(+Val)
an integer denoting the minimum time in seconds between two con-
secutive session garbage collections. If the timeout is set to zero
there will be no garbage collect on sessions (default: 0).

For example:
:- start([port(7500),

accepted_hosts([’127.0.0.1’,’99.8.7.6’])]).

shutdown
shutdown(+Mode)

shuts down the server and closes the sockets and the streams after processing
all available input. There are three modes:

now as soon as possible (default).

no_sessions
after all sessions have ended (all sessions have either been explicitly
removed by request of the client application, or they have been
garbage collected). Please note: there can still be connections to
the Prolog server even when all sessions have ended.

no_connections
after all connections to the Prolog server are closed. Please note:
there can still be user sessions left when all connections have been
closed.

register_query(+Query, :PredicateToCall, +SessionVar)
registers a query and the corresponding predicate. Before the registration any
previously registered query matching Query will be removed (as if unregister_
query(Query) was called). The predicate, PredicateToCall will be called, as if
by once(PredicateToCall), when a query matching Query is received. Before
calling the query, the variable SessionVar, if given, is bound to the id of the
current session. Session ids are typically generated in web applications that
track users and mark all consecutive web-accesses with the same session id.

unregister_query(+Query)
unregisters all queries matching Query.

session_get(+SessionID, +ParameterName, +DefaultValue, -Value)
returns the value of a given parameter in a given session. If no value exists, it
will return the default value. Arguments:

SessionID is the id of the session for which values have been stored

ParameterName
an atom, is the name of the parameter to retrieve

744 Quintus Prolog

DefaultValue
is the value that will be used if no value is stored

Value is the stored value or the default value if nothing was stored

session_put(+SessionID, +ParameterName, +Value)
stores the value of the given parameter. Please note: any pre-existing value
for this parameter will be overwritten. Note that session_put/3 will not be
undone when backtracking (the current implementation is based on assert).
Arguments:

SessionID is the id of the session for the values to store

ParameterName
an atom, is the name of the parameter to store

Value the value to be stored

register_event_listener(+Event, :PredicateToCall, -Id)
register_event_listener(+Event, :PredicateToCall)

Registers PredicateToCall to be called (as if by once(PredicateToCall))
when the event matching Event occurs (event matching is on principal functor
only). If the goal fails or raises an exception a warning is written to user_error
but the failure or exception is otherwise ignored. Arguments:

Event is the event template, see below.

PredicateToCall
an arbitrary goal.

Id becomes bound to a (ground) term that can be used with
unregister_event_listener/1 to remove this event listener.

The predefined events are as follows:

session_started(+SessionID)
called before the first call to a query for this session

session_ended(+SessionID)
called before the session is about to be garbage collected (removed)

server_started
called when the server is about to start (enter its main loop)

server_shutdown
called when the server is about to shut down

Attempt to register an event listener for other events than the predefined events
will throw an exception.
More than one listeners can be defined for the same event. They will be called
in some unspecified order when the event occurs.

unregister_event_listener(+Id)
Unregister a previously registered event listener. The Id is the value returned
by the corresponding call to register_event_listener/3. It is an error to
attempt to unregister an event listener more than once.

Chapter 15: The PrologBeans Package 745

15.6 Examples

15.6.1 Embedding Prolog in Java Applications

If you have an advanced Prolog application that needs a GUI you can write a stand-
alone Java application that handles the GUI and set up the Prolog server to call the right
predicates in the Prolog application.

An example of how to do this can be found in the ‘qplib(’prologbeans/demo’)’ directory
(‘evaluate.pl’, see the example code in Section 15.3 [pbn-exa], page 736).

Another example of this is ‘pbtest.pl’, which illustrates several advanced features like:

• registering several queries
• listening to server events (server_started)
• shutting down the Prolog server from Java
• starting up the Prolog server from Java
• using dynamic (OS assigned) ports for the Java/Prolog communication

The example is run by executing the Java program PBTest:

> java -classpath "%QP_PATH%\java3.5\prologbeans.jar;." PBTest (Win-
dows), or
% java -classpath "$QP_PATH/java3.5/prologbeans.jar:." PBTest (UNIX)

15.6.2 Application Servers

If you want to get your Prolog application to be accessible from an intranet or the Internet
you can use this package to embed the Prolog programs into a Java application server such
as Tomcat, WebSphere, etc.

An example of how to do this is provided in ‘sessionsum.pl’. This example uses sessions
to keep track of users so that the application can hold a state for a user session (as in the
example below, remember the sum of all expressions evaluated in the session).

746 Quintus Prolog

<% page import = "se.sics.prologbeans.*" %>
<html>
<head><title>Sum Calculator</title></head>
<body bgcolor="white">
Prolog Sum Calculator, enter expression to evaluate:
<form><input type=text name=query></form>
<%

PrologSession pSession =
PrologSession.getPrologSession("prolog/PrologSession", session);

String evQuery = request.getParameter("query");
String output = "";
if (evQuery != null) {

Bindings bindings = new Bindings().bind("E",evQuery + ’.’);
QueryAnswer answer =

pSession.executeQuery("sum(E,Sum,Average,Count)", bindings);
Term average = answer.getValue("Average");
if (average != null) {

Term sum = answer.getValue("Sum");
Term count = answer.getValue("Count");

output = "<h4>Average =" + average + ", Sum = "
+ sum + " Count = " + count + "</h4>";

} else {
output = "<h4>Error: " + answer.getError() + "</h4>";

}
}

%>
<%= output %>

<p><hr>Powered by Quintus Prolog
</body></html>

The example shows the code of a JSP (Java Server Page). It makes use of the
method PrologSession.getPrologSession(String jndiName, HTTPSession session),
which uses JNDI to look up a registered PrologSession, which is connected to the Prolog
server. The variable session is in a JSP bound to the current HTTPSession, and the variable
request is bound to the current HTTPRequest. Since the HTTPSession object session is
specified all queries to the Prolog server will contain a session id. The rest of the example
shows how to send a query and output the answer.

Example usage of sessions is shown below, and is from ‘sessionsum.pl’:

Chapter 15: The PrologBeans Package 747

:- module(sessionsum,[main/0,sum/5]).
:- use_module(library(prologbeans)).
:- use_module(library(charsio), [read_from_chars/2]).

%% Register the acceptable queries (session based)
main:-

register_query(sum(C,Sum,Average,Count),
sum(C,Session,Sum,Average,Count),
Session),

start.

%% The sum predicate which gets the information from a session database,
%% makes some updates and then stores it back in to the session store
%% (and returns the information back to the application server)
sum(ExprChars, Session, Sum, Average, Count) :-

session_get(Session, sum, 0, OldSum),
session_get(Session, count, 0, OldCount),
read_from_chars(ExprChars, Expr),
Val is Expr,
Sum is OldSum + Val,
Count is OldCount + 1,
Average is Sum / Count,
session_put(Session, sum, Sum),
session_put(Session, count, Count).

In this example a query sum/4 is registered to use a predicate sum/5 where one of the vari-
ables, Session will be bound to the session id associated to the query. The sum/5 predicate
uses the session_get/4 predicate to access stored information about the particular session,
and then it performs the evaluation of the expression. Finally, it updates and stores the
values for this session.

15.6.3 Configuring Tomcat for PrologBeans

This section will briefly describe how to set up a Tomcat server so that is it possible to
test the example JSPs. Some knowledge about how to run Tomcat and how to set up
your own web application is required. Detailed information about Tomcat is available at
http://jakarta.apache.org/tomcat/.

Assuming that you are positioned in the Tomcat installation directory, do the following:

1. Add the ‘prologbeans.jar’ to the ‘common/lib/’ directory. Note that this will give
all Tomcat applications access to the PrologBeans system. There are other options for
importing ‘prologbeans.jar’ that might be better for your type of application.

2. In the ‘conf/server.xml’ file add the following (after the Tomcat Root Context tags
- shown as the first lines below):

http://jakarta.apache.org/tomcat/

748 Quintus Prolog

[...]
<!-- Tomcat Root Context -->
<!--
<Context path="" docBase="ROOT" debug="0"/>

-->

<DefaultContext>
<Resource name="prolog/PrologSession" auth="Container"

type="se.sics.prologbeans.PrologSession"/>

<ResourceParams name="prolog/PrologSession">
<parameter>
<name>factory</name>
<value>org.apache.naming.factory.BeanFactory</value>

</parameter>
<parameter>
<name>port</name>
<value>8066</value>

</parameter>
</ResourceParams>

</DefaultContext>
[...]

This will register a PrologSession instance under the name prolog/PrologSession
so that it is possible to do a JNDI lookup.

3. In your ap-
plication’s ‘web.xml’ file, found in Tomcat’s ‘webapps/your_application/WEB-INF’
directory, you need the following resource reference:

<resource-ref>
<res-ref-name>prolog/PrologSession</res-ref-name>
<res-type>se.sics.prologbeans.PrologSession</res-type>
<res-auth>Container</res-auth>

</resource-ref>

4. Copy the example JSP files
that you want to use (‘sessionsum.jsp’ and ‘evaluate.jsp’) into the Tomcat web
application directory (‘webapps/your_application’).

5. Start the Tomcat server.
6. Start the example that you want to test (Section 15.3 [pbn-exa], page 736 shows how

to start one of the examples).

Chapter 16: The ProXL Package 749

16 The ProXL Package

16.1 Introduction

ProXL is an interface between Quintus Prolog and the X Window System (Version 11
Release 2 or later). ProXL permits the rapid development of X-based applications us-
ing Prolog’s interactive development facilities. Essentially all functionality of X is made
available through Prolog calls and callbacks. ProXL is built directly on the standard Xlib
interface, and ProXL code is inter-operable with Xlib C code.

ProXL is not available under Windows.

16.1.1 User Benefits

• For the X window-application developer: ProXL provides the power of Prolog to test
and debug application code interactively.

• For the Prolog programmer: ProXL adds the functionality of the X window system to
permit Prolog to control interactive window-oriented applications.

• For the newcomer to X: ProXL provides an excellent and succinct attribute-oriented
interface to the basic features of X.

• For the application vendor: ProXL enables X development in combination with Pro-
log’s rapid-prototyping capabilities. Interactive access to other standard packages is
also available through Quintus Prolog’s C language interface and Database Interface
product.

16.1.2 ProXL Features

• Support for all X protocol functionality:
− multiple displays and screens
− nested windows
− colors
− all X visual types
− pixmaps and bitmaps
− fonts, both fixed and variable width
− cursors, standard and custom
− all X drawing primitives
− all X graphics context functionality
− window and font properties
− window manager interface
− selections and cut buffers

750 Quintus Prolog

− events
• ProXL objects have state:

− Objects know their display and screen; no need to specify separately.
− Windows and Pixmaps know their graphics context (GC); there is no need to

specify GC when drawing.
− Graphics Contexts remember their state.

• Primitives get and put operate on lists of attributes:
− Attributes allow accessing or setting only desired information.
− All attributes have defaults.
− Access from Prolog is uniform across objects.
− X asymmetries are smoothed and regularized.

• Inference built-in to locate correct X resources:
− Specify a window, pixmap, or GC where font is needed.
− Specify a window or pixmap where a GC is needed.
− Specify a screen or display where a colormap is needed.
− Specify anything where a display is needed.
− Default screen and display simplify coding.

• Callbacks in Prolog:
− Specify Prolog code to call when certain events happen.
− Call Prolog procedures with any arguments.
− Flexible mechanism for terminating event-handling loop.
− Pass context-specific data to callback procedure.
− Return result from event-handling loop.

Callbacks are executed even while Prolog is waiting for you to type a goal.
• Program in Prolog:

− Prolog’s interactive environment simplifies code prototyping and testing.
− Programs are much more compact than in other languages (ProXL code typically

uses one-third as much code as C)
• Interoperability with C code:

− Extend existing C/Xlib programs in Prolog with ProXL.
− Integrate further C/Xlib code with ProXL applications.

This manual is addressed to people who know how to use the X window system, but not
necessarily how to program it. For some readers, much of introduction will be familiar. You
might want to read those sections that describe features peculiar to ProXL: Section 16.1.10
[pxl-bas-attr], page 755, Section 16.1.9 [pxl-bas-inf], page 755, and Section 16.1.11.1 [pxl-
bas-tyi-cbk], page 756, and then skip ahead to the tutorial in Section 16.2 [pxl-tut], page 757.
If you have written programs in Xlib, you might also find Section 16.16 [pxl-xlib], page 890
helpful.

X is a very subtle system, and the ProXL manual does not try to document it all. Therefore,
it may occasionally be necessary to refer to a good reference on X. A major source of

Chapter 16: The ProXL Package 751

information on X is the X manual for your system. Since X programming is often done in
the C language, a good place to turn for detail on some of the esoteric features of X is a
reference on Xlib. Another good way to learn about X is to experiment with ProXL.

16.1.3 Windows

A window is a rectangular area of the screen. X supports nested windows, where child
windows are only visible insofar as they are within the boundary of their parent. Every
application window has a parent window, which the window is physically inside. Every
screen has a single root window, which is the entire contents of the screen. The root
window does not have a parent, of course. A window’s descendents are called its inferiors.
All drawing into a window is confined, or clipped, to the window’s boundaries, including
all drawing into the window’s inferiors. Sibling windows can overlap, in which case the
stacking order of the windows becomes important, as one window can cover, or occlude,
all or part of another. Drawing into a window will not affect parts of the window that are
occluded.

A window can be mapped, that is, put on the screen, or not. If a window is not mapped, it
cannot be seen, nor can any of its inferiors, whether or not they are mapped. This means
that a window can be created once, and then mapped and unmapped at will without having
to destroy and later recreate it. A window is said to be viewable if all of its ancestors are
mapped. A window is said to be visible if it is viewable, and furthermore, it is not occluded
by any siblings.

The window manager is distinct from the X server. In X, the user (by using a window
manager) almost always has control over where and how large top level windows appear on
the screen. Windows nested within top level windows, on the other hand, are completely
under program control. The window manager, in fact, is simply another X program running
alongside your applications. This means that the user can change the look and feel of the
windows at any time by changing to another window manager.

16.1.4 Drawing and filling lines and shapes

Drawing in ProXL is fairly straightforward, and quite powerful. ProXL has primitives to

• draw points, lines, polygons, rectangles, arcs, ellipses (and circles)
• fill closed figures with arbitrary patterns
• draw or fill multiple items
• clear windows
• copy part of one drawable into another.

Programming in ProXL requires a certain way of looking at drawing and graphics in general.
Think of a line or an ellipse not as an permanent object, but as a temporary pattern of pixels
on the screen. When you draw a line, you are turning bits on. The next thing you do may

752 Quintus Prolog

turn them off. Or they may be turned off when a user overlays your window with another.
The line that you draw has no permanence. This property of X, call it procedural drawing,
makes for a programming style in which you first open the windows you will need, and then
do all drawing in callback routines (Section 16.1.11.1 [pxl-bas-tyi-cbk], page 756). If you
want the line to seem to stay around, you have to explicitly provide for it to be repainted
whenever it is damaged or obscured by a later event; see Section 16.1.11.2 [pxl-bas-tyi-rfr],
page 756 on refreshing windows.

The primitives for drawing or filling a single shape take just the arguments you would
expect:

• the destination window
• the parameters determining the shape to be drawn.

The primitives for drawing or filling multiple objects are also fairly simple. They each take

• the destination window
• a list of Prolog terms, each specifying the parameters of a shape to be drawn or filled.

In all of the drawing commands, and elsewhere in ProXL, the X coordinates are given
relative to the left edge of the enclosing window , and Y coordinates are given relative to
the top edge.

16.1.5 Drawing text

Drawing text in ProXL is like drawing lines or shapes. This means that every command
to draw text must supply a position at which the text is to be drawn. ProXL does not
maintain a current drawing position in a window, so you cannot use the standard Prolog
primitives such as write/[1,2], or format/[2,3]1 for putting text into an X window.

Furthermore, note that the position in a drawable at which text is to be drawn is given in
pixel coordinates, not character coordinates. There are three reasons for this:

• Using pixel coordinates gives you much greater flexibility in positioning and spacing of
text.

• The font in which you are printing may not be fixed width (see Section 16.1.7.1 [pxl-bas-
graf-font], page 753), so you cannot reliably determine where to print by multiplying
the width of a character by the number of characters.

• X provides for fonts that write from right to left, so it is not always sufficient to add
the pixel width of a string to its origin position to determine its right side. In this case,
the origin point is at the right end of the string.

1 Of course, the Prolog text output primitives will continue to work in the window you are running Prolog
in. This is usually a terminal emulator window maintained by a program such as xterm; X does not
automatically do this.

Chapter 16: The ProXL Package 753

ProXL provides primitives for determining how large a string will be when it is displayed,
including a primitive that will determine how many pixels left, right, above, and below the
origin point a text string will occupy.

16.1.6 Drawing Pixmaps and drawing into Pixmaps

Apart from drawing shapes or text into a window, we often wish to import complex pictures
from an inventory. In ProXL these are stored in pixmaps.

A pixmap is a rectangular area that can be drawn into, but cannot be seen. It may be copied
into a window to be seen. It is common to draw frequently used complicated drawings into
a pixmap, and then to copy the pixmap to a window whenever it is needed. Pixmaps are
also used for representing textures, in which case they are tiled, that is, copied repeatedly
like floor tiles, when they are displayed.

Pixmaps, like windows, are drawables, that is, something that you can draw into, not, as
you might expect, something that is drawn. Most drawing primitives take a drawable as
their destination argument as they can draw into either windows or pixmaps.

16.1.7 Graphics attributes of drawables

Certain parameters are needed often when drawing, for example, the color in which to draw,
the width of lines, the texture with which to fill areas. These are examples of what we call
graphics attributes. In X, graphics attributes are associated with drawing procedures.
Rather than mention the same attributes over and over again, ProXL applications handle
these graphics parameters by associating a set of graphics attributes with each drawable,
and changing them at any time. So if you want to draw a line of width 2, then another
of width 5, your program would have to change the line width graphics attribute of the
drawable. In fact, this is not necessary, as we show in Section 16.1.7.3 [pxl-bas-graf-gc],
page 754.

16.1.7.1 Fonts

Fonts determine what characters will look like in a window. A font is a graphics attribute
of a drawable. It is a mapping from a character code to a bit pattern to be drawn in a
drawable. Fonts may be fixed width (each character is the same width, like a typewriter
or conventional computer terminal) or proportionally spaced (each character takes only the
space needed for that character, like a normal typeset book). Fonts come in many sizes,
shapes, and styles. They can even write from right to left! But X does not provide for
rotated fonts, or fonts that write vertically.

754 Quintus Prolog

16.1.7.2 Color and colormaps

A color is a triple of Red, Green, Blue values. Each pixel, or point, in a window or pixmap
may be a different color. On each hardware platforms, there will be a restriction on the
number of colors that may be displayed in a window at a time, and also a limitation on the
number of different colors that are possible at all. For example, many screens are capable
of showing approximately 16 million colors (256 different shades each of red, green, and
blue), but can only show 256 colors at one time. This means that pixel values, the numbers
assigned to each pixel, will be between 0 and 255. Each window, therefore, must have a
way to know what color is associated with each pixel value. This is what a colormap does:
it maps from pixel values to actual colors.

Notice that a colormap is associated with each window, but not with pixmaps. The pixel
values in a pixmap are uninterpreted until the pixmap is copied to a window. So a pixmap
copied into two different windows may appear in different colors if those windows have
different colormaps.

16.1.7.3 Graphics contexts (GCs)

As we have seen in Section 16.1.7 [pxl-bas-graf], page 753, the look of drawings is determined
by attaching graphics attributes to a drawable. It is often desirable to have various drawables
use the same list of attributes. ProXL provides a data structure called graphics context
(GC) to handle this situation.

To determine a figure’s properties, an application can attach a list of attributes to each
drawable. Alternatively, the application can create a GC, and specify the desired parameters
there. Accordingly, there are two versions of each drawing primitive:

• one that uses the destination drawable’s graphics attributes
• one that takes a GC as an argument.

These two approaches can be freely intermixed, and used with great power and flexibility,
as explained in Section 16.6.3.3 [pxl-graf-cre-use], page 831.

16.1.8 Cursors

A cursor is the visual representation on the screen of the pointer device (mouse). A cursor
is not the visual representation of the type-in position; X does not have a name for that.
Each X window may specify what shape the cursor will take when the cursor is in that
window. If a window doesn’t specify a cursor in its attribute list, it uses the same one as
its parent window.

Chapter 16: The ProXL Package 755

16.1.9 Inferring arguments

In X, a drawable is an object into which you can draw, either a window or pixmap. ProXL
drawing procedures take an argument of type “Drawable”. Therefore, you can pass either
a window or a pixmap to these drawing procedures.

ProXL extends this concept to include displayables, screenables, windowables, colorma-
pables, gcables, and fontables. If, for example, a ProXL procedure requires a screen as
an argument, you can pass either a screen or any other object which uniquely determines
a screen. One object can uniquely determine another in two ways, either directly or via
a default. For example, a window is directly associated with only one screen. Therefore,
anywhere a screen is required any window associated with that screen can be specified. On
the other hand, a display may have more than one screen associated with it, but it has
only one default screen. Therefore, anywhere a screen is required the screen’s display can
be specified, if the display’s default screen is the screen in question.

Following is a complete listing of the -ables supported by ProXL. The parenthesized asso-
ciations below indicate that unique determination is made via a default value.

Object required
Objects fulfilling the requirement

displayable
display, screen, window, pixmap, colormap, gc, font, cursor

screenable display (default screen), screen, window, pixmap, colormap, gc

windowable
display (root window of default screen), screen (root window), window

colormapable
display (default colormap of default screen), screen (default colormap), window,
colormap

gcable window, pixmap, gc

fontable window, pixmap, gc, font

Therefore, subsequent sections in this manual may describe an argument of a ProXL pro-
cedures as, for example, a GCable. In this case you can specify either a window, pixmap or
GC as the argument.

16.1.10 Attributes: Specifying properties of ProXL objects

ProXL makes heavy use of what we call attributes. Graphics attributes, discussed above,
are an example. An attribute is one aspect of the current state of a ProXL object. Formally,
it is a Prolog term whose functor determines which attribute it is, and whose arguments
determine the current state of that aspect of the object.

Attributes are used to

756 Quintus Prolog

• specify the initial state of a newly created object
• change an object
• inquire about the current state of an object.

All procedures that use attributes accept a list, so many independent aspects of the state of
an object may be examined or changed in a single operation. Some examples of attributes
are size(Width,Height) for windows, pixmaps, and screens, and line_width(Width) for
GCs, windows and pixmaps, mapped(State) for windows.

16.1.11 Handling keyboard and mouse input

X is asynchronous: X commands will be executed in the order they are specified, but may
be executed some time later. Commands are queued up, and only transmitted to the X
server when the buffer fills up or when the buffer is flushed. This affects programming style
in various ways: It has consequences for error handling, callbacks, and window refreshing. It
sometimes necessitates “flushing”, though ProXL always flushes all ProXL displays when-
ever it is going to wait for user input, including input to the Prolog prompt. This greatly
cuts down on the need to explicitly flush a display.

16.1.11.1 Callbacks

ProXL allows the user to register callbacks for each window, that is, Prolog routines that are
called when certain events occur. These routines may be passed any arguments, including
information particular to that event. For example, you may register a callback on a window
for mouse button press events, and have your routine receive the position in the window of
the mouse at the time the button was pressed.

Callbacks are the usual mechanism for ProXL programs to listen to and handle events,
although ProXL programs may get and handle events directly if they wish.

16.1.11.2 Refreshing windows

People might expect lines or other shapes they have put on the screen to stay put. In X they
do not. Another way to look at this is that the X window system does not automatically
refresh windows when they become damaged; that is, when a window that was occluding
another window is moved or unmapped, it leaves the occluded window with the wrong
contents. It is always the responsibility of each application to keep its window up to date.

This is a case where procedural drawing (see Section 16.1.4 [pxl-bas-lin], page 751) deter-
mines programming style in ProXL. You start by writing one setup call, which determines
all aspects of a window, creates that window, attaches callbacks, and maps the window.
Then when the window is damaged, your callback will be executed to refresh the window.
The tutorial ends with a simple example of such a program.

Chapter 16: The ProXL Package 757

Also note that attempts to draw into a window before it is mapped will quietly be ignored.
So if you write a program that creates a window, maps it, and then starts drawing in it,
you’ll often be surprised to find that there’s nothing drawn in the window. It is essential
to wait for the window to become mapped. The easiest way to do this is to do the drawing
in a callback, which will automatically be executed as soon as the window becomes visible
(as well as every time it is damaged).

16.1.11.3 Errors

Because of asynchronicity, you may have executed many commands when you discover that
a previous command has caused an error. A ProXL feature described in Section 16.13.5.2
[pxl-eh-eho-synchronize], page 866 enables you to get around this problem during debugging.

There are two types of errors in X, fatal errors and recoverable errors. Fatal errors are
handled by the server and terminate program execution. Recoverable errors are handled by
the ProXL error handler, or a user-specified error handler.

16.1.12 Displays and Screens

A ProXL screen is what it sounds like: a physical screen on a monitor. Normally each CPU
has one screen associated with it. However, there can be more; for instance, you might have
both a color and a monochrome screen. ProXL allows programs to use all available screens.

X is network transparent, meaning that a program may open windows on any screen that
is accessible through a network. This is possible because commands to X are sent via
interprocess communication (IPC) to a separate X server process, which actually does the
work. A ProXL display is essentially a connection between your Prolog program and the X
server. Think of a display as one CPU on a network. Each display has a fixed number of
screens, one of which is opened by default upon opening X. Also, given a display, you can
enumerate its screens, as well as find its default screen.

Unless network transparency is being exploited, a ProXL programmer will not normally have
to deal with displays explicitly. Screens are almost always handled by a default mechanism.
Consult an Xlib manual for an overview of how screens and displays are used and why they
exist.

16.2 Tutorial

This section briefly introduces each of the major aspects of Quintus ProXL through an
interactive session. Starting from a primitive version, we will add features until the session
covers the breadth of Quintus ProXL.

This session shows how ProXL programs can be developed interactively using Quintus
Prolog. This is one of the great advantages of ProXL over most other approaches to X

758 Quintus Prolog

Window system application development. We encourage you to bring up a ProXL system
and actually type in the following session.

In Section 16.2.10 [pxl-tut-hello], page 771 we present a ProXL program whose results are
the same as the interactive session. This session and program are not themselves useful,
but they should give you enough of an idea of how ProXL works so that you can begin to
write your own programs.

In order to understand the session, we assume that you know how to use Quintus Prolog
and your X window manager and, in order to run the session and program, we assume that
you have already installed both the X window system and Quintus ProXL.

ProXL refers to an object by means of a handle. An example of a handle is,
window(1787368). The functor window/1 denotes the type of the object and the inte-
ger 1787368 is a unique identifier for the particular object. Your ProXL program should
not depend upon the form of either the type or the identifier. Rather it should simply treat
the handle as an opaque Prolog term (just like a Prolog stream or database reference). The
unique object identifiers generated by ProXL will change from session to session, therefore,
when you run your session the object identifiers returned by ProXL may be different than
the ones printed here.

16.2.1 Displaying a Window on the Screen

First, let’s put up a window. Type the command, ’prolog’, into a shell window running
under the X window system, and load the ProXL library:

% prolog

Quintus Prolog Release 3.5 (Sun 4, SunOS 5.5)

| ?- [library(proxl)].

You will be greeted with many messages about files being loaded, and finally will get another
Prolog prompt. Now let’s create a window:

| ?- create_window(Window, [mapped(true)]),

retractall(win(_)),

assert(win(Window)).

Window = window(2376568)

After a few moments, a window should appear on your screen. Some window managers may
require you to choose a position for the window.

That’s all there is to putting a window on the screen. You will notice that we didn’t specify
very much. We didn’t say how big to make the window, nor where on the screen to put
it, nor what color to make it, etc. All these parameters, and many more, are defaulted for

Chapter 16: The ProXL Package 759

us by ProXL. The only thing we did specify was mapped(true). In X, mapping a window
makes it visible if its parent window is visible. Since we didn’t specify a parent window for
the window we’re creating, the root window of the default screen is its parent, and the root
window is always mapped. So by specifying the attribute mapped(true), we make the new
window visible.

The second argument of create_window/2 is a list; this is called an attribute list. We could
have put many different attributes in this list, to specify any of the attributes of the window
mentioned above as having been defaulted. A complete list of the attributes supported by
windows can be found in Section 16.3 [pxl-win], page 774, but for this example we won’t
need to use very many of them.

We use assert/1 to remember the window we’ve created so that we can use it later. This is
a good idea while you are experimenting with ProXL, but isn’t usually necessary in actual
programs. Using retractall/1 to initialize the table first is just standard Prolog wisdom,
avoiding any problems if this tutorial is run more than once.

Notice that this window is quite small; the default window size is 100 by 100 pixels. If we’re
going to display a message in this window, we’ll need it to be bigger.

| ?- win(Window),

put_window_attributes(Window, [size(250,100)]).

Window = window(2376568)

This makes the window 250 by 100 pixels, more than big enough for our purposes. The call
to win/1 gets back the window we just created, and put_window_attributes/2 changes
the window’s size.

put_window_attributes/2 is much like create_window/2, except that it allows you to
specify new attributes for an existing window, and create_window/2 lets you specify at-
tributes for a window to be newly created. We could have specified size(250,100) in the
call to create_window/2, if we had thought of it then.

If you try this, one of two things may happen: the window may be changed to the right
size, or it may not. The reason is that X allows the window manager to have control over
top level window sizes and positions. An application can try to change these things, but the
window manager decides whether to allow it or not. The theory behind this is that the user
should be in control of his windows, and the window manager is his tool in implementing his
wishes. If this last goal didn’t work for you, don’t worry. Try to get your window manager
to give the test window enough space for the message, and ignore the fact that the message
isn’t centered. The final version of this program will center the message.

16.2.2 Displaying Text in the Window

Now let’s load a big font and write a message in the window.

760 Quintus Prolog

| ?- load_font(’*-times-bold-i-normal--24-*’, Font),

win(Window),

put_graphics_attributes(Window, [font(Font)]),

draw_string(Window, 10, 50, ’Hello, world!!’).

Font = font(1787304),
Window = window(2376568)

load_font/2 does just what it sounds like. The atom, ’*-times-bold-i-*-240-*’ is the
specification of a font that is known to the X11 server.2 To see all of the fonts known to
your X11 server, use the shell command xlsfonts.

put_graphics_attributes/2 will change graphics attributes of its first argument (aspects
you might expect to specify when drawing). In this case, we’re specifying that we want
to use the font we just loaded when we draw text in this window. Then we call draw_
string/4 to write the message ‘Hello, world!!’ into the window starting at the pixel
position (10,50).

Notice that we didn’t use put_window_attributes/2 to specify the font for the window,
but instead used put_graphics_attributes/2. The difference is important. ProXL has
many put_something_attributes/2 procedures, and in all cases the something refers to
the attributes, not to the object being changed. In this case, put_window_attributes/2
changes window attributes of the window you pass it. But put_graphics_attributes/2
changes graphics attributes of the argument you pass it. Here that argument is a window; in
Section 16.2.4 [pxl-tut-dbg], page 762 we will use put_graphics_attributes/2 to change
a pixmap.

The text is positioned at the coordinates (10,50). This means that the origin point for the
first character is at that position, but what is the origin point? Actually, each type of font
has its own way of positioning text relative to the origin point. For the typical latin fonts
(fonts for the ASCII character set), however, all of a character is usually printed to the
right of the origin point, and only descenders go below the origin point. So you can usually
think of the origin as the left end of the baseline for the text being drawn.

16.2.3 Making the Window the Right Size

Make the window the right size for the message:

2 If you are using X11 Release 2, then use the font name ’vbg-25’. The way to specify fonts changed
from Release 2 to Release 3.

Chapter 16: The ProXL Package 761

| ?- win(Window),

text_extents(Window, ’Hello, world!!’, L, R, W,

Ascent, Descent),

Width is W+4,
Height is Ascent+Descent+4,
put_window_attributes(Window, [size(Width,Height)]),

TextLeft is L+2,
TextBase is Ascent+2.

Window = window(2376568),
L = 0,
R = 145,
W = 146,
Ascent = 17,
Descent = 3,
Width = 150,
Height = 24,
TextLeft = 2,
TextBase = 19

First we retrieve our window. The second line, the call to text_extents/7, computes how
big the message is when printed in the window. The first argument to text_extents/7 is
a specification of the font we are using. Here, since we’ve already specified the font to use
for drawing into this window, the window uniquely determines the font. So ProXL accepts
the window in place of the font argument.

This unique determination of argument types is an important concept. ProXL tries to infer
the right object from the object you give it. In this case, it wants a font, but it accepts
a window. Previously, we associated a font with this window, so ProXL knows which font
we mean. The table in Section 16.1.9 [pxl-bas-inf], page 755 spells out which entities are
predictable.

Returning to our example, the remaining arguments to text_extents/7 are:

Msg the string whose size we’re trying to find

L left bearing: the number of pixels this string will occupy left of the origin

R right bearing: the number of pixels this string will occupy right of the origin

W total width

Ascent the number of pixels above the origin

Descent the number of pixels below the origin

The next two goals compute the width and height of the window. We allow 2 pixels of
blank space all around the string, yielding the 4 pixels we add in to determine both width
and height. Note that the height of a string is its ascent plus it descent.

762 Quintus Prolog

In the fifth line, we specify the new size for the window as we did before, only now with a
more precise size.

The last two lines compute the origin point for drawing into the window. TextLeft allows
2 pixels to the left of the string, and TextBase leaves 2 pixels above. For this tutorial, we’ll
just remember these results and use them when needed. In an actual program, we would
pass them as arguments to the program doing the drawing.

Notice that resizing the window erases our ‘Hello, world!!’ message. This points up
an important aspect of X: it is always the responsibility of the application to refresh its
windows. Later we’ll worry about making that work automatically; for now, just manually
refresh the window:

| ?- win(Window),

draw_string(Window, 2, 19, ’Hello, world!!’).

Window = window(2376568)

There shouldn’t be any surprises here. The position (2,19) simply the TextLeft and
TextBase we computed earlier.

16.2.4 Drawing a Textured Background

The window would look more interesting with a textured background. We decide that a 4x4
pixmap with two lines between opposite corners forming an X would make an interesting
background texture.

| ?- create_pixmap(Pix, [size(4,4)]),

draw_segments(Pix, [segment(0,0,3,3), segment(0,3,3,0)]),

win(Window),

put_window_attributes(Window, [background(Pix)]).

Pix = pixmap(2383840),
Window = window(2376568)

The first line is as simple as it looks: it creates a 4x4 pixel pixmap. The second line draws
the X. Note that coordinates are given with (0,0) as the northwest corner pixel, so (3,3)
is the southeast corner. Then the third line installs the new pixmap as the background
pattern.

You might be wondering why the window didn’t change. The reason is simple: the back-
ground is used to fill parts of the window that have been cleared. The easiest way to get
the new background displayed is to use your window manager to either iconify and then
uniconify the window, or to push it behind another window and then pull it back to the
front. You could also do it by calling

Chapter 16: The ProXL Package 763

| ?- win(Window),

clear_window(Window).

Window = window(2376568)

Again we need to refresh the window:

| ?- win(Window),

draw_string(Window, 2, 19, ’Hello, world!!’).

Window = window(2376568)

That doesn’t look terribly interesting. Try drawing the string in white instead of black.

| ?- win(Window),

get_screen_attributes([white_pixel(Pix)]),

put_graphics_attributes(Window, [foreground(Pix)]),

draw_string(Window, 2, 19, ’Hello, world!!’).

Window = window(2376568),
Pix = 0

The second line determines the pixel value for white on our screen. X does not establish
a standard pixel value for black and white, so you must determine it explicitly. In fact, X
doesn’t even guarantee that the black_pixel/1 and white_pixel/1 attributes will yield
black and white, but they are logical black and white.

The third line sets the foreground color, the color to draw in, to white. Finally, we draw
our message. The default drawing color in ProXL is black_pixel; this is why you didn’t
have to specify it earlier. But now that we’ve specified white, all drawing will be done in
white until we change it again.

16.2.5 Drawing a Drop Shadow

The white text also needs highlighting, so let’s try a drop shadow. Drop shadows are done
by printing the text in black first, and then again in white, offset a little bit horizontally
and vertically.

Since the window is just big enough for the message, you should use the window manager
to make it a bit bigger so it can accommodate both the message and its shadow. Then go
ahead and draw the drop shadow.

764 Quintus Prolog

| ?- win(Window),

clear_window(Window),

get_screen_attributes([black_pixel(Black),

white_pixel(White)]),

put_graphics_attributes(Window, [foreground(Black)]),

draw_string(Window, 7, 27, ’Hello, world!!’),

put_graphics_attributes(Window, [foreground(White)]),

draw_string(Window, 2, 19, ’Hello, world!!’).

Window = window(2376568),
Black = 1,
White = 0

Note that we’ve determined both black_pixel/1 and white_pixel/1 of the screen at the
same time here. You can put as many attributes in this list, and in fact in any attribute list,
as you like. Other than that, this example is pretty straightforward. We drew the message
first in black, then again in white five pixels to the left and eight pixels above the shadow.

The resulting displacement for the shadow seems a bit too much, at least vertically. The
displacement should probably be relative to the size of the characters in the font, so let’s
find out how big the characters in the font are.

| ?- win(Window),

get_font_attributes(Window, [height(H), max_width(W)]).

Window = window(2376568),
H = 25,
W = 23

The attribute height/1 is the nominal height of the font, that is, its declared height.
Individual characters can be taller than this, but they usually are not. The attribute max_
width/1 represents the width of the widest character in this font. Remember, different
characters can have different widths. Notice that we’ve asked for the font attributes of a
window. Once again, we take advantage of ProXL’s ability to infer a font from a window.

Given these numbers, let’s say that one fifth of the font’s max_width and height are about
the right horizontal and vertical offset for the drop shadow. So now recalculate the size of
the window:

Chapter 16: The ProXL Package 765

| ?- win(Window),

get_font_attributes(Window, [height(Fh), max_width(Fw)]),

Xdisplacement is Fw//5,

Ydisplacement is Fh//5,

text_extents(Window, ’Hello, world!!’, L, R, W, A, D),

Width is W+Xdisplacement+4,
Height is A+D+Ydisplacement+4,
put_window_attributes(Window, [size(Width,Height)]).

Window = window(2376568),
Fh = 25,
Fw = 23,
Xdisplacement = 4,
Ydisplacement = 5,
L = 0,
R = 145,
W = 146,
A = 17,
D = 3,
Width = 154,
Height = 29

This looks a bit complicated, but is actually just a combination of things we’ve done before.
First we find the font’s max_width and height, as above, and compute the X and Y dis-
placement to be one fifth of those values. Then we find the size of the string, as before. The
width and height of the window should be just as before, with the X and Y displacement
added in. Finally, we resize the window. Not surprisingly, we lose the message again; let’s
put it back.

766 Quintus Prolog

| ?- win(Window),

Xdisplacement = 4,

Ydisplacement = 5,

A = 20,

get_screen_attributes([black_pixel(Black),

white_pixel(White)]),

X0 is 2+Xdisplacement,
Y0 is 2+A+Ydisplacement,
put_graphics_attributes(Window, [foreground(Black)]),

draw_string(Window, X0, Y0, ’Hello, world!!’),

X1 is 2,

Y1 is 2+A,
put_graphics_attributes(Window, [foreground(White)]),

draw_string(Window, X1, Y1, ’Hello, world!!’).

Window = window(2376568),
Xdisplacement = 4,
Ydisplacement = 5,
A = 20,
Black = 1,
White = 0,
X0 = 6,
Y0 = 27,
X1 = 2,
Y1 = 22

Xdisplacement, Ydisplacement, and A come from previous goals, so we don’t have to re-
compute them. We’re also assuming the the left bearing of our message is 0. So the X
position of our message is just 2, and the Y position is 2 plus the ascent of the message
(A). And the X and Y position of the shadow message is offset from this by the X and Y
displacement. The rest of this example is just like what we’ve seen before.

16.2.6 Specifying a Title for the Window

If you use a window manager that displays window titles, you probably would like to be able
to give the window a title. In ProXL, this is done with the property/2 window attribute.

| ?- win(Window),

put_window_attributes(Window,

[property(’WM_NAME’, hello)]).

Window = window(2376568)

This puts the string ‘hello’ as the value of the WM NAME property of our window. This
property is watched by window managers that display window titles, and when it changes,

Chapter 16: The ProXL Package 767

the window manager updates the title. There are many other properties that are significant
to window managers, all discussed in Section 16.3.2 [pxl-win-wmi], page 779.

Some window managers do not display window titles, for example, uwm. If your window is
like this, don’t worry, the properties will not do any harm. And setting this property will
make your programs friendlier for users with other window managers.

16.2.7 Color

Now let’s add color. If you don’t have a color machine, this will still work. Of course, you
won’t be able to see the colors, so if you can find a color display to run this example on,
that would be best.

| ?- alloc_color(goldenrod, Pixel1),

alloc_color(forestgreen, Pixel2),

alloc_color(cyan, Pixel3),

alloc_color(black, Pixel4),

retractall(colors(_,_,_,_)),

assert(colors(Pixel1,Pixel2,Pixel3,Pixel4)).

Pixel1 = 6,
Pixel2 = 7,
Pixel3 = 8,
Pixel4 = 1

Each line here allocates a color in the default colormap of the default screen. When you
give alloc_color/2 a valid color, it always returns a pixel value, even for black and white
screens. If it can’t allocate the color you ask for, it will give you the closest one it can. In
this case, we have chosen the colors so that on a monochrome system the two background
colors (Pixel1 and Pixel2) will be different, and likewise the two foreground colors (Pixel3
and Pixel4), so that the window will look reasonable. It wouldn’t do if all the colors were
the same.

If you’re following along typing in these examples, you probably didn’t get the same pixel
values as we did here. That’s why we assert the values: so we can get the right pixel values
later when we need them.

Now let’s construct a new background that uses these colors.

768 Quintus Prolog

| ?- colors(Pixel1, Pixel2, _, _),

create_pixmap(Pix, [size(4,4)]),

put_graphics_attributes(Pix, [foreground(Pixel1)]),

fill_rectangle(Pix, 0, 0, 3, 3),

put_graphics_attributes(Pix, [foreground(Pixel2)]),

draw_segments(Pix, [segment(0,0,3,3), segment(0,3,3,0)]),

win(Window),

put_window_attributes(Window,[background(Pix)]).

Pixel1 = 6,
Pixel2 = 7,
Pix = pixmap(586904)

The only thing here that’s new is the call to fill_rectangle/5. We call it here to fill the
pixmap with the appropriate background color. The rest of this has been discussed before
in Section 16.2.4 [pxl-tut-dbg], page 762.

Finally, let’s put the message back, only in color.

| ?- win(Window),

colors(_, _, Pixel3, Pixel4),

put_graphics_attributes(Window, [foreground(Pixel4)]),

draw_string(Window, 6, 24, ’Hello, world!!’),

put_graphics_attributes(Window, [foreground(Pixel3)]),

draw_string(Window, 2, 19, ’Hello, world!!’).

Window = window(2376568),
Pixel3 = 8,
Pixel4 = 1,

This is exactly what we did before, only now we specify foreground/1 for the message, and
the shadow, to take on the newly allocated colors.

16.2.8 Specifying a Cursor for the Window

The last complication we want to add to this example is a special cursor. Let’s arrange for
the cursor to look like gumby when it is in our window.

| ?- create_cursor(gumby, Cursor),

put_window_attributes(window(1787368), [cursor(Cursor)]).

Cursor = cursor(1787472)

This is pretty much what one would expect. X predefines many cursors; Section 16.10
[pxl-crs], page 848 lists them. Gumby just happens to be one of them. We could custom
design a cursor if we wished, but gumby should be fine for this example.

Chapter 16: The ProXL Package 769

Try moving your mouse cursor into the hello window, and you will see that it becomes
Gumby (or a reasonable facsimile).

16.2.9 Specifying a Callback Procedure for a Window Event

A callback is a Prolog procedure that is invoked when a particular window system event
occurs. Examples of window system events are key presses, mouse clicks, mouse motion
and window exposure.

A common ProXL application will create and map all of its windows and register a callback
with each event to which the application must respond. Whenever Prolog is waiting for
input, it watches for ProXL events and executes the registered callbacks.

16.2.9.1 Redrawing a window using a callback procedure

In our tutorial so far, every time our window has been damaged we have had to manually
redraw it. The application program is always responsible for redrawing its windows when
they have been damaged. This can be accomplished by associating a callback with the
window telling ProXL what to do when the window needs to be redrawn.

The steps required to automatically redraw our window are:

• Define a callback procedure that draws the current contents of the window3

• Register that callback with the expose event of the window, so that the callback is
invoked when the window needs to be redrawn

First, we must define the callback procedure to redraw our window:

3 Since an expose event is sent to a window when it is first mapped (appears on the screen), it is not
necessary to write separate code that initially draws the window and subsequently redraws the window.

770 Quintus Prolog

| ?- compile(user).

| redraw(Window, Pixel3, Pixel4) :-

Xdisplacement = 4,

Ydisplacement = 5,

A = 20,

X0 is 2+Xdisplacement,
Y0 is 2+A+Ydisplacement,
X1 is 2,

Y1 is 2+A,
put_graphics_attributes(Window, [foreground(Pixel4)]),

draw_string(Window, X0, Y0, ’Hello, world!!’),

put_graphics_attributes(Window, [foreground(Pixel3)]),

draw_string(Window, X1, Y1, ’Hello, world!!’).

| ^D
% user compiled, 0.383 sec 380 bytes

yes

Next we must register the callback for expose events sent to our window:

| ?- win(Window),

colors(_, _, Pixel3, Pixel4),

put_window_attributes(Window,

[callback(expose,

[count(0)],

redraw(Window,Pixel3,Pixel4))]).

Window = window(2376568),
Pixel3 = 8,
Pixel4 = 1

Here we have told ProXL that when the X server determines that it is necessary to redraw
the window, by sending expose events, the procedure redraw/3 should be called. The X
server may send several expose events, each specifying a different part of the window to
be redrawn. Since this is a simple example, we don’t bother to redraw the window part
by part. We just redraw the entire window whenever any part of it needs to be redrawn.
The second argument, count(0), accomplishes this by telling ProXL that it should call
redraw/3 only if this is the last expose message in the group.4

Now if you do something to force X to redraw our window, like iconifying and then uni-
conifying it, or hiding it behind another window and then exposing it, you will find that
the window is automatically refreshed. Try it.

4 If we had wanted to do more precise redrawing, we would have put [position(X,Y),size(W,H)] as the
second argument in our callback specification, in place of [count(0)], and passed X, Y, W, and H to
the callback procedure. The callback procedure would then only redraw the area of the window thus
specified.

Chapter 16: The ProXL Package 771

16.2.9.2 handle_events and Terminating a Dispatch Loop

The last thing we need to learn to complete the example is how to wait for a ProXL
condition. The example we have so far will keep our window refreshed indefinitely, but
to make this a stand-alone demo we need to wait, handling refresh events, until the user
indicates he is finished with this demo. Let’s say when you click a mouse button in the
window, we destroy the window and exit.

This is the role of the handle_events/[0,1,2] predicates. The simplest, handle_
events/0, will wait, handling all ProXL events, until all windows with callbacks are de-
stroyed. handle_events/[1,2] may be made to return before all windows have been de-
stroyed, may be used to get information back from callbacks, and to pass context information
to a callback (so it can behave differently in different contexts). But for this simple example,
handle_events/0 is perfectly adequate.

So all we need to do is arrange for our window to be destroyed when a mouse button is
pressed in it:

| ?- win(Window),

put_window_attributes(Window,

[callback(button_press,

[],

destroy_window(Win))]).

Window = window(2376568)

Upon receiving a button_press event, the ProXL procedure destroy_window/1 is invoked,
destroying our window. At this point, handle_events/0 will return.

Let’s try it out:

| ?- handle_events.

Now press a mouse button while the cursor is in our window. The window should go away
and handle_events/0 should return.

16.2.10 The ’hello.pl’ Program

The ProXL source code file listed below encapsulates all of the concepts presented in the
previous session as a single program. This program appears in the file demo(’hello.pl’).

772 Quintus Prolog

hello.pl

:- module(proxl_hello, [hello/0]).

:- use_module(library(proxl)).

% hello
% test program for message_window/7.

hello :-
chosen_font(Fontspec),
current_font(Fontspec, Fontname),
!,
message_window(’Hello, world!!’, Fontname,

goldenrod, forestgreen, cyan, black, _).

% message_window(+Message, +Fontname, +Bg1, +Bg2, +Letters, +Shadow,
% -Window)
% Window is a window with Message, a Prolog atom, centered in it
% in Fontname, an atom naming a font. Bg1, Bg2, Letters and Shadow
% are atoms naming colors.

message_window(Message, Fontname, Bg1, Bg2, Letters, Shadow, Window) :-
load_font(Fontname, Font),
message_size(Message, Font, Window_width, Window_height,

Xoffset, Yoffset, Xdisplacement, Ydisplacement),
alloc_color(Letters, Letters_pix),
alloc_color(Shadow, Shadow_pix),
background_pixmap(Bg1, Bg2, Bg),
create_cursor(gumby, Cursor),
create_window(Window,

[size(Window_width,Window_height), mapped(true),
border_width(2), background(Bg), cursor(Cursor),
property(’WM_NAME’, hello),
callback(expose, [count(0)],

expose_message(Window,Message,Letters_pix,
Shadow_pix,Xoffset,Yoffset,
Xdisplacement,Ydisplacement)),

callback(button_press, [], destroy_window(Window))
], [font(Font)]).

Chapter 16: The ProXL Package 773

hello.pl

% message_size(+Message, +Font, -Window_width, -Window_height, -Xoffset,
% -Yoffset, -Xdisplacement, -Ydisplacement)
% Window_width and Window_height are the size of the smallest window
% that will accomodate Message drawn with a drop shadow using font
% Font. Xoffset and Yoffset are the offset from the center of the
% window at which we want to draw the string. Since we want to keep
% the message centered even when the window is resized, it’s most
% convenient to remember the offset from the center of the window,
% which won’t change. Xdisplacement and Ydisplacement are the
% distance the shadow should be displaced from the primary image,
% computed as 1/5 of the font width and height, respectively.

message_size(Message, Font, Window_width, Window_height,
Xoffset, Yoffset, Xdisplacement, Ydisplacement) :-

get_font_attributes(Font, [height(Hei), max_width(Wid)]),
Xdisplacement is Wid//5,
Ydisplacement is Hei//5,
text_extents(Font, Message, Lbearing, Rbearing, _, Asc, Desc),
Xoffset is Lbearing-(Lbearing+Rbearing+Xdisplacement)//2,
Yoffset is Asc-(Asc+Desc+Ydisplacement)//2,
% X and Y offset
Window_width is Lbearing+Rbearing+Xdisplacement+4,
Window_height is Asc+Desc+Ydisplacement+4.

% background_pixmap(+Bg1, +Bg2, -Pixmap)
% Pixmap is a newly allocated 4x4 background pixmap filled with our
% background pattern. Bg1 and Bg2 are the names of the colors to
% use for this pixmap.

background_pixmap(Bg1, Bg2, Pixmap) :-
alloc_color(Bg1, Bg1_pix),
alloc_color(Bg2, Bg2_pix),
create_pixmap(Pixmap, [size(4,4)], [foreground(Bg1_pix)]),
fill_rectangle(Pixmap, 0, 0, 3, 3),
put_graphics_attributes(Pixmap, [foreground(Bg2_pix)]),
draw_segments(Pixmap, [segment(0,0,3,3),segment(0,3,3,0)]).

774 Quintus Prolog

hello.pl

% expose_message(+Window, +Message, +Letters_pix, +Shadow_pix,
% +Xoffset, +Yoffset, +Xdisplacement, +Ydisplacement)
% Redisplay the contents of Window. Window is a window created by
% message_window/7, and Message is the message displayed in it.
% Letters_pix and Shadow_pix are the pixel values to draw the
% letters and shadow in, respectively. Xoffset and Yoffset are
% the pixel offset from the center of the window at which Message
% should be drawn. And Xdisplacement and Ydisplacement are the
% pixel offset from the message at which the shadow should be drawn.

expose_message(Window, Message, Letters_pix, Shadow_pix, Xoffset, Yoffset,
Xdisplacement, Ydisplacement) :-

get_window_attributes(Window, [size(Width,Height)]),
X is Width//2 + Xoffset, % compute position for message
Y is Height//2 + Yoffset,
Shadow_x is X+Xdisplacement,
Shadow_y is Y+Ydisplacement,
clear_window(Window),
put_graphics_attributes(Window, [foreground(Shadow_pix)]),
draw_string(Window, Shadow_x, Shadow_y, Message),
put_graphics_attributes(Window, [foreground(Letters_pix)]),
draw_string(Window, X, Y, Message).

% chosen_font(-Fontname)
% table of fonts to try.

chosen_font(’*-times-bold-i-*-24-*’). % First choice, for X11R3
chosen_font(’vgb-25’). % Second coice, or on X11R2
chosen_font(’fixed’). % Last choice ...

% user:runtime_entry(+Context)
% The main program for runtime systems.

user:runtime_entry(start) :-
hello,
handle_events. % process callbacks till

% hello window is destroyed

16.3 Windows

Chapter 16: The ProXL Package 775

16.3.1 Window Attributes

The appearance and behavior of a window is largely determined by window attributes.
The ProXL primitives create_window/2, put_window_attributes/2, and get_window_
attributes/2 form a family whose first argument is a windowable and whose second argu-
ment is a list of attributes. The first two primitives give attributes to a window, and the
last allows you to inquire about the current state of a window.

The available attributes are listed here. The right hand column describes the attribute,
lists the values of the variable (describing them when necessary), and indicates the default
value of V.

Attribute Description and values

parent(V)
This window’s parent window. Defaults to the root window of default screen
on window creation.

x(V) Left edge of window, relative to parent window’s inside left edge, in pixels.
Default is 0.

y(V) Top edge of window, relative to parent window’s inside top edge, in pixels.
Default is 0.

position(X,Y)
X and Y of window relative to parent upper left corner, in pixels. Same as x(X
), y(Y).

width(V) Inside width of window in pixels. Default is 100.

height(V)
Inside height of window in pixels. Default is 100.

size(W,H)
Same as width(W), height(h).

depth(V) Bits per pixel. Default is parent’s depth. This attribute cannot be modified
once a window is created.

border_width(V)
width of window’s border, in pixels. Default is 0.

class(V) Can this window be drawn in, or is it only for getting input? V is either:
• input_output (default)
• input_only

This attribute cannot be modified once a window is created.

visual(V)
The window’s visual. Default is the visual of the window’s parent’s screen.
See Section 16.8 [pxl-col], page 838. This attribute cannot be modified once a
window is created.

776 Quintus Prolog

background(V)
The window’s background. V may be
• a pixel
• a pixmap
• none (default)
• parent_relative

Due to the design of the X window system itself, this attribute cannot be
determined, but only modified.

border(V)
The pattern to be displayed in the window’s border. V may be
• a pixel
• a pixmap
• copy_from_parent (default)

Due to the design of the X window system itself, this attribute cannot be
determined, but only modified.

bit_gravity(V)
Where to put the contents of the window if it is resized. V may be one of
• north_west

• north

• north_east

• west

• center

• east

• south_west

• south

• south_east

• static

• forget (default)

win_gravity(V)
Where to put the subwindows of a window that has been resized. V may be
one of
• north_west

• north

• north_east

• west

• center

• east

• south_west

• south

Chapter 16: The ProXL Package 777

• south_east

• static

• unmap (default)

backing_store(V)
Should the contents of this window be saved by the server when it is occluded
by another window? V should be one of:
• not_useful (default)
• when_mapped

• always

Note that some screens don’t support backing store, and even those that do may
not always provide it when asked. Your application must always be prepared
to repaint its own windows.

backing_bit_planes(V)
If backing_store is used, which planes should be saved? V is a bit mask. The
default is to save all planes (i.e., V = -1).

backing_pixel(V)
Specifies the bit values to put into unbacked planes when restoring from backing
store. Default is 0.

save_under(V)
Should what is under this window be saved so that when the window is moved
or unmapped, the newly exposed part of the screen can be refreshed without
asking any applications to do the work? Like backing_store(V), not all screens
support this, and those that do might not support it whenever asked to. V may
be either:
• true

• false (default)

event_mask(V)
An integer bitmask indicating which events this window wants to handle. Note
that if you use the ProXL callback mechanism, you should not modify this
attribute directly.

do_not_propagate_mask(V)
An integer bitmask indicating which events not to propagate. Any event
destined for this window not specified by either event_mask(V) or do_not_
propagate_mask(V) will be forwarded to this window’s parent.

override_redirect(V)
Override redirection of map and configure requests? Possible values of V are

false (default) A program, usually a window manager, can specify that
requests to map or reconfigure a child of a certain window, usually
the root, should be sent to it. This allows a window manager to
decide not to allow top level windows to be moved or reshaped, and
to put title bars and special borders on top level windows.

778 Quintus Prolog

true Map and configure requests should go directly to the server. This
allows you to pop up a window, say a menu, where you want it,
and without any adornments the window manager would put on it.

colormap(V)
V may be either:
• the colormap for this window
• copy_from_parent (default)

cursor(V)
V may be either:

cursor the cursor to display when the cursor is in this window

none the parent window’s cursor will be displayed.

Due to the design of the X window system itself, this attribute cannot be
determined, but only modified.

mapped(V)
Is this window on the screen, providing that its parent is? Possible values are

false (default)

true

viewable the window is on the screen; that is, the window is mapped, and
its parent is viewable. The root window is always viewable.

gc(V) The default graphics context for this window. The default is the screen’s default
gc. See Section 16.6 [pxl-graf], page 827 for more information.

property(N,V)
V is the value of the N property of the window. If N is unbound, it will
backtrack through all the properties of the window. If N is bound, it should be
an atom. See Section 16.3.2 [pxl-win-wmi], page 779 for information on how to
use the property(N,V) attribute to tell a window manager how to handle your
windows.

callback(E,F,V,C,G)
Register G as the goal to call when event E is received by the window. F is a
list of fields of the event to be accessed before calling G, and V is a variable,
which may be passed back to the handle_events procedure in order to exit the
handle_events loop. If V is none, then no result will be passed to handle_
events. C is the context of the call, which is specified as the second argument to
handle_events/2. This allows a callback’s behavior to depend on the context
in which it occurs. See Section 16.4 [pxl-ev], page 789 for more information.

callback(E,F,V,G)
Equivalent to callback(E,F,V,_,G).

callback(E,F,G)
Equivalent to callback(E,F,none,_,G).

Chapter 16: The ProXL Package 779

16.3.2 Window Manager Interaction: Properties

In the X Window System, window managers largely control how an application’s windows
behave. Applications inform the currently active window manager of important facts and
hints about a window by storing properties of certain names and types on that window.
Each window manager determines what it will do with this information by itself; your
application does not have any control over it.

X does establish many conventions for what window managers are expected to do, and you
are encouraged to use those conventions. However, at this stage in the development of the
X Window System, most window managers do not follow all these conventions. Keep this
in mind when you are testing code that makes demands of window managers: your test
may be failing due to no fault in your program, but simply because the window manager
you are using does not support the feature you require.

All interaction with the window manager is done through window properties. As described
above (see Section 16.3.1 [pxl-win-atts], page 775), window properties are window attributes
of the form

property(Name,Value)

These can be set with create_window and put_window_attributes.

16.3.2.1 Giving the Window a Name

The attribute property(’WM_NAME’,Name) specifies that Name, which should be a Prolog
atom, will be the name of the window it is an attribute of. Remember that not all window
managers will display a window’s name.

16.3.2.2 Giving the Window’s Icon a Name

The attribute property(’WM_ICON_NAME’,Name) specifies that Name, which should be a
Prolog atom, will be the name of the window’s icon.

16.3.2.3 Suggesting a Size and Shape for the Window

There are many possible ways to suggest to a window manager the screen size and position
of your window. First, you may specify two separate sets of size and position hints. The
normal size hints are specified by the attribute

property(’WM_NORMAL_HINTS’,Hints)

780 Quintus Prolog

The zoomed size hints, that is, the large or full screen size hints, are specified by the
attribute

property(’WM_ZOOM_HINTS’,Hints)

In both cases, the Hints specified should be a term of the form

wm_size_hints(Position,Size,Min_size,Max_size,Resize_inc,Aspect)

The meaning of the arguments of the wm_size_hints/6 term is as follows:

Argument Meaning

Position Specifies the window’s position. It may be either:

none No hint is being made about the window’s position.

user_position(X,Y)
This means that position (X,Y) is suggested, and that the sug-
gestion comes from the user.

program_position(X,Y)
This means that position (X,Y) is suggested, and that the sug-
gestion comes from the program.

Size Specifies the window’s size. It may be either:

none meaning that no hint is being made about the window’s size.

user_size(W,H)
W by H is the suggested size, and the suggestion comes from the
user.

program_size(W,H)
W by H is the suggested size, and the suggestion comes from the
program.

Min size Specifies the minimum suggested size for the window. The window manager
may choose to make the window smaller than this, if it likes. This may be
either:

none No hint is being made about the window’s minimum size.

size(W,H)
W by H is the suggested minimum size.

Max size Specifies the maximum suggested size for the window. The window manager
may choose to make the window larger than this, if it likes. This may be either:

none No hint is being made about the window’s maximum size.

size(W,H)
W by H is the suggested maximum size.

Resize inc Specifies the increments in which your application would like the window to be
resized. This may be either:

Chapter 16: The ProXL Package 781

none No hint is being made about the window’s resize increment.

size(W,H)
The window should be made wider or narrower in W pixel incre-
ments and taller or shorter in H pixel increments.

Aspect Specifies the minimum and maximum aspect ratio you would like the window
to have. This may be either:

none No hint is being made about the window’s aspect ratio.

Min-Max The window’s aspect ratio should be between Min and Max. Min
and Max should be (possibly floating point) numbers specifying the
ratio of width to height.

You may specify as many or as few of these arguments as you like, using none to avoid
specifying a value.

16.3.2.4 Suggesting Icon, Initial State, and Other Features

To specify whether your window expects to get focus (keyboard ownership) from the window
manager, how your window should appear initially, an picture to use in an icon, the icon’s
position, and what window group your window is in, specify the attribute

property(’WM_HINTS’,Hints)

Hints should be a term of the form

wm_hints(Input,Initial,Icon_pix,Icon_win,Icon_pos,Icon_mask,Window_group
)

The meaning of the arguments of the wm_hints/7 term is as follows:

Argument Meaning

Input Specifies whether your window expects to get focus (keyboard ownership) from
the window manager. Possible values are:

none No hint is being made about your about your application’s input
needs.

true Your application expects the window manager to give it focus.

false The application will grab the focus when it wants it, or that it never
needs focus.

Initial Specifies the desired initial state of your window. Possible values are:

none No hint is being made about the initial state of your application.

dont_care
The application does not care how it starts up.

782 Quintus Prolog

normal The window wants to come up in normal state, using its normal
hints.

zoom The window would like to start out zoomed.

iconic The window would like to start out iconified.

inactive The application is not often used, so your window manager may
want to put it in a special inactive menu.

Icon pix Specifies the image you’d like to have used in your window’s icon. It may be
either:

none You are not specifying an icon mask.

a one plane pixmap
See Section 16.3.2.6 [pxl-win-wmi-isz], page 783 below for information about
how to find out how big to make your pixmap.

Icon win Specifies a window you’d like to have used as your window’s icon. It may be
either:

none You are not specifying an icon window.

a window

Icon pos Specifies your suggested initial icon position. It may be either:

none You are not specifying an icon position.

position(X,Y)

Icon mask Specifies a suggested mask to use in conjunction with Icon pix to determine the
icon’s image. This allows for non-rectangular icons on window managers that
support them. It may be either:

none You are not specifying an icon image.

a one plane pixmap

Window group
Specifies a group of windows that should be iconified together. It may be either:

none You are not specifying a window group.

a window

16.3.2.5 Transient windows

To tell your window manager that a particular window is transient, for example a dialog
box, you should give it an attribute

property(’WM_TRANSIENT_FOR’,Window)

This means that your window is transient, and, in some sense, belongs to Window.

Chapter 16: The ProXL Package 783

16.3.2.6 Icon Sizes

Some window managers will only support certain icon sizes. These window managers store
an attribute

property(’WM_ICON_SIZE’, wm_icon_size(List))

on the screen’s root window. You may use get_window_attribute to find out these icon
sizes. List will be a list of terms of the form

size_range(Min_w,Min_h,Max_w,Max_h,W_inc,H_inc)

where Min w and Min h specify a minimum icon width and height, Max w and Max h
specify a maximum icon width and height, and W inc and H inc specify a width and height
increment. For example, if List were

[size_range(64,64,64,64,0,0), size_range(32,32,48,48,8,8)]

this would mean that legal sizes are 32 by 32, 40 by 40, 48 by 48, and 64 by 64.

You should not need to set this attribute, though you could if you wanted to.

16.3.2.7 Other Window Properties

The property(N,V) window attribute is not limited to communicating with window man-
agers. It may be used for attaching arbitrary data to a window. It is important to note
that getting window properties is expensive, as it requires a round trip to the X server.
However properties are an effective way for multiple applications in separate address spaces
to communicate.

As described in Section 16.3.1 [pxl-win-atts], page 775, the name argument N of a property
attribute may be any atom. The value argument V may be a pixmap, a colormap, a cursor,
a font, an integer, a pixmap, an atom, a visual term, a window, or one of the following
terms:

Value Meaning

arc/6 Describes an arc. See Section 16.5.6 [pxl-prim-arcs], page 824 for an explana-
tion.

atom(Term)
Term must be an atom. To Prolog, this is much the same as simply specifying
Term, but other applications may distinguish between atoms and strings.

784 Quintus Prolog

cardinal(Int)
Int must be a non-negative integer. To Prolog this is much like simply speci-
fying Int, but other applications may distinguish between signed and unsigned
integers.

point/2 Describes a point or position. See Section 16.5.2 [pxl-prim-pnt], page 821 for
an explanation.

rectangle/4
Describes a rectangle or region. See Section 16.5.5 [pxl-prim-rect], page 823 for
an explanation.

wm_hints/7
As described in Section 16.3.2.4 [pxl-win-wmi-wini], page 781.

wm_size_hints/6
As described in Section 16.3.2.3 [pxl-win-wmi-wsiz], page 779.

wm_icon_size/1
As described in Section 16.3.2.6 [pxl-win-wmi-isz], page 783.

16.3.3 Creating and Destroying Windows

The remainder of the section describes ProXL primitives.

16.3.3.1 create_window/[2,3]

create_window(-Window, +Attribs)
create_window(-Window, +Attribs, +Graphics_attribs)

Window is a newly-created window, and Attribs is a ground list of window attributes. If
Graphics attribs is given, it is a list of graphics attributes to be given to the window. The
predicate create_window/3 is as if defined by

create_window(Window, Attribs, Graphics_attribs):-
create_window(Window, Attribs),
put_graphics_attributes(Window, Graphics_attribs).

but it is more efficient.

See Section 16.6 [pxl-graf], page 827 for information about graphics attributes.

16.3.3.2 destroy_window/1

destroy_window(+Window)

Deallocate space for Window. Window should not be referred to anymore. Note that
Window is not actually deallocated, but only put on a dead list, which can later be cleaned
up by clean_up/0. Also note that many things can be destroyed, but windows are special

Chapter 16: The ProXL Package 785

in that they are not marked as destroyed by this procedure, but are marked when they get
an event indicating that Window has been destroyed. This is because a window may be
destroyed by other procedures.

16.3.3.3 destroy_subwindows/1

destroy_subwindows(+Window)

Deallocate space for all subwindows of Window. As with destroy_window/1, destroyed sub-
windows are put on a dead list. See Section 16.3.3.2 [pxl-win-cre-destroy window], page 784

16.3.4 Finding and Changing Window Attributes

16.3.4.1 get_window_attributes/[2,3]

get_window_attributes(+Windowable, +Attribs)
get_window_attributes(+Windowable, +Attribs, +Graphics_attribs)

Windowable is a windowable, and Attribs is a proper list of window Attribute settings.
Note that Attribs must be a proper list. If an element of Attribs is an unbound variable,
get_window_attributes will backtrack through all the window attributes of Windowable.

If Graphics attribs is given, it is a proper list of graphics attributes of Windowable. The
predicate get_window_attributes/3 is as if defined by the following procedure, but it is
more efficient.

get_window_attributes(Window, Attribs, Graphics_attribs):-
get_window_attributes(Window, Attribs),
get_graphics_attributes(Window, Graphics_attribs).

See Section 16.6 [pxl-graf], page 827 for information about graphics attributes.

16.3.4.2 put_window_attributes/[2,3]

put_window_attributes(+Windowable, +Attribs)
put_window_attributes(+Windowable, +Attribs, +Graphics_attribs)

Windowable is a windowable, and Attribs is a ground list of attributes. The window asso-
ciated with Windowable is changed such that Attribs is a list of its attributes. There are
a few attributes of a window that may not be changed once the window is created. These
are listed above, with the descriptions of the actual attributes. Of course, if you specify a
screen or display for Windowable, it doesn’t make sense to change very many attributes,
and it is recommended that you not change any.

786 Quintus Prolog

If Graphics attribs is given, it is a list of graphics attributes to be given to the window.
The predicate put_window_attributes/3 is as if defined by the following procedure, but
it is more efficient.

put_window_attributes(Windowable, Attribs, Graphics_attribs):-
put_window_attributes(Windowable, Attribs),
put_graphics_attributes(Window, Graphics_attribs).

See Section 16.6 [pxl-graf], page 827 for information about graphics attributes.

16.3.4.3 rotate_window_properties/[2,3]

rotate_window_properties(+Properties, +Rotation)
rotate_window_properties(+Windowable, +Properties, +Rotation)

Rotate the values of Properties, a list of property names (atoms) on the window associated
with Windowable (default is the root window of the default screen). Items are moved toward
the front of the list. For example, if Rotation is 2, and Properties is

[prop1,prop2,prop3,prop4,prop5]

rotation changes Properties to

[prop3,prop4,prop5,prop1,prop2]

This predicate might be used, for example, to implemement a ring of selection service cut
buffers.

16.3.4.4 delete_window_properties/[1,2]

delete_window_properties(+Properties)
delete_window_properties(+Windowable, +Properties)

Remove Properties, a list of window property name atoms, from the window associated
with Windowable, which defaults to the default screen.

16.3.4.5 map_subwindows/1

map_subwindows(+Window)

Map all subwindows of Window.

16.3.4.6 unmap_subwindows/1

unmap_subwindows(+Window)

Unmap all subwindows of Window.

Chapter 16: The ProXL Package 787

16.3.5 Miscellaneous Window Primitives

16.3.5.1 restack_window/2

restack_window(+Window, +Stackmode)

Move Window in stacking order as indicated by the value of Stackmode:

Value Meaning

top Move Window to the top of stack.

above(Win2)
Move Window just above Win2.

bottom Move Window to the bottom of stack.

below(Win2)
Move Window just below Win2.

top_if Move Window to the top of stack if any other window occludes it.

top_if(Win2)
Move Window to the top if Win2 occludes it.

bottom_if
Move Window to the bottom of stack if it occludes any other window.

bottom_if(Win2)
Move Window to the bottom if it occludes Win2.

opposite Move Window to the top if any window occludes it, otherwise move it to the
bottom if it occludes any window.

opposite(Win2)
Move Window to the top if Win2 occludes it, otherwise move Window to the
bottom if it occludes Win2.

16.3.5.2 window_children/[1,2]

window_children(-Children)
window_children(+Windowable, -Children)

Children is the list of all Windowable’s children, in top-to-bottom stacking order. Window-
able defaults to the root window of the default screen.

16.3.5.3 current_window/[1,2]

current_window(?Window)
current_window(?Window, ?Display)

788 Quintus Prolog

Tells whether Window is a window that is known to ProXL. If Display is specified, Window is
on that display. If Window is not bound, current_window backtracks through all windows.

A window is known to ProXL if it was created by ProXL, or if it was passed to ProXL
by the X server or a foreign X procedure. For example, if you call current_window/1
in a fresh ProXL session, few windows will be returned. If you call window_children/1
before calling current_window/1, many more windows will be returned, because the call
to window_children/1 asks ProXL to find all the top level windows on the default screen,
most of which ProXL won’t have seen before.

16.3.6 Selections

16.3.6.1 set_selection_owner/[2,3,4]

set_selection_owner(+Selection, +Owner)
set_selection_owner(+Selection, +Owner, +Time)
set_selection_owner(+Displayable, +Selection, +Owner, +Time)

Set the owner of Selection on Displayable to be Owner at Time. Selection must be an atom,
which names the selection to be owned. Owner must be a valid window. Time must be
current_time or a timestamp in milliseconds. Time defaults to current_time.

16.3.6.2 get_selection_owner/[2,3]

get_selection_owner(+Selection, -Window)
get_selection_owner(+Displayable, +Selection, -Window)

Get the owner of Selection on Displayable. Displayable defaults to the default display.

16.3.6.3 convert_selection/[4,5,6]

convert_selection(+Selection, +Target, +Property, +Requestor)
convert_selection(+Selection, +Target, +Property, +Requestor, +Time)
convert_selection(+Displayable, +Selection, +Target, +Property, +Re-
questor, +Time)

Convert Selection on Displayable to Target type, storing it under Property on window
Requestor at Time. Time must be current_time or a timestamp in milliseconds. Time
defaults to current_time. Displayable defaults to the default display.

16.3.7 Checking Window Validity

Chapter 16: The ProXL Package 789

16.3.7.1 valid_window/1

valid_window(+Window)

Window is a valid window. I.e., it has not been destroyed.

16.3.7.2 valid_windowable/2

valid_windowable(+Windowable, -Window)

Window is the valid window associated with Windowable. Windowable must be a window,
screen, or display.

16.3.7.3 ensure_valid_window/2

ensure_valid_window(+Window, +Goal)

Window is a valid window. If it is not, an error message mentioning Goal is printed, and
execution aborts.

16.3.7.4 ensure_valid_windowable/3

ensure_valid_windowable(+Windowable, -Window, +Goal)

Window is the valid window associated with Windowable. Windowable must be a valid
window, screen, or display. If it is not, an error message mentioning Goal is printed, and
execution aborts.

16.4 Events and Callbacks

In X11, the server communicates changes in the environment to the clients by sending
event messages to them. Clients indicate specific interest in certain events by selecting
them. Each X11 window has a bitmask that indicates the events it is interested in receiving
and a bitmask that indicates the events it wants discarded.

ProXL extends the notion of X11 events by allowing the user to register Prolog callback
routines with each window. In this section we discuss the basic notions of events and the
callback mechanism.

16.4.1 Introduction

Under X11, events are selected on a per window basis by ORing individual event select
bitmasks into the event_mask attribute of the window. To determine which window gets

790 Quintus Prolog

an event, the X server searches the window hierarchy bottom up, starting with the innermost
window where the event logically happened. If a window selects that particular event, it is
sent to it. If the window discards that event, the event is thrown away and the search stops.
If the window neither selects nor discards the event, the search resumes with its parent.
Any event that propagates all the way up to the root window without being selected, is
discarded anyway.

When using ProXL, in most cases, the user does not need to know about bitmasks. Events
are selected by name, and Prolog routines are attached to Windows to handle the conditions.

The ProXL event handler mechanism receives X11 events, extracts user-specified values and
calls the appropriate callback routine.

If there is no registered callback for a given event (including default handlers, as specified
later), the event is quietly discarded.

If multiple callbacks are registered for an event in a Window (as might be the case for
button_press or button_release events), they are tried sequentially until one succeeds,
at which point the callback is considered satisfied and no more alternatives are tried. If all
the registered callbacks fail, the event is quietly discarded.

Callbacks are Window attributes, and are established using put_window_attributes/N, or
create_window/N, using one of the following attribute formats:

callback(+EventSpec, +EventValues, +ExitVar, +Context, +Goal)
callback(+EventSpec, +EventValues, +ExitVar, +Goal)
callback(+EventSpec, +EventValues, +Goal)

where EventSpec is a description of the event that should cause the user-supplied callback
Goal, a Prolog goal, to be called.

EventValues is either a list of the event fields that the user wants to be supplied as arguments
to Goal , or the term xevent(E), which instructs ProXL to deliver the whole event structure,
in the same internal format used by the event handling functions described in Section 16.12
[pxl-evf], page 856.

ExitVar, if supplied, is either a term that is bound by Goal when the user wants to exit the
event handling loop and return, or the atom none. If omitted, it defaults to none and Goal
is assumed to not contain an exit variable.

Context, if supplied, is a term that will be unified with the Context argument supplied to
handle_events/[2,3] when the callback Goal is executed. If omitted, it defaults to none.
If the user calls handle_events/[0,1], Goal will be called with Context unbound.

16.4.2 Event Specification

Basically, events can be classified under four categories:

Chapter 16: The ProXL Package 791

1. Those in which a single mask uniquely selects an event.
2. Those in which a single mask selects a number of events at once.
3. Those in which a number of masks might be required to select an event.
4. Those that are always selected and do not require a mask.

This section describes the valid terms that can be used as an EventSpec and their meanings.
ProXL provides some additional discrimination mechanisms on top of X11 events that allow
succinct specification of commonly selected events.

Note that some servers might not supply some of the events, if the underlying hardware
can not support it, e.g. key_release. Event records have a set of common fields and event-
specific fields. This section briefly describes each event, and its ProXL specification. The
next section describes in detail the event fields.

16.4.2.1 Events uniquely selected by a single mask

Key Press Event. The server generates a key_press event for every key that is pressed,
including modifier keys.

Specify with:

key_press

Key Release Event. The server generates a key_release event for every key that is released,
including modifier keys.

Specify with:

key_release

Button Press Event. The server generates a button_press event for every mouse button
that is pressed.

If specified without options, it indicates any mouse button press:

button_press

To select any of a particular set of mouse buttons pressed, use:

button_press(+ButtonList)

Where ButtonList is a list that can contain the integers 1 to 5. As a special case, the empty
list degenerates into the first specification.

Button Release Event. The server generates a button_release event for every mouse
button that is released.

If specified without options, it selects any mouse button release:

792 Quintus Prolog

button_release

To select any of a particular set of mouse buttons released, use:

button_release(+ButtonList)

Where ButtonList is a list that can contain the integers 1 to 5. As a special case, the empty
list degenerates into the first specification.

Enter Notify Event. The server generates an enter_notify event when the mouse pointer
enters a window or it is virtually entered by the pointer moving between two windows that
do not have a parent-child relationship.

Specify with:

enter_notify

Leave Notify Event. The server generates a leave_notify event when the mouse pointer
leaves a window or it is virtually leaved by the pointer moving between two windows that
do not have a parent-child relationship.

Specify with :

leave_notify

Keymap Event. The server generates a keymap_notify event immediately after each enter_
notify or focus_in event, as a way for the application to read the keyboard state.

Specify with:

keymap_notify

Expose Event. The server generates expose events when a window becomes visible or
previously invisible parts of a window become visible.

Specify with:

expose

Colormap Notify Event. The server generates a colormap_notify event when the colormap
changes.

Specify with:

colormap_notify

Property Notify Event. The server generates a property_notify event when a window
property changes.

Specify with:

property_notify

Chapter 16: The ProXL Package 793

Visibility Notify Event. The server generates a visibility_notify event when there is
any change in the visibility of the specified window.

Specify with:

visibility_notify

Resize Request Event. The server generates a resize_request event when there is any
attempt to change the size of a window. This event is usually selected by the Window
Manager to intercept resize attempts and modify the request according to its policies.

Specify with:

resize_request

16.4.2.2 Events that come in pairs selected by a single mask

In this case, when selecting the event, you get a complementary pair automatically. In other
words, if you are interested in one of them, you probably are interested (or should be) in
the other too.

Focus In and Focus Out events. Both of these events are selected internally with a single
mask, focus_change, so even if you register a callback for only one, your window will also
get the other one. You should always register a callback for both.

The server generates a focus_in event when the keyboard focus window changes as a result
of an explicit set_input_focus call. The window that receives this event has the keyboard
focus and will be receiving all keyboard input until it loses the focus. Specify with:

focus_in

The server generates a focus_out event when the keyboard focus window changes as a
result of an explicit set_input_focus call. The window that receives this event has lost
the keyboard focus and therefore will not be receiving any more keyboard input. Specify
with:

focus_out

Graphics Events. These events present a special problem, as they are not selected by the
window’s event_mask attribute, but by the GC graphics_exposure. Also, they apply to
both Windows and Pixmaps.

These callbacks are not part of the of the Window, Pixmap or GC attributes . They are
established and de-established dynamically as an optional parameter to the copy_area and
copy_plane calls.

The graphics_expose event is generated by copy_area or copy_plane when the source
area is not available because the region is clipped or obscured. Specify with

794 Quintus Prolog

graphics_expose

The server generates a no_expose event when the source area for a copy_area or copy_
plane request was completely available, and therefore the request was carried out success-
fully. Specify with:

no_expose

16.4.2.3 Multiple events selected by a single mask

In this case, there is a whole family of events that are selected by a single mask,
substructure_redirect. By registering a callback for one you will also get the others.

These events are typically selected by the Window Manager to intercept and modify top
level window requests according to its policies.

Circulate Request Event. The server generates a circulate_request event when there is
any attempt to change the stacking order of a window. Specify with:

circulate_request

Configure Request Event. The server generates a configure_request event when there is
any attempt to change the configuration of a window. Specify with:

configure_request

Map Request Event. The server generates a map_request event when the functions map_
raised and map_window are called, so mapping attempts can be intercepted. Specify with:

map_request

16.4.2.4 Multiple events selected by different masks

Two different masks, structure_notify and substructure_notify select essentially the
same set of events, except that in the first case, the user gets the events that occur in the
Window and in the second, the events that occur in its subwindows.

To accommodate this, the event specification has an extra argument, whose value is either
self or child. If omitted, it defaults to self, except for the case of create_notify as
explained below.

Remember that registering a callback for any of these events means that the Window will
also be getting the others.

Circulate Notify Event. The server generates a circulate_notify event when a window
is restacked.

Chapter 16: The ProXL Package 795

To receive this event when the window itself is affected, specify either:

circulate_notify
circulate_notify(self)

To receive this event when a child window is affected, specify:

circulate_notify(child)

Configure Notify Event. The server generates a configure_notify event when there is any
change to a window’s configuration, i.e. position, size, etc.

To receive this event when the window itself is affected, specify either:

configure_notify
configure_notify(self)

To receive this event when a child window is affected, specify:

configure_notify(child)

Destroy Notify Event. The server generates a destroy_notify event when a window is
destroyed.

To receive this event when the window itself is affected, specify either:

destroy_notify
destroy_notify(self)

To receive this event when a child window is affected, specify:

destroy_notify(child)

Gravity Notify Event. The server generates a gravity_notify event when a window is
moved because its parent’s size changed.

To receive this event when the window itself is affected, specify either:

gravity_notify
gravity_notify(self)

To receive this event when a child window is affected, specify:

gravity_notify(child)

Map Notify Event. The server generates a map_notify event when a window changes state
from unmapped to mapped.

To receive this event when the window itself is affected, specify either:

map_notify
map_notify(self)

796 Quintus Prolog

To receive this event when a child window is affected, specify:

map_notify(child)

Unmap Notify Event. The server generates an unmap_notify event when a window changes
state from mapped to unmapped.

To receive this event when the window itself is affected, specify either:

unmap_notify
unmap_notify(self)

To receive this event when a child window is affected, specify:

unmap_notify(child)

Reparent Notify Event. The server generates a reparent_notify event when the parent
of a window changes.

To receive this event when the window itself is affected, specify either:

reparent_notify
reparent_notify(self)

To receive this event when a child window is affected, specify:

reparent_notify(child)

Create Notify Event. The server generates a create_notify event when a window is
created. A newly created window does not receive this event, its parent does. Specify with
either:

create_notify
create_notify(child)

16.4.2.5 Single events selected by multiple masks

The motion_notify event is selected by a number of masks, including the motion_hint
mask 5.

In ProXL they are separated into two different specifications, which are mutually exclusive.

Motion Notify Event. In this case, the server will steadily generate motion_notify events
while the mouse is moving, or the program warps it, but only if the motion of the pointer
begins and ends in the same window. The number of events generated can easily overwhelm
your application, if it has to do any significant amount of computation for each one.

5 Specifies that the user is only interested in knowing when there has been a movement, but does not need
to know the complete path of the mouse pointer

Chapter 16: The ProXL Package 797

If specified without options, the events will be generated independently of the state of the
mouse buttons:

motion_notify

To specify mouse movements only while any of a particular set of mouse buttons are pressed,
use:

motion_notify(+ButtonList)

Where ButtonList is a list that can contain the integers 1 to 5. As a special case, the empty
list degenerates into the first specification.

Motion Notify Hint Event. In this case, the server will generate only one motion_notify
event to let your application know that the mouse pointer moved. You have to explicitly
query the pointer using get_pointer_attributes to find out where the mouse pointer
ended up.

If specified without options, the event will be generated independently of the state of the
mouse buttons:

motion_notify_hint

To specify mouse movement only while any of a particular set of mouse buttons are pressed,
use:

motion_notify_hint(+ButtonList)

Where ButtonList is a list that can contain the integers 1 to 5. As a special case, the empty
list degenerates into the first specification.

16.4.2.6 Events that are always selected

This category includes all the events that X11 will send to your application, regardless of
whatever you want them or not. Well behaved programs must be able to handle them
appropriately.

Mapping Notify Event. The server generates a mapping_notify event when any of the
following are changed by another client:

• The mapping between keyboard keycodes and keysyms.
• The mapping between physical modifier keys and logical modifiers.
• The mapping between physical mouse buttons and logical buttons.

ProXL handles the necessary adjustments to your environment automatically, but you
should be aware that it has changed. Specify with:

mapping_notify

798 Quintus Prolog

Client Message Event. A client_message event is generated when clients use send_event,
to communicate with your application. Specify with:

client_message

Selection Clear Event. The server generates a selection_clear event when a new owner
is defined for a property. The current owner of the selection gets this event. Specify with:

selection_clear

Selection Notify Event. A selection_notify event is sent by a client, not the server.
The owner of a selection sends it to a requester to announce that the selection has been
converted to the appropriate format and stored as a property, or that the conversion could
not be performed.

Specify with:

selection_notify

Selection Request Event. A selection_request event is generated when another client
requests the selection owned by the window.

Specify with:

selection_request

16.4.3 Event Fields

Callbacks can optionally specify a list of field values that are to be unified with the contents
of the X11 event record, and/or used as arguments to the callback goal. ProXL handles all
the conversion between the C objects and data structures that the X server delivers, and
the Prolog objects and data structures that your callback is given. Thus, your application
is given symbolic atoms instead of numbers whenever possible, and furthermore, it is safe
for your application to assert these objects in the data base.

This section describes the field specifications that can be used for each event and the
possible values that these values can take. See the X11 documentation for more details on
what individual values mean.

16.4.3.1 button_press and button_release Events

The fields that can be unified in button_press and button_release events are:

1. type(T) unifies T with either, button_press or button_release, depending on the
event.

2. serial(S) unifies S with the serial number of the last request processed by the server.

Chapter 16: The ProXL Package 799

3. send_event(B) unifies B, a boolean value, with one of:

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. window(W) unifies W with the ProXL Window that the event is reported to.
6. root(R) unifies R with the root ProXL Window that the event occurred under.
7. subwindow(S) unifies S with the child ProXL window where the event occurred or

noneIf the event occurred in the window itself.
8. time(T) unifies T with the server time, in milliseconds, when the event occurred.
9. x(X) unifies X with the x pointer coordinate, relative to the window origin.

10. y(Y) unifies Y with the y pointer coordinate, relative to the window origin.
11. position(X, Y) unifies X and Y with the pointer x and y coordinates, respectively,

relative to the window origin.
12. x_root(X) unifies X with the x coordinate, relative to the root window origin.
13. y_root(Y) unifies Y with the y coordinate, relative to the root window origin.
14. root_position(X, Y) unifies X and Y with the x and y coordinates, respectively,

relative to the root window origin.
15. state(Buttons, Modifiers) unifies Buttons with a term of the form:

buttons(B1, B2, B3, B4, B5)

where each argument of the term is unified with the state of the corresponding pointer
button just before the event, and has the value up or down.
Unifies Modifiers with a term of the form:

modifiers(Shift, Control, Lock,
Mod1, Mod2, Mod3, Mod4, Mod5)

where each argument of the term is unified with the state of the corresponding modifier
key just before the event, and has the value up or down.

16. button(B) unifies B with an integer between 1 and 5 corresponding to the button that
changed state.

17. same_screen(B) unifies B, a boolean value, with one of

true If the mouse pointer is currently on the same screen as the window receiving
the event.

false If the mouse pointer was actively grabbed by a client, before the automatic
grab could take place.

16.4.3.2 circulate_notify Event

The fields that can be unified in circulate_notify events are:

800 Quintus Prolog

1. type(T) unifies T with circulate_notify.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of:

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. event(E) unifies E with the ProXL Window receiving the event.
6. window(W) unifies W with the ProXL Window that was restacked. This can be the

same as the window receiving the event, or one of its children.
7. place(P) unifies P with one of

on_top If the window was raised to the top of the stack

on_bottom
If the window was placed at the bottom of the stack

16.4.3.3 circulate_request Event

The fields that can be unified in circulate_request events are:

1. type(T) unifies T with circulate_request.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. parent(P) unifies P with the parent ProXL Window of the window being restacked.

This is the window that selected the event.
6. window(W) unifies W with the ProXL Window that is being restacked.
7. place(P) unifies P with one of

on_top If the window was raised to the top of the stack

on_bottom
If the window was placed at the bottom of the stack

16.4.3.4 client_message Event

The fields that can be unified in client_message events are:

1. type(T) unifies T with client_message.
2. serial(S) unifies S with the serial number of the last request processed by the server.

Chapter 16: The ProXL Package 801

3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. window(W) unifies W with the ProXL Window receiving the event.
6. message_type(M) unifies M with a ProXL Atom that specifies to the receiving client

how to interpret the data.
7. format(F) unifies F with one of the integers 8, 16 or 32 to specify the format of the

data.
8. data(D) unifies D with a list of the data sent in the event. This will be one of:

A list of 20 C char elements
If the format is 8.

A list of 10 C short elements
If the format is 16.

A list of 20 C int elements
If the format is 32.

16.4.3.5 colormap_notify Event

The fields that can be unified in colormap_notify events are:

1. type(T) unifies T with colormap_notify.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. window(W) unifies W with the ProXL Window whose associated colormap or attribute

changes.
6. colormap(C) unifies C with the ProXL Colormap being installed or the constant none

if the Colormap was destroyed.
7. new(N) unifies N, a boolean value, with one of

true If the colormap attribute has been changed.

false If the colormap is installed or uninstalled.
8. state(S) unifies S with one of

installed
If the colormap is installed.

uninstalled
If the colormap is uninstalled.

802 Quintus Prolog

16.4.3.6 configure_notify Event

The fields that can be unified in configure_notify events are:

1. type(T) unifies T with configure_notify.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. event(E) unifies E with the ProXL Window that selected the event.
6. window(W) unifies W with the ProXL Window whose configuration has changed.
7. x(X) unifies X with the x coordinate, relative to the window’s parent origin.
8. y(Y) unifies Y with the y coordinate, relative to the window’s parent origin.
9. position(X, Y) unifies X and Y with the x and y coordinates respectively, relative to

the window’s parent origin.
10. width(W) unifies W with the width in pixels of the window.
11. height(H) unifies H with the height in pixels of the window.
12. size(W, H) unifies W and H with the width and height in pixels, respectively, of the

window.
13. border_width(W) unifies W with the width of the window’s border in pixels.
14. above(A) unifies A with the sibling ProXL Window that the window is immediately on

top of, or the constant none if the window is on the bottom of the stack with respect
to its siblings.

15. override_redirect(B) unifies B with the boolean value of the window’s override_
redirect attribute, one of:

true If the client wants the window to be exempt from interception of the request
by the Window Manager.

false If the Window Manager is allowed to modify the request.

16.4.3.7 configure_request Event

The fields that can be unified in configure_request events are:

1. type(T) unifies T with configure_request.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.

Chapter 16: The ProXL Package 803

4. display(D) unifies D with the ProXL Display the event was read from.
5. parent(P) unifies P with the ProXL Window that is the parent of the window being

reconfigured. This is the window that selected the event.
6. window(W) unifies W with the ProXL Window being reconfigured.
7. x(X) unifies X with one of :

An integer The requested x coordinate value, relative to the window’s parent origin.

none If no value was specified by the requestor.
8. y(Y) unifies Y with one of:

An integer The requested y coordinate value, relative to the window’s parent origin.

none If no value was specified by the requestor.
9. position(X, Y) unifies X and Y with:

An integer The requested coordinate value, respectively, relative to the window’s par-
ent origin.

none If no value was specified by the requestor.
10. width(W) unifies W with one of:

An integer The requested width value of the window, in pixels.

none If no value was specified by the requestor.
11. height(H) unifies H with one of:

An integer The requested height value of the window, in pixels.

none If no value was specified by the requestor.
12. size(W, H) unifies W and H with:

An integer The requested width and height values, respectively, in pixels.

none If no value was specified by the requestor.
13. border_width(W) unifies W with one of:

An integer The requested width value of the window’s border, in pixels.

none If no value was specified by the requestor.
14. above(A) unifies A with one of:

A Window
The sibling ProXL Window to be used for the requested re-stacking oper-
ation.

none If the requestor, either specified none as the sibling window, or did not
specify it.

15. detail(D) unifies D with one of:

above If the window requests to be placed above the given sibling, or at the top
of the stack (in this case, sibling must be none).

below If the window requests to be placed just below the given sibling, or at the
bottom of the stack (in this case, sibling must be none).

804 Quintus Prolog

top_if If the window requests to be placed at the top of the stack if the given
sibling obscures it. A value of none for sibling means any sibling.

bottom_if
If the window requests to be placed at the bottom of the stack if it obscures
the given sibling. A value of none for sibling means any sibling.

opposite If the window requests to be placed at the top of the stack if the given
sibling obscures it, or at the bottom of the stack if it obscures the given
sibling. A value of none for sibling means any sibling.

none If no value was specified by the requestor.
16. value_mask(V) unifies V with a list of the fields in original request that were specified.

The values that it can contain are x, y, width, height, border_width, sibling,
stack_mode.

16.4.3.8 create_notify Event

The fields that can be unified in create_notify events are:

1. type(T) unifies T with create_notify.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. parent(P) unifies P with the parent ProXL Window of the created window.
6. window(W) unifies W with the ProXL Window just created.
7. x(X) unifies X with the x coordinate of the created window, relative to its parent.
8. y(Y) unifies Y with the y coordinate of the created window, relative to its parent.
9. position(X, Y) unifies X and Y with the x and y coordinates, respectively, of the

created window, relative to its parent.
10. width(W) unifies W with the width in pixels of the window.
11. height(H) unifies H with the height in pixels of the window.
12. size(W, H) unifies W and H with the width and height in pixels, respectively, of the

window.
13. border_width(W) unifies W with the width of the window’s border in pixels.
14. override_redirect(B) unifies B with the boolean value of the override_redirect

attribute of the window, one of:

true If the client wants the window to be exempt from interception of the request
by the Window Manager.

false If the Window Manager is allowed to modify the request.

Chapter 16: The ProXL Package 805

16.4.3.9 destroy_notify Event

The fields that can be unified in destroy_notify events are:

1. type(T) unifies T with destroy_notify.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. event(E) unifies E with the ProXL Window that selected the event.
6. window(W) unifies W with the Window that was destroyed.

16.4.3.10 enter_notify and leave_notify Events

The fields that can be unified in enter_notify and leave_notify events are:

1. type(T) unifies T with enter_notify or leave_notify according to the event.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. window(W) unifies W with the ProXL Window that receives the event.
6. root(R) unifies R with the root Window that the event occurred under.
7. subwindow(S) unifies S with the child ProXL window where the event occurred or none

if the event occurred in the window itself.
8. time(T) unifies T with the server time, in milliseconds, when the event occurred.
9. x(X) unifies X with the x coordinate, relative to the window origin.

10. y(Y) unifies Y with the y coordinate, relative to the window origin.
11. position(X, Y) unifies X and Y with the x and y coordinates respectively, relative to

the window origin.
12. x_root(X) unifies X with the x coordinate, relative to the root window origin.
13. y_root(Y) unifies Y with the y coordinate, relative to the root window origin.
14. root_position(X, Y) unifies X and Y with the x and y coordinates, respectively,

relative to the root window origin.
15. mode(M) unifies M with one of

normal If the event was caused by a normal mouse pointer movement or a pointer
warp.

806 Quintus Prolog

grab If the event was caused by a grab.

ungrab If the event was caused by an ungrab.
16. detail(D) unifies D with one of

ancestor If the movement came from/ended up in a ProXL Window who is a direct
ancestor of the receiving window.

virtual If the movement just passed through the receiving window because of its
position in the hierarchy on its way to a window in the same hierarchy.

inferior If the movement came from/ended up in a ProXL Window who is an infe-
rior of the receiving window.

nonlinear
If the movement came from/ended up in a sibling or cousin window.

nonlinear_virtual
If the movement passed through this window on its way to a sibling or
cousin window.

17. same_screen(B) unifies B, a boolean value, with one of

true If the mouse pointer is currently on the same screen as the window receiving
the event.

false If the mouse pointer was actively grabbed by a client, before the automatic
grab could take place.

18. focus(F) unifies F, a boolean, with one of

true If the receiving window is the focus window, or an inferior of the focus
window.

false If the focus is assigned to another window hierarchy.
19. state(Buttons, Modifiers) unifies Buttons with a term of the form:

buttons(B1, B2, B3, B4, B5)

where each argument of the term is unified with the state of the corresponding pointer
button just before the event, and has the value up or down.
Unifies Modifiers with a term of the form:

modifiers(Shift, Control, Lock,
Mod1, Mod2, Mod3, Mod4, Mod5)

where each argument of the term is unified with the state of the corresponding modifier
key just before the event, and has the value up or down.

16.4.3.11 expose Event

The fields that can be unified in expose events are:

Chapter 16: The ProXL Package 807

1. type(T) unifies T with expose.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. window(W) unifies W with the ProXL Window receiving the event.
6. x(X) unifies X with the x coordinate of the upper-left corner of the exposed region,

relative to the window origin.
7. y(Y) unifies Y with the y coordinate of the upper-left corner of the exposed region,

relative to the window origin.
8. position(X, Y) unifies X and Y with the x and y coordinates, respectively, of the

upper-left corner of the exposed region, relative to the window origin.
9. width(W) unifies W with the width in pixels of the exposed region.

10. height(H) unifies H with the height in pixels of the exposed region.
11. size(W, H) unifies W and H with the width and height in pixels, respectively, of the

exposed region.
12. count(C) unifies C with an integer giving the approximate number of remaining con-

tiguous expose events that were generated as a result of a single function call. If it is
zero, no more expose events for this window follow.

16.4.3.12 focus_in and focus_out Events

The fields that can be unified in focus_in and focus_out events are:

1. type(T) unifies T with focus_in or focus_out according to the event.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. window(W) unifies W with the ProXL Window receiving the event.
6. mode(M) unifies M with one of

normal If the keyboard is not grabbed.

grab If the event is triggered by the start of a keyboard grab.

ungrab If the event is triggered by the keyboard being ungrabbed.

while_grabbed
If the focus changes while the keyboard is grabbed.

808 Quintus Prolog

7. detail(D) unifies D with an atom identifying the relationship between the window
that receives the event, the window that lost the focus, the window that got the focus,
and the window that contained the pointer at the time of the focus change . One of:
• ancestor

• virtual

• inferior

• nonlinear

• nonlinear_virtual

• pointer

• pointer_root

• detail_none

16.4.3.13 graphics_expose Event

The fields that can be unified in graphics_expose events are:

1. type(T) unifies T with graphics_expose.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. drawable(D) unifies D with either the ProXL Window or ProXL Pixmap that was the

destination of the graphics request.
6. x(X) unifies X with the x coordinate of the upper-left corner of the region, relative to

the drawable origin.
7. y(Y) unifies Y with the y coordinate of the upper-left corner of the region, relative to

the drawable origin.
8. position(X, Y) unifies X and Y with the x and y coordinates, respectively, of the

upper-left corner of the region, relative to the drawable origin.
9. width(W) unifies W with the width in pixels of the region.

10. height(H) unifies H with the height in pixels of the region.
11. size(W, H) unifies W and H with the width and height in pixels, respectively, of the

exposed region.
12. count(C) unifies C with an integer giving the approximate number of remaining con-

tiguous graphics_expose events that were generated as a result of a single request.
13. major_code(M) unifies M with the name of the graphics request that produced the

event . One of
• copy_area

• copy_plane

14. minor_code(M) unifies M with an integer giving the request minor code.

Chapter 16: The ProXL Package 809

16.4.3.14 no_expose Event

The fields that can be unified in no_expose events are:

1. type(T) unifies T with no_expose.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. drawable(D) unifies D with either the ProXL Window or ProXL Pixmap that was the

destination of the graphics request.
6. major_code(M) unifies M with the name of the graphics request that produced the

event . One of
• copy_area

• copy_plane

7. minor_code(M) unifies M with an integer giving the request minor code.

16.4.3.15 gravity_notify Event

The fields that can be unified in gravity_notify events are:

1. type(T) unifies T with gravity_notify.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. event(E) unifies E with the ProXL Window that receives the event.
6. window(W) unifies W with the ProXL Window that was moved because of its win_

gravity attribute.
7. x(X) unifies X with the new x coordinate of the window, relative to the its parent.
8. y(Y) unifies Y with the new y coordinate of the window, relative to its parent.
9. position(X, Y) unifies X and Y with the new x and y coordinates of the window,

respectively, relative to its parent.

16.4.3.16 keymap_notify Event

The fields that can be unified in keymap_notify events are:

810 Quintus Prolog

1. type(T) unifies T with keymap_notify.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. window(W) unifies W with the ProXL Window that was reported in the immediately

preceding enter_notify or focus_in event.
6. key_vector(K) unifies K with a list of 32 8-bit integers, for a total of 256 bits, where

each bit represents the state of the corresponding keycode. Use key_state/2 to inter-
pret the results.

16.4.3.17 key_press and key_release Events

The fields that can be unified in key_press and key_release events are:

1. type(T) unifies T with key_press or key_release according to the event.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. window(W) unifies W with the ProXL Window that receives the event.
6. root(R) unifies R with the root Window that the event occurred under.
7. subwindow(S) unifies S with the child ProXL window where the event occurred or none

if the event occurred in the window itself.
8. time(T) unifies T with the server time, in milliseconds, when the event occurred.
9. x(X) unifies X with the x pointer coordinate, relative to the window origin, if the

receiving window is on the same screen as the root window. Otherwise it is 0.
10. y(Y) unifies Y with the y pointer coordinate, relative to the window origin, if the

receiving window is on the same screen as the root window. Otherwise it is 0.
11. position(X, Y) unifies X and Y with the x and y pointer coordinates, respectively,

relative to the window origin, if the receiving window is on the same screen as the root
window. Otherwise they are 0.

12. x_root(X) unifies X with the x pointer coordinate, relative to the root window origin,
if the receiving window is on the same screen as the root window, otherwise with 0.

13. y_root(Y) unifies Y with the y pointer coordinate, relative to the root window origin,
if the receiving window is on the same screen as the root window, otherwise with 0.

14. root_position(X, Y) unifies X and Y with the pointer x and y coordinates, respec-
tively, relative to the root window origin, if the receiving window is on the same screen
as the root window. Otherwise they are both 0.

Chapter 16: The ProXL Package 811

15. state(Buttons, Modifiers) unifies Buttons with a term of the form:

buttons(B1, B2, B3, B4, B5)

where each argument of the term is unified with the state of the corresponding pointer
button just before the event, and has the value up or down.
Unifies Modifiers with a term of the form:

modifiers(Shift, Control, Lock,
Mod1, Mod2, Mod3, Mod4, Mod5)

where each argument of the term is unified with the state of the corresponding modifier
key just before the event, and has the value up or down.

16. keycode(K) unifies K with the server-dependent integer keycode associated with the
physical key.

17. keysym(K) unifies K with the server-independent keysym associated with the physical
key.

18. chars(C) unifies C with the list of ASCII characters associated with the physical key,
if there is one, or the empty list, if there isn’t one.

19. length(L) unifies L with the length of the ASCII string associated with the physical
key.

20. same_screen(B) unifies B, a boolean value, with one of

true If the mouse pointer is currently on the same screen as the window receiving
the event.

false If the mouse pointer and the window are on different screens.

16.4.3.18 map_notify Event

The fields that can be unified in map_notify events are:

1. type(T) unifies T with map_notify.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. event(E) unifies E with the ProXL Window that selected the event.
6. window(W) unifies W with the ProXL Window that is being mapped.
7. override_redirect(B) unifies B with the boolean value of the override_redirect

attribute of the window, one of

812 Quintus Prolog

true If the client wants the window to be exempt from interception of the request
by the Window Manager.

false If the Window Manager is allowed to modify the request.

16.4.3.19 unmap_notify Event

The fields that can be unified in unmap_notify events are:

1. type(T) unifies T with unmap_notify.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. event(E) unifies E with the ProXL Window that selected the event.
6. window(W) unifies W with the ProXL Window that is being mapped.
7. from_configure(F) unifies F, a boolean value, with one of

true If the event was generated as a result of a resizing of the window’s parent
and the window itself has a win_gravity attribute of unmap.

false Otherwise.

16.4.3.20 mapping_notify Event

The fields that can be unified in mapping_notify events are:

1. type(T) unifies T with mapping_notify.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. window(W) unifies W with the ProXL Window receiving the event.
6. request(R) unifies R with one of

modifier If the modifier keys have been remapped.

keyboard If the keyboard has been remapped.

pointer If the pointer buttons have been remapped.
7. first_keycode(F) unifies F with the first in a range of keycodes with new mappings,

if the value of request is modifier or keyboard. For pointer, its value is 0.

Chapter 16: The ProXL Package 813

8. count(C) unifies C with an integer indicating the number of keycodes with altered
mappings, if the request is modifier or keyboard. For pointer, its value is 0.

16.4.3.21 map_request Event

The fields that can be unified in map_request events are:

1. type(T) unifies T with map_request.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. parent(P) unifies P with the ProXL parent Window of the window being mapped.
6. window(W) unifies W with the ProXL Window requesting to be mapped.

16.4.3.22 motion_notify Event

The fields that can be unified in motion_notify events are:

1. type(T) unifies T with motion_notify.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. window(W) unifies W with the ProXL Window that receives the event.
6. root(R) unifies R with the root Window that the event occurred under.
7. subwindow(S) unifies S with the child ProXL window where the event occurred or none

if the event occurred in the window itself.
8. time(T) unifies T with the server time, in milliseconds, when the event occurred.
9. x(X) unifies X with the x pointer coordinate, relative to the window origin, if the

receiving window is on the same screen as the root window. Otherwise it is 0.
10. y(Y) unifies Y with the y pointer coordinate, relative to the window origin, if the

receiving window is on the same screen as the root window. Otherwise it is 0.
11. position(X, Y) unifies X and Y with the x and y pointer coordinates, respectively,

relative to the window origin, if the receiving window is on the same screen as the root
window. Otherwise they are 0.

12. x_root(X) unifies X with the x pointer coordinate, relative to the root window origin,
if the receiving window is on the same screen as the root window, otherwise with 0.

814 Quintus Prolog

13. y_root(Y) unifies Y with the y pointer coordinate, relative to the root window origin,
if the receiving window is on the same screen as the root window, otherwise with 0.

14. root_position(X, Y) unifies X and Y with the pointer x and y coordinates, respec-
tively, relative to the root window origin, if the receiving window is on the same screen
as the root window. Otherwise they are both 0.

15. state(Buttons, Modifiers) unifies Buttons with a term of the form:

buttons(B1, B2, B3, B4, B5)

where each argument of the term is unified with the state of the corresponding pointer
button just before the event, and has the value up or down.
Unifies Modifiers with a term of the form:

modifiers(Shift, Control, Lock,
Mod1, Mod2, Mod3, Mod4, Mod5)

where each argument of the term is unified with the state of the corresponding modifier
key just before the event, and has the value up or down.

16. is_hint(H) unifies H with one of

normal If the event is a normal motion_notify event.

hint If the event is a hint that the mouse pointer moved. This will always be
the case if the event selected is motion_notify_hint.

17. same_screen(B) unifies B, a boolean value, with one of

true If the mouse pointer is currently on the same screen as the window receiving
the event.

false If the the mouse pointer and the window are on different screens.

16.4.3.23 property_notify Event

The fields that can be unified in property_notify events are:

1. type(T) unifies T with property_notify.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. window(W) unifies W with the ProXL Window who owns the property that changed.
6. atom(A) unifies A with the name of the property that changed.
7. time(T) unifies T with the server time, in milliseconds, when the event occurred.

Chapter 16: The ProXL Package 815

8. state(S) unifies S with one of

new_value
If the property has a new value.

delete If the property has been deleted.

16.4.3.24 reparent_notify Event

The fields that can be unified in reparent_notify events are:

1. type(T) unifies T with reparent_notify.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. event(E) unifies E with the ProXL Window that receives the event.
6. window(W) unifies W with the ProXL Window that has been reparented.
7. parent(P) unifies P with the ProXL Window that is the new parent.
8. x(X) unifies X with the x coordinate of the upper-left corner of the window, relative

to its new parent’s origin.
9. y(Y) unifies Y with the y coordinate of the upper-left corner of the window, relative

to its new parent’s origin.
10. position(X, Y) unifies X and Y with the x and y coordinates, respectively, of the

upper-left corner of the window, relative to its new parent’s origin.
11. override_redirect(B) unifies B with the boolean value of the override_redirect

attribute of the window, one of

true If the client wants the window to be exempt from interception of the request
by the Window Manager.

false If the Window Manager is allowed to modify the request.

16.4.3.25 resize_request Event

The fields that can be unified in resize_request events are:

1. type(T) unifies T with resize_request.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.

816 Quintus Prolog

4. display(D) unifies D with the ProXL Display the event was read from.
5. window(W) unifies W with the ProXL Window whose size is being changed.
6. width(W) unifies W with the requested width in pixels of the window.
7. height(H) unifies H with the requested height in pixels of the window.
8. size(W, H) unifies W and H with the requested width and height in pixels, respectively,

of the window.

16.4.3.26 selection_clear Event

The fields that can be unified in selection_clear events are:

1. type(T) unifies T with selection_clear.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. window(W) unifies W with the ProXL Window that receives the event, and is losing

the selection.
6. selection(S) unifies S with the atom giving the name of the selection.
7. time(T) unifies T with the last-changed time, in milliseconds, recorded for the selection.

16.4.3.27 selection_notify Event

The fields that can be unified in selection_notify events are:

1. type(T) unifies T with selection_notify.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. requester(R) unifies R with the ProXL Window that requested the selection.
6. selection(S) unifies S with the atom name of the requested selection.
7. target(T) unifies T with the atom name for the data type that the selection was

converted to.
8. property(P) unifies P with the atom name of the Window property where the con-

verted selection was stored, or none if the conversion could not be performed.
9. time(T) unifies T with the server time, in milliseconds, when the selection was stored.

Chapter 16: The ProXL Package 817

16.4.3.28 selection_request Event

The fields that can be unified in selection_request events are:

1. type(T) unifies T with selection_request.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. owner(O) unifies O with the ProXL Window that owns the selection.
6. requester(R) unifies R with the ProXL Window that requests the selection.
7. selection(S) unifies S with the atom name of the selection requested
8. target(T) unifies T with the atom name for the data type the selection is requested

in.
9. property(P) unifies P with the atom name of the property on which the translated

data should be stored.
10. time(T) unifies T with the server time, in milliseconds, when the selection was re-

quested.

16.4.3.29 visibility_notify Event

The fields that can be unified in visibility_notify events are:

1. type(T) unifies T with visibility_notify.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.
5. window(W) unifies W with the ProXL Window that receives the event.
6. state(S) unifies S with one of:

unobscured
If the window is viewable and completely unobscured.

partially_obscured
If the window is viewable and partially obscured.

fully_obscured
If the window is fully obscured by another window.

818 Quintus Prolog

16.4.3.30 default Event

ProXL allows the user to register a default callback that will be executed if there is no
registered callback for the event received, or if all the registered callbacks failed. This is
mostly a convenience feature for debugging purposes, as only a few of the event fields can
be used.

The fields that can be unified in default events are:

1. type(T) unifies T with the actual event name.
2. serial(S) unifies S with the serial number of the last request processed by the server.
3. send_event(B) unifies B, a boolean value, with one of

true If the event was sent by another client.

false If the event was sent by the server.
4. display(D) unifies D with the ProXL Display the event was read from.

16.4.4 Activating the callback mechanism

ProXL provides three mechanisms for handling events and activating callbacks. First of
all, events are handled whenever Prolog is waiting for input. This includes while Prolog is
reading input from the terminal, even under the Quintus User Interface. The also includes
while debugging. Events are not handled while Prolog computations are under way (Prolog
is not interruped to handle events).

In situations where the program needs to wait while events are being handled, the predicates
handle_events/N are appropriate. For those cases where more flexibility is required, there
are many predicates described in Section 16.12 [pxl-evf], page 856 that will return events.
These can be used in conjunction with dispatch_event/N, described below, to handle
callbacks. Alternatively, callbacks need not be used: you can handle the event any way you
like.

16.4.4.1 handle_events/[0,1,2,3]

To wait while callbacks are being handled, use one of:

handle_events
handle_events(-ExitCond)
handle_events(-ExitCond, +Context)

handle_events will enter a failure-driven loop listening for events on all open ProXL dis-
plays, and executing callbacks. It exits when either any of the callbacks binds its exit
variable to a value that unifies with ExitCond, or when all ProXL Windows that have as-
sociated callbacks have been destroyed (in which case ExitCond will be unified with none).

Chapter 16: The ProXL Package 819

If the Displayable is omitted, the default Display is used.

If ExitCond is omitted, it defaults to none.

Context is passed to any callbacks that want it, and may be used to cause callbacks to
behave differently in different contexts. If omitted, it defaults to an anonymous variable.

For backward compatibility,

handle_events(+Displayable, -ExitCond, +Context)

is equivalent to handle_events(ExitCond, Context). The Displayable is ignored.

16.4.4.2 dispatch_event/[1,2,3]

To activate the callbacks registered for a single X event, use one of:

dispatch_event(+XEvent)
dispatch_event(+XEvent, -ExitCond)
dispatch_event(+XEvent, -ExitCond, +Context)

dispatch_event(+XEvent) will trigger any ProXL callbacks associated with the supplied
XEvent and succeed, even if there were no callbacks registered for the event.

dispatch_event(+XEvent, -ExitCond) triggers the ProXL callbacks associated with the
supplied XEvent and succeeds either if all the ProXL Windows associated with the event’s
Display were destroyed, or if any of the callbacks binds its exit variable to a value that unifies
with ExitCond. If the callback uses contexts, dispatch_event/2 will pass an anonymous
variable.

dispatch_event(+XEvent, -ExitCond, +Context) is like dispatch_event/2, but gives
the Context argument to the callback, for further discrimination.

16.4.4.3 Exit Variables

The ProXL callback mechanism allows the user to specify an exit variable associated with
each callback routine. After the successful execution of a callback routine, ProXL examines
the exit variable, if it exists.

If the callback succeeded and the exit variable was bound by the callback to a value that
unifies with the ExitCond given, handle_events/[1,2,3], and dispatch_event/[2,3]
succeed, with ExitCond bound to the value given by the callback routine.

820 Quintus Prolog

16.5 Drawing Primitives

This section documents ProXL’s drawing primitives.

In most of these procedures, a graphics context may optionally be supplied. If one is not,
the current graphics attributes of the destination drawable determine the behavior of the
drawing.

16.5.1 Clearing and Copying Areas

16.5.1.1 clear_area/[5,6]

clear_area(+Window, +X, +Y,
+Width, +Height)

clear_area(+Window, +X, +Y,
+Width, +Height, +Exposures)

Clear the region of Window defined by X, Y, Width, and Height. Exposures is either true
or false (default false) indicating whether exposure events should be generated. The
cleared portion of the window is filled with the window’s background.

16.5.1.2 clear_window/1

clear_window(+Window)

Clear Window. The window is filled with its background.

16.5.1.3 copy_area/[8,9]

copy_area(+Dst, +Dst_x, +Dst_y, +Src, +Src_x, +Src_y,
+Width, +Height)

copy_area(+Dst, +Src, +Gc, +Dst_x, +Dst_y, +Src_x, +Src_y,
+Width, +Height)

Copy a region of Src into Dst. Src x, Src y, Width, and Height define the part of Src that
is to be copied, and Dst x and Dst y specify where in Dst the are is to be copied.

16.5.1.4 copy_plane/[9,10]

copy_plane(+Dst, +Dst_x, +Dst_y, +Src, +Src_x, +Src_y,
+Width, +Height, +Plane)

copy_plane(+Dst, +Src, +Gc, +Dst_x, +Dst_y, +Src_x, +Src_y,
+Width, +Height, +Plane)

Chapter 16: The ProXL Package 821

Copy some bit planes from a region of Src into Dst. Src x, Src y, Width, and Height define
the part of Src that is to be copied, and Dst x and Dst y specify where in Dst the are is to
be copied. Plane is a bit mask (i.e. an integer) specifying which planes to copy.

16.5.2 Drawing Points

16.5.2.1 draw_point/[3,4]

draw_point(+Drawable, +X, +Y)
draw_point(+Drawable, +Gc, +X, +Y)

Draw a single pixel point at X, Y in Drawable.

16.5.2.2 draw_points/[2,3]

draw_points(+Drawable, +Points)
draw_points(+Drawable, +Gc, +Points)

Draw single pixel points in Drawable. Points is a list of point(X,Y) terms, each specifying
the location of one point.

16.5.2.3 draw_points_relative/[2,3]

draw_points_relative(+Drawable, +Points)
draw_points_relative(+Drawable, +Gc, +Points)

Draw single pixel points in Drawable. Points is a list of point(X,Y) terms, each specifying
an x and y offset from the previous point. The first point is absolute.

16.5.3 Drawing Lines

16.5.3.1 draw_line/[5,6]

draw_line(+Drawable, +X1, +Y1, +X2, +Y2)
draw_line(+Drawable, +Gc, +X1, +Y1, +X2, +Y2)

Draw a line in Drawable from (X1,Y1) to (X2,Y2).

16.5.3.2 draw_lines/[2,3]

draw_lines(+Drawable, +Points)
draw_lines(+Drawable, +Gc, +Points)

822 Quintus Prolog

Draw connected lines in Drawable. Points is a list of point(X,Y) terms, each specifying
the location of one vertex.

16.5.3.3 draw_lines_relative/[2,3]

draw_lines_relative(+Drawable, +Points)
draw_lines_relative(+Drawable, +Gc, +Points)

Draw connected lines in Drawable. Points is a list of point(X,Y) terms, each specifying an
x and y offset from the previous point. The first point is absolute.

16.5.3.4 draw_segments/[2,3]

draw_segments(+Drawable, +Segments)
draw_segments(+Drawable, +Gc, +Segments)

Draw disconnected line segments in Drawable. Segments is a list of segment(X1,Y1,X2,Y2
) terms. Lines are drawn from each X1, Y1 to each corresponding X2, Y2.

16.5.4 Drawing and Filling Polygons

16.5.4.1 draw_polygon/[2,3]

draw_polygon(+Drawable, +Points)
draw_polygon(+Drawable, +Gc, +Points)

Draw a polygon in Drawable. Points is a list of point(X,Y) terms, each specifying the
location of one vertex of the polygon. This procedure does not correspond directly to any
Xlib function.

16.5.4.2 draw_polygon_relative/[2,3]

draw_polygon_relative(+Drawable, +Points)
draw_polygon_relative(+Drawable, +Gc, +Points)

Draw a polygon in Drawable. Points is a list of point(X,Y) terms, each specifying the
location of one vertex of the polygon relative to the previous point. This procedure does
not correspond directly to any Xlib function.

16.5.4.3 fill_polygon/[3,4]

fill_polygon(+Drawable, +Points, +Shape)
fill_polygon(+Drawable, +Gc, +Points, +Shape)

Chapter 16: The ProXL Package 823

Draw a filled polygon in Drawable. Points is a list of point(X,Y) terms, each specifying
the location of one vertex of the polygon. Shape is either complex, meaning the polygon
may contain intersecting edges, nonconvex, meaning no edges intersect, or convex, meaning
that no edges intersect, and further, the polygon is wholly convex.

16.5.4.4 fill_polygon_relative/[3,4]

fill_polygon_relative(+Drawable, +Points, +Shape)
fill_polygon_relative(+Drawable, +Gc, +Points, +Shape)

Draw a filled polygon. Points is a list of point(X,Y) terms, each specifying the location of
one vertex of the polygon relative to the previous point. Shape is either complex, meaning
the polygon may contain intersecting edges, nonconvex, meaning no edges intersect, or
convex, meaning that no edges intersect, and further, the polygon is wholly convex.

16.5.5 Drawing and Filling Rectangles

16.5.5.1 draw_rectangle/[5,6]

draw_rectangle(+Drawable, +X, +Y, +Width, +Height)
draw_rectangle(+Drawable, +Gc, +X, +Y, +Width, +Height)

Draw a rectangle in Drawable. The upper left corner of the rectangle is at X, Y, and its
size is Width x Height.

16.5.5.2 draw_rectangles/[2,3]

draw_rectangles(+Drawable, +Rectangles)
draw_rectangles(+Drawable, +Gc, +Rectangles)

Draw rectangles in Drawable. Rectangles is a list of rectangle(X,Y,Width,Height) terms
specifying the position and size of each rectangle.

16.5.5.3 fill_rectangle/[5,6]

fill_rectangle(+Drawable, +X, +Y, +Width, +Height)
fill_rectangle(+Drawable, +Gc, +X, +Y, +Width, +Height)

Draw a filled rectangle in Drawable. The upper left corner of the rectangle is at X, Y, and
its size is Width x Height.

824 Quintus Prolog

16.5.5.4 fill_rectangles/[2,3]

fill_rectangles(+Drawable, +Rectangles)
fill_rectangles(+Drawable, +Gc, +Rectangles)

Draw filled rectangles in Drawable. Rectangles is a list of rectangle(X,Y,Width,Height)
terms specifying the position and size of each rectangle.

16.5.6 Drawing and Filling Arcs

16.5.6.1 draw_arc/[7,8]

draw_arc(+Drawable, +X, +Y, +Width, +Height, +Theta1, +Theta2)
draw_arc(+Drawable, +Gc, +X, +Y, +Width, +Height, +Theta1, +Theta2)

Draw an arc in Drawable. The arc is specified in terms of the rectangle that would enclose
the ellipse of which this arec is a part, and the angles, in degrees from the center right of the
ellipse, to draw between. X, Y, Width, and Height specify the bounding rectangle, Theta1
specifies the starting angle, and Theta2 specifies the ending angle. Angles may be integers
or floats.

16.5.6.2 draw_arcs/[2,3]

draw_arcs(+Drawable, +Arcs)
draw_arcs(+Drawable, +Gc, +Arcs)

Draw arcs in Drawable. Each arc is specified in terms of the rectangle that would enclose
the ellipse of which this arec is a part, and the angles, in degrees from the center right
of the ellipse, to draw between. Arcs is a list of arc(X,Y,Width,Height,Theta1,Theta2)
terms, where X, Y, Width, and Height specify the bounding rectangle, Theta1 specifies the
starting angle, and Theta2 specifies the ending angle. Angles may be integers or floats.

16.5.6.3 fill_arc/[7,8]

fill_arc(+Drawable, +X, +Y, +Width, +Height, +Theta1, +Theta2)
fill_arc(+Drawable, +Gc, +X, +Y, +Width, +Height, +Theta1, +Theta2)

Draw a filled arc in Drawable. The arc is specified in terms of the rectangle that would
enclose the ellipse of which this arec is a part, and the angles, in degrees from the center right
of the ellipse, to draw between. X, Y, Width, and Height specify the bounding rectangle,
Theta1 specifies the starting angle, and Theta2 specifies the ending angle. Angles may be
integers or floats.

Chapter 16: The ProXL Package 825

16.5.6.4 fill_arcs/[2,3]

fill_arcs(+Drawable, +Arcs)
fill_arcs(+Drawable, +Gc, +Arcs)

Draw filled arcs in Drawable. Each arc is specified in terms of the rectangle that would
enclose the ellipse of which this arec is a part, and the angles, in degrees from the center right
of the ellipse, to draw between. Arcs is a list of arc(X,Y,Width,Height,Theta1,Theta2)
terms, where X, Y, Width, and Height specify the bounding rectangle, Theta1 specifies the
starting angle, and Theta2 specifies the ending angle. Angles may be integers or floats.

16.5.7 Drawing and Filling Ellipses and Circles

An ellipses is specified by its bounding rectangle, much the same as the primitives for
drawing and filling rectangles in Section 16.5.5 [pxl-prim-rect], page 823 above. To draw or
fill a circle, just specify a square bounding rectangle.

16.5.7.1 draw_ellipse/[5,6]

draw_ellipse(+Drawable, +X, +Y, +Width, +Height)
draw_ellipse(+Drawable, +Gc, +X, +Y, +Width, +Height)

Draw an ellipse in Drawable. X, Y, Width, and Height specify the rectangle that would
enclose the ellipse.

16.5.7.2 draw_ellipses/[2,3]

draw_ellipses(+Drawable, +Rectangles)
draw_ellipses(+Drawable, +Gc, +Rectangles)

Draw ellipses in Drawable. Rectangles is a list of rectangle(X,Y,Width,Height) terms,
each specifying the rectangle that would enclose an ellipse.

16.5.7.3 fill_ellipse/[5,6]

fill_ellipse(+Drawable, +X, +Y, +Width, +Height)
fill_ellipse(+Drawable, +Gc, +X, +Y, +Width, +Height)

Draw a filled ellipse in Drawable. X, Y, Width, and Height specify the rectangle that would
enclose the ellipse.

16.5.7.4 fill_ellipses/[2,3]

fill_ellipses(+Drawable, +Rectangles)
fill_ellipses(+Drawable, +Gc, +Rectangles)

826 Quintus Prolog

Draw filled ellipses in Drawable. Rectangles is a list of rectangle(X,Y,Width,Height)
terms, each specifying the rectangle that would enclose an ellipse.

16.5.8 Drawing Text

This section describes the commands for drawing text strings. The commands for deter-
mining how much space will be occupied by a given string are documented in Section 16.7.6
[pxl-font-siz], page 836. Fonts in general are documented in Section 16.7 [pxl-font], page 832.

In all of these primitives, the string to be drawn may be either a Prolog atom or a chars,
that is a list of character codes. This later form is quite handy for code that builds up
strings to be drawn by appending together strings, since it is not necessary to turn them
into atoms in order to draw them.

16.5.8.1 draw_string/[4,5]

draw_string(+Drawable, +X, +Y, +String)
draw_string(+Drawable, +Gc, +X, +Y, +String)

Draw a text string in Drawable. String is drawn with the origin point of the first character
at postion X, Y. String may be either a Prolog atom, or a list of character codes.

Note that this operation affects only pixels in Drawable where the characters are; the
background part of the characters does not affect Drawable. If you want the entire area of
Drawable occupied by string to be effected, use draw_image_string.

16.5.8.2 draw_image_string/[4,5]

draw_image_string(+Drawable, +X, +Y, +String)
draw_image_string(+Drawable, +Gc, +X, +Y, +String)

Draw a text string in Drawable. String is drawn with the origin point of the first character
at postion X, Y. String may be either a Prolog atom, or a list of character codes. This
drawing operation sets the background bits of each character to Drawable’s background
color (or Gc’s background color, if Gc is specified).

16.5.8.3 draw_text/[4,5]

draw_text(+Drawable, +X, +Y, +Textitems)
draw_text(+Drawable, +Gc, +X, +Y, +Textitems)

Draw strings in Drawable, with mixed fonts and flexible inter-string spacing. Textitems is a
list of textitem(String,Delta) and textitem(String,Delta,Font) terms, where String
is the string (Prolog atom or list of character codes) to be printed, Delta is the number
of extra pixels to skip over horizontally before drawing string, and, for textitem/3 terms,

Chapter 16: The ProXL Package 827

Font is the font in which to draw String and any following strings in Textitems until Font
is changed again. Text printed after the call to draw_text will not be affected by the call.

Note that this will not print text on multiple lines. This is equivalent to doing several calls
to draw_string, possibly with calls to put_graphics_attributes/3 between, but more
efficient. There is no similar primitive that is equivalent to multiple calls to draw_image_
string.

16.6 Graphics Attributes and Graphics Contexts

The X window system requires one to set up many parameters to drawing commands before
using the drawing primitives. For example, the command to draw a line in X does not have
a way to specify the width of the line, or whether it will be dashed. These parameters must
be specified ahead of time. Fortunately, there are defaults for all of these parameters, as
discussed below, so you only need to worry about the parameters whose defaults don’t suit
you.

In ProXL, there are two ways to do this. You may specify the drawing parameters for the
object you are drawing into, or you may specify them in a separate data structure, called
a graphics context, or gc, and give the gc as an argument to the drawing commands. You
may do whichever is more convenient at the time. You may mix these methods as you like.

16.6.1 Graphics Attributes

Much of the behavior of the drawing commands described in Section 16.5 [pxl-prim],
page 820 is determined by the graphics attributes of the destination drawable (or of the
gc, if one is supplied as argument). Following is a list of the graphics attributes and their
meaning.

function(V)
How source and destination are combined. Possible values are clear, and,
and_reverse, copy, and_inverted, noop, xor, or, nor, equiv, invert, or_
reverse, copy_inverted, or_inverted, nand, and set. Default is copy.

plane_mask(V)
A bitmask specifying which planes of destination are affected by operations.
Default is all planes (i.e., -1).

foreground(V)
Foreground pixel value. Default is the pixel value for black.

background(V)
Background pixel value. Default is the pixel value for white.

line_width(V)
Width of drawn lines, in pixels. A value of 0 means thin lines. These may be
drawn somewhat faster than width 1 lines. Default is 0.

828 Quintus Prolog

line_style(V)
How (and if) lines are to be dashed. Possible values are solid, double_dash,
or on_off_dash. Default is solid.

cap_style(V)
How wide lines are to be capped. Possible values are not_last, butt, round,
and projecting. Default is butt.

join_style(V)
How wide connecting lines are to be joined. Possible values are miter, round,
and bevel. Default is miter.

fill_style(V)
How filling is to be done. Possible values are solid, tiled, opaque_stippled,
and stippled. Default is solid.

fill_rule(V)
How to decide which parts of a figure are to be filled when the lines specifying
the figure cross. Possible values are odd_even_rule or winding_rule. Default
is odd_even_rule.

arc_mode(V)
How arcs are to be filled. Possible values are pie_slice or chord. Default is
pie_slice.

tile(V) The pixmap for tiling operations. This is only used if file_style(tiled) is
selected. Default is a pixmap of unspecified size filled with the foreground color.

stipple(V)
A 1 plane pixmap (a bitmap) for stipple operations. This is only used if file_
style(opaque_stippled) or file_style(stippled) is selected. The default
is a bitmap of unspecified size filled with 0.

ts_x_origin(V)
X offset for tile and stipple operations. Default is 0.

ts_y_origin(V)
Y offset for tile and stipple operations. Default is 0.

ts_origin(X, Y)

Same as ts_x_origin(X), ts_y_origin(Y).

font(V) The font used for text display. The default is implementation dependent.

subwindow_mode(V)
Should drawing operations affect mapped subwindows of a windows being drawn
into? Possible values are clip_by_children and include_inferiors. Default
is clip_by_children.

graphics_exposures(V)
Should graphics exposure events be generated when copying from a window?
Possible values are true and false. Default is true.

clip_x_origin(V)
X origin for clipping. Default is 0.

Chapter 16: The ProXL Package 829

clip_y_origin(V)
Y origin for clipping. Default is 0.

clip_origin(X, Y)

Same as clip_x_origin(X), clip_y_origin(Y).

clip(V) Specifies how to restrict drawing operations to the destination. V may be
none, a bitmap, or a list of rectangle(X, Y, Width, Height) terms. If it is
a bitmap, only pixels in the destination corresponding to 1 bits in the bitmap
will be affected by drawing. If a list of rectangle/4 terms, only pixels in the
destination that fall within one of the rectangles will be affected. Default is
none.

clip(List, Order)

same as clip(List), except that List must be a list of rectangle(X, Y,
Width, Height) terms, and further, Order describes the order of the terms
in the list. Possible values are unsorted, y_sorted, y_x_sorted, and y_x_
banded. The default is that this attribute doesn’t apply, since by default there
is no clipping.

dashes(V)
A list of alternating integer on and off lengths for dashed lines. This attribute
is only used when line_style(double_dash) or line_style(on_off_dash)
are selected. Default value is [4, 4] (which is the same as [4] since the list is
used cyclically).

dash_offset(V)
An integer specifying where in the dashes(V) list to begin drawing. Default is
0.

For more detailed information on particular attributes, see any good book on programming
the X Window System. There are several good references on Xlib, the C interface to the X
Window System.

If you are still confused about graphics attributes, the easiest, and often most effective, way
to understand them is to experiment. ProXL makes this very easy. Simply open a window
and use the drawing commands to draw into it. Then experiment with changing graphics
attributes until you get the effect you want.

16.6.2 Finding and Changing Graphics Attributes

These primitives take a gcable as argument, and return or change the graphics attributes
of that gcable. A gcable is either a window, a pixmap, or a gc. By specifying a window
or pixmap in calls to these primitives, you are finding or changing the behavior of drawing
commands on that window or pixmap when no gc is specified in the call.

16.6.2.1 get_graphics_attributes/2

get_graphics_attributes(+Gcable, ?Attribs)

830 Quintus Prolog

Gcable is a gcable, and Attribs is a list of (some of) its current Attribute settings.

16.6.2.2 put_graphics_attributes/2

put_graphics_attributes(+Gcable, +Attribs)

Gc is a gc, and Attribs is a list of new Attribute settings. It is important that the user not
change a default GC. All valid gcs except for default gcs have the next field set to NULL
(0).

16.6.2.3 Example

This is very important, so it’s worth taking a moment to give an example. If you have a
window that you wish to drawing 5-pixel-wide solid (not dashed) lines in, and you want the
ends of the line segments to be rounded, you might do:

graphics_attributes(Window, [line_width(5), cap_style(round)])

That’s all there is to it. You don’t need to specify the line_style(solid) attribute,
because this is the default. You may count on the defaults; they are often what you want
anyway. It is perfectly possible to create a window and start drawing into it without setting
any graphics attributes, because the defaults may be good enough.

16.6.3 Creating and Destroying GCs

The following procedures may be used to create and destroy GCs.

16.6.3.1 create_gc/[2,3]

create_gc(-Gc, +Attribs)
create_gc(-Gc, +Drawable, +Attribs)

Gc is a newly-created gc with attributes specified by Attribs. Drawable is a drawable, which
indicates things like the appropriate depth; Drawable defaults to the root window of the
default display.

16.6.3.2 release_gc/1

release_gc(+Gc)

Inform ProXL that Gc is no longer being “held onto” by the programmer. As soon as no
drawables refer to it, Gc will be destroyed.

Chapter 16: The ProXL Package 831

Warning: A gc is considered to be “held onto” when it is created, or when it is got from
a drawable (e.g. get_window_attributes). It is the responsibility of the programmer to
ensure that she is not releasing a gc that is being held by another branch of her code.
For example, If a gc is created, asserted somewhere, and put into a drawable, and later is
accessed through the drawable, the programmer must not release it at this point, since it is
still in the database and may be used. Be careful.

16.6.3.3 Using Gcs

As we have said, using gcs and using graphics attributes of drawables may be freely in-
termixed. For example, you may have an application that usually wants a certain set of
graphics attributes for a window, but occasionally wants a very different set. You could
handle this by setting up the graphics attributes of the window, and changing them when
necessary. Or you could create two gcs, one with each of the needed sets of graphics at-
tributes, and specify the correct gc in each drawing command. Or you could set the graphics
attributes of the window to the most often needed configuration, and create a separate gc
with the alternate set of attributes, and only specify a gc argument in drawing commands
when you need the alternate set. Each of these approaches has its advantages and disad-
vantages; which you choose is up to you.

It is also possible to set the gc a drawable will use when no gc is specified in a drawing com-
mand. If you need to create many windows or pixmaps with the same graphics attributes,
this is an efficient way to do it. You create the gc with the attributes needed by all these
windows, and then when you create the windows, you specify this as their gc.

16.6.3.4 Sharing and Cloning of Gcs

Internally, each drawable has a gc. All of the drawing primitives that allow an optional gc
will use this gc when no gc is specified. By setting a drawable’s gc, it is possible to have
several drawables share a common gc. Then, by changing this gc, you have changed the
drawing behavior (when no gc is specified in the drawing command) of all the drawables
that share this gc.

It is important, however, to understand the difference between changing the graphics at-
tributes of a drawable and changing the graphics attributes of a gc. When you change the
graphics attributes of a drawable, if any other drawable shares that gc, then the gc is cloned
before modifying it. This means that changing the graphics attributes of a drawable can-
not change the graphics attributes of any other drawable. However, changing the graphics
attributes of a gc will change the graphics attributes of any drawable that uses that gc.

In fact, when you create a drawable but don’t specify any graphics attributes, that drawable
shares a gc with any other drawables that that haven’t specified any graphics attributes.
But the first time you specify graphics attributes for that drawable, its gc will be cloned.
From then on, unless you explicitly give it a gc, its gc will not be shared, so any changes
you make to its graphics attributes will be entirely private to that drawable.

832 Quintus Prolog

16.6.4 Checking GC validity

The following primitives may be used to check whether a gc or a gcable is valid, and to find
the gc associated with a gcable.

16.6.4.1 valid_gc/1

valid_gc(+Gc)

Gc is a valid gc. I.e., it has not been destroyed.

16.6.4.2 ensure_valid_gc/2

ensure_valid_gc(+Gc, +Goal)

Gc is a valid gc. If it’s not, an error message mentioning Goal is printed, and execution is
aborted.

16.6.4.3 valid_gcable/2

valid_gcable(+Gcable, -Gc)

Gc is a valid gcable. I.e., it has not been destroyed. Gc is the real gc.

16.6.4.4 ensure_valid_gcable/3

ensure_valid_gcable(+Gcable, -Gc, +Goal)

Gcable is a valid gcable. If it’s not, an error message mentioning Goal is printed, and
execution is aborted. Gc is the real gc.

16.7 Fonts

Fonts determine how text will look when drawn in a drawable. The set of fonts actually
available at any time is implementation dependent.

16.7.1 Font Attributes

Font attributes are:

Chapter 16: The ProXL Package 833

direction(V)
Does the font draw from left to right or right to left? This is just a hint. Possible
values are left_to_right or right_to_left.

min_char(V)
Character code of the lowest represented character in this font.

max_char(V)
Character code of highest represented character in this font.

min_charset(V)
The lowest represented character set in this font. This is an integer between 0
and 255.

max_charset(V)
The highest represented character set in this font. This is an integer between 0
and 255.

all_chars_exist(V)
Do all characters between the min_char and the max_char in character sets
between the min_charset and the max_charset in this font have nonzero size?
Possible values are true and false.

default_char(V)
The character code of the character printed for missing characters.

ascent(V)
The number of pixels in the font above the base line. This is the nominal ascent
for the font; some characters may write above this point.

descent(V)
The number of pixels in the font below at or below the base line. This is the
nominal ascent for the font; some characters may write below this point.

height(V)
The font’s ascent + descent. This is the nominal height for the font; some
characters may be taller.

property(N, V)
V is the value of the N property of the font. If N is unbound, backtrack through
all the properties of the font. If N is bound, it should be an atom. V will be
bound to an integer. Consult a good reference on X for information about font
properties.

max_lbearing(V)
The maximum number of pixels left of the base point of any character in this
font.

max_rbearing(V)
The maximum number of pixels at or to the right of the base point of any
character in this font.

max_width(V)
The width of widest character in this font.

834 Quintus Prolog

max_ascent(V)
The largest height above baseline of any character in this font.

max_descent(V)
Largest height at or the below baseline of any character in this font.

min_lbearing(V)
Minimum number of pixels to the left of the base point of any character in this
font.

min_rbearing(V)
Minimum number of pixels at or to the right of the base point of any character
in this font.

min_width(V)
Width of narrowest character in this font.

min_ascent(V)
Smallest height above baseline of any character in this font.

min_descent(V)
Smallest height at or below the baseline of any character in this font.

char_lbearing(C, V)
V is the number of pixels left of the base point for the character whose character
code is C.

char_rbearing(C, V)
V is the number of pixels right of the base point of character C.

char_width(C, V)
V is width of character C.

char_ascent(C, V)
V is height above the baseline of character C.

char_descent(C, V)
V is height at or below the baseline of character C.

char_height(C, V)
V is the ascent plus the descent of character C.

char_attribute_bits(C, V)
V is the attribute bits, represented as an integer, of character C. The meaning
of the attributes is not defined by X.

Font attributes are read only, it is not possible to change them.

16.7.2 Loading and Unloading Fonts

Before a font can be used, it must be loaded. Then it must be specified as the value of the
font graphics attribute of the destination drawable or the gc to be used for drawing.

Chapter 16: The ProXL Package 835

16.7.2.1 load_font/[2,3]

load_font(+Name, -Font)
load_font(+Display, +Name, -Font)

Font is the font whose name is Name living on Display, which defaults to the default display.

16.7.2.2 release_font/1

release_font(+Font)

Inform ProXL that Font is no longer being “held onto” by the programmer. As soon as no
gcs refer to it, Font will be unloaded.

Warning: A font is considered to be “held onto” when it is created, or when it is got from
a gc (e.g., by get_graphics_attributes). It is the responsibility of the programmer to
ensure that she is not releasing a font that is being held by another branch of her code. For
example, If a font is created, asserted somewhere, and put into a gc, and later is accessed
through the gc, the programmer must not release it at this point, since it is still in the
database and may be used. Be careful.

16.7.3 Finding Font Attributes

It is not possible to change font attributes, only to examine them.

16.7.3.1 get_font_attributes/2

get_font_attributes(+Fontable, +Attributes)

Attributes is a list of attributes of Fontable.

16.7.4 The Font Search Path

It is possible to examine and change the path that will be searched when a font is to be
loaded. Notice that the font search path applies to all clients, not just you, so setting it
should be done only with great care.

16.7.4.1 get_font_path/[1,2]

get_font_path(-Directories)
get_font_path(+Display, -Directories)

Directories is a list of Prolog atoms specifying the font search path for Display (defaults as
usual).

836 Quintus Prolog

16.7.4.2 set_font_path/[1,2]

set_font_path(+Directories)
set_font_path(+Display, +Directories)

Directories is a list of Prolog atoms to become the font search path for Display (defaults as
usual). Note this changes the search path for all clients using that display!

16.7.5 What Fonts Are Available?

16.7.5.1 current_font/[1,2,3,4]

current_font(-Name)
current_font(+Pattern, -Name)
current_font(+Limit, +Pattern, -Name)
current_font(+Display, +Limit, +Pattern, -Name)

Name is the name of a currently available font on Display (which defaults as usual). If
Pattern is given, it restricts Name to fonts matching it. If Limit is given, it is an upper
limit on the number of fonts that will be backtracked through (defaults to one million).

16.7.5.2 current_font_attributes/[2,3,4,5]

current_font_attributes(-Name, +Attributes)
current_font_attributes(+Pattern, -Name, +Attributes)
current_font_attributes(+Limit, +Pattern, -Name, +Attributes)
current_font_attributes(+Display, +Limit, +Pattern, -Name, +Attributes
)

This is just like current_font/[1,2,3,4], except that Attributes is a list of attributes of
the font named Name. The first three call the last with the appropriate defaults. Any valid
font attributes may be used in Attributes, except for ‘char_’ attributes. This is a limitation
of X11.

16.7.6 The Size of a String

16.7.6.1 text_width/3

text_width(+Fontable, +String, -Width)

Width is the width in pixels of String when drawn in Fontable. String may be either an
atom or list of character codes.

Chapter 16: The ProXL Package 837

16.7.6.2 text_extents/[7,8]

text_extents(+Fontable, +String, -Lbearing, -RBearing,
-Width, -Ascent, -Descent)

text_extents(+Fontable, +String, -Lbearing, -RBearing,
-Width, -Ascent, -Descent, -Attribute_bits)

How much space would be occupied if String were drawn in in Fontable? Lbearing is the
number of pixels to the left of the origin point; RBearing is the number of pixels to the
right of the origin point; Ascent is the number of pixels above the origin point; and Descent
is one greater than the number of pixels below the origin point. The reason Descent is one
greater than what you would expect is that it allows you to add Ascent and Descent to
determine the height of String.

String may be either an atom or list of character codes.

16.7.6.3 query_text_extents/[7,8]

query_text_extents(+Fontable, +String, -Lbearing, -RBearing,
-Width, -Ascent, -Descent)

query_text_extents(+Fontable, +String, -Lbearing, -RBearing,
-Width, -Ascent, -Descent, -Attribute_bits)

How much space will be occupied if String were drawn in Fontable? Lbearing is the number
of pixels to the left of the origin point; RBearing is the number of pixels to the right of
the origin point; Ascent is the number of pixels above the origin point; and Descent is one
greater than the number of pixels below the origin point. The reason Descent is one greater
than what you would expect is that it allows you to add Ascent and Descent to determine
the height of String.

String may be either an atom or list of character codes.

This differs from text_extents only in that it does not force ProXL to load the sizes of
all the characters in the font from the server. If this information has already been loaded,
query_text_extents will use it. It is usually better to use text_extents, since once the
information is loaded from the server, it is much faster to determine the size of a string. So
if you will ever want to find the size of another string in the same font, you should probably
use text_extents.

16.7.7 Checking Font Validity

The following procedures may be used to check whether a font or fontable is valid, and to
find the font associated with a fontable.

838 Quintus Prolog

16.7.7.1 valid_font/1

valid_font(+Font)

Font is a valid font. I.e., it has not been destroyed.

16.7.7.2 ensure_valid_font/2

ensure_valid_font(+Font, +Goal)

Font is a valid font. If it’s not, an error message mentioning Goal is printed, and execution
is aborted.

16.7.7.3 valid_fontable/2

valid_fontable(+Fontable, -Font)

Fontable is a valid fontable. A fontable is either a font, or something from which we can
determine a font. This means a gc, or a window or pixmap, which have an associated gc.
Font is the real font corresponding to Fontable.

16.7.7.4 ensure_valid_fontable/3

ensure_valid_fontable(+Fontable, -Font, +Goal)

Fontable is a valid fontable. If it’s not, an error message mentioning Goal is printed, and
execution is aborted. Font is the real font corresponding to Fontable.

16.8 Colors and Colormaps

This section describes several parts of the X window system related to color. It describes
colors: red, green, blue triples; it describes colormaps: mappings from pixel values to colors;
and it describes visuals: specifications of how colors will be appear physically on the screen.

16.8.1 Color Specifications

Colors are specified in ProXL as color(R,G,B) terms, where R, G, and B are (usually
floating point) numbers between 0 and 1 inclusive. Alternately, a color can be specified
as an atom naming a color (case is not significant), such as blue or plum, or as an atom
of the form ’#RGB’ or ’#RRGGBB’ or ’#RRRGGGBBB’ or ’#RRRRGGGGBBBB’ where R, G, and
B are hex digits. For example, ’#05F’ would represent a color with no red, 5/15 (or
0.333333) green, and full blue. In put_color and put_colors, Red, Green, and/or Blue
in a color(Red,Green,Blue) term can be the atom none, which means that that primary
won’t be changed in the colormap.

Chapter 16: The ProXL Package 839

Pixel values are simply integers.

16.8.2 Visuals

Visuals are Prolog terms of one of the following forms:

gray(Writable, Depth, Size)

direct_color(Writable, Depth, Size,Bits_per_RGB, Rmask, Gmask, Bmask)

pseudo_color(Writable, Depth, Size, Bits_per_RGB)

Visual terms describe the color capability of a screen or window. A gray/3 visual means
that pixel values in a window specify an entry in a colormap, but only one of the primary
colors is actually used to drive the grayscale (or monochrome) display 6. direct_color/7
means that the window or screen support color hardware where separate bits in a pixel
value specify entries in separate colormaps for each of the three primary colors. pseudo_
color/4 means that each pixel value specifies an entry in a colormap, which specifies all
three primary colors. Writable is either true or false, indicating whether or not is is
possible to allocate and change cells in a colormap. Depth specifies the number of bitplanes
that are supported on this screen or window. Size is the number of user-accessible colormap
entries; this will always be less than or equal to 2 to the power of Depth. Bits per RGB
is the number of bits used to specify each primary in a color specification. In some sense,
this is the precision of color specifications. And finally, Rmask, Gmask, and Bmask are bit
masks (i.e. integers) that specify which bits of a direct_color visual pixel specify the red,
green, and blue primary, respectively.

16.8.3 Using Colors

There are five different ways you can use color in ProXL, in approximate order of increasing
difficulty:

1. You can use the black_pixel and white_pixel of your screen. black_pixel is the
default foreground color, so if you don’t change your drawable’s foreground graphics
attribute, you will be drawing in black. And the default window background is its
screen’s white_pixel, so if you don’t change that, you will be drawing in black on a
white background, which is often good enough.

2.
You can allocate colors. If you want to have color images, this is usually the best
approach. Allocating a color never fails, even on a monochrome screen, it just gives
you the closest color it can. So if you ask for yellow and navy blue, you will get

6 X does not specify which color drives the display, so R, G and B should all be the same for grayscale
visuals.

840 Quintus Prolog

white and black, respectively. This allows your application to run on monochrome (or
grayscale) screens, as well as color.
When you allocate colors, you share these colors with other applications, too. This
means that if you ask for blue, and another application is already using blue, you will
get the same pixel value. Obviously this is good citizenship on a color screen with
a limited number of pixel values available. It also means that you cannot change the
color of a pixel value you get this way, because it would confound the other applications
using this pixel value.

3.
You can allocate color cells and planes. This gives you private pixel values for you
to play with. You can set these pixel values to any colors you like, and change them
as often as you like. Allocating color planes also allows you to control the actual bit
patterns of the pixels you use, allowing you to do sophisticated tricks with images.

4.
You can use a standard colormap. Standard colormaps provide a number of pre-
selected colors, and can be shared with other applications. You must rely on your
window manager to create standard colormaps for you, and, unfortunately, not all
window managers do this.

5. You can allocate a colormap. While this might seem harmless enough, since your
color table is yours alone, and doesn’t affect the colormaps used by other applications,
in practice few screens can support more than one colormap at a time. This means
that when you colormap is installed, all the other windows on the screen may display
the wrong colors. Also, if you use a private colormap, you must make sure that your
colormap is installed. In theory, your window manager is responsible for installing your
colormap when the pointer is in your window. In practice, few window managers do
this now. This will probably change, but at the moment, this is a serious problem.

16.8.4 Allocating and Freeing Colors

16.8.4.1 alloc_color/[2,3,4,5]

alloc_color(+Color, -Pixel)
alloc_color(+Colormapable, +Color, -Pixel)
alloc_color(+Colormapable, +Color, -Pixel, -Actual_color)
alloc_color(+Colormapable, +Color, -Pixel, -Actual_color, -Exact_color
)

Pixel is a (possibly newly allocated) pixel value for the colormap associated with Colorma-
pable that is as close as possible to Color. Color is a color spec, as described in Section 16.8.1
[pxl-col-cs], page 838. Actual color is the actual color of Pixel in Colormapable, and Ex-
act color is the color that should have been allocated (the same as Color, if it is a color/3
term). Colormapable defaults to the default screen (which means the color is allocated in
the default screen’s default colormap).

Chapter 16: The ProXL Package 841

16.8.4.2 parse_color/[2,3]

parse_color(+Color, -Exact_color)
parse_color(+Screen, +Color, -Exact_color)

Exact color is the color associated with Color on Screen (or default screen). Fails if Color
is not a valid color spec.

16.8.4.3 free_colors/[2,3]

free_colors(+Colormapable, +Pixels)
free_colors(+Colormapable, +Pixels, +Planes)

Pixels, a list of pixel values allocated from the colormap associated with Colormapable, is
freed, so that those pixel values can be allocated later. Colormapable defaults to the default
colormap of the default screen. Planes, if supplied, is a list of plane masks, which is also
freed.

16.8.5 Standard Colormaps

16.8.5.1 get_standard_colormap/[2,3]

get_standard_colormap(+Name, -Colormap)
get_standard_colormap(+Screen, +Name, -Colormap)

Colormap is a standard colormap on Screen that you may use, and that may be shared with
other applications running on the same screen. Name is the name of a standard colormap.
Screen defaults to the default screen.

These procedures rely on another program, usually the window manager, to actually create
the standard colormaps. If your window manager doesn’t do this, then these procedures
will report an error.

16.8.6 Allocating Color Cells and Planes

16.8.6.1 alloc_color_cells/5 and alloc_contig_color_cells/5

alloc_color_cells(+Colormapable, +NColors, -Pixels,
+NPlanes, -Planes)

alloc_contig_color_cells(+Colormapable, +NColors, -Pixels,
+NPlanes, -Planes)

Pixels is a list of NColors pixel values (integers), and Planes is a list of NPlanes plane masks
that have been allocated from the colormap associated with Colormapable. Colormapable

842 Quintus Prolog

defaults to the default colormap of the default screen. For alloc_contig_color_cells/5,
Pixels are sequential numbers.

16.8.6.2 alloc_color_planes/[8,9] and alloc_contig_color_
planes/[8,9]

alloc_color_planes(+NColors, -Pixels, +NReds, +NGreens, +NBlues,
-RMask, -GMask, -BMask)

alloc_color_planes(+Colormapable, +NColors, -Pix-
els, +NReds, +NGreens, +NBlues,

-RMask, -GMask, -BMask)
alloc_contig_color_planes(+NColors, -Pix-
els, +NReds, +NGreens, +NBlues,

-RMask, -GMask, -BMask)
alloc_contig_color_planes(+Colormapable, +NColors, -Pix-
els, +NReds, +NGreens, +NBlues,

-RMask, -GMask, -BMask)

Pixels is a list of NColors pixel values (integers), and RMask, GMask, and BMask indicated
NReds, NGreens, and NBlues planes, respectively, allocated from the colormap associated
with Colormapable. Colormapable defaults to the default colormap of the default screen.
For alloc_contig_color_planes/9, RMask, GMask, and BMask have contiguous bits
turned on.

16.8.6.3 Freeing Color Cells and Planes

Color cells and planes are freed by free_colors/[2,3], as described in Section 16.8.4.3
[pxl-col-alc-free colors], page 841 above.

16.8.7 Finding and Changing Colors

The colors of shared pixels cannot be changed.

16.8.7.1 put_color/[2,3]

put_color(+Pixel, +Color)
put_color(+Colormapable, +Pixel, +Color)

Install Color as the color of Pixel in the colormap associated with Colormapable. Color is
a color specification, as described above. For these procedures, colors may be specified as
color(R,G,B) terms, where any of R, G, and/or B may be the atom none, in which case
this component of the color is not set. Colormapable defaults to the default colormap of
the default screen.

Chapter 16: The ProXL Package 843

16.8.7.2 put_colors/[1,2]

put_colors(+Pixel_colors)
put_colors(+Colormapable, +Pixel_colors)

Install colors in the colormap associated with Colormapable as specified by Pixel colors.
Pixel colors is a list of Pixel-Color terms, where Color is to be the color of Pixel in the
colormap associated with Colormapable. Color may be color specification, as described
above. For these procedures, colors may also be specified as color(R,G,B) terms, where
any of R, G, and/or B may be the atom none, in which case this component of the color is
not set. Colormapable defaults to the default colormap of the default screen.

16.8.7.3 get_color/[2,3]

get_color(+Pixel, -Color)
get_color(+Colormap, +Pixel, -Color)

Color is the color of Pixel in the colormap associated with Colormapable. Color is specified
as a color(R,G,B) term, and Pixel must be an integer. Colormapable defaults to the
default colormap of the default screen.

16.8.7.4 get_colors/[1,2]

get_colors(+Pixel_colors)
get_colors(+Colormapable, +Pixel_colors)

Pixel colors is a list of Pixel-Color terms, where Pixel is bound at call time, and Color will
be bound to a color(R,G,B) term indicating the color of Pixel in the colormap associated
with Colormapable. Colormapable defaults to the default colormap of the default screen.

16.8.8 Creating and Freeing Colormaps

16.8.8.1 create_colormap/[1,2,3]

create_colormap(-Colormap)
create_colormap(?Visual, -Colormap)
create_colormap(+Screen, ?Visual, -Colormap)

Colormap is a newly created colormap on Screen using Visual. Screen defaults to the default
screen. Visual defaults to the Screen’s default visual.

844 Quintus Prolog

16.8.8.2 create_colormap_and_alloc/[1,2,3]

create_colormap_and_alloc(-Colormap)
create_colormap_and_alloc(+Visual, -Colormap)
create_colormap_and_alloc(+Screen, +Visual, -Colormap)

Colormap is a newly created colormap on Screen using Visual. All of the color cells in
Colormap are allocated for your use. Screen defaults to the default screen. Visual defaults
to the default screen’s default visual.

16.8.8.3 free_colormap/1

free_colormap(+Colormap)

Free Colormap. If Colormap is the colormap of any windows, it will be yanked out from
under them. If Colormap is the default colormap of a screen, it is not really freed. Be
careful.

16.8.8.4 copy_colormap_and_free/2

copy_colormap_and_free(+Old_cmap, -New_cmap)

New cmap is a newly allocated, non-shared, colormap containing all the colors you have
allocated out of Old cmap (which is probably shared).

16.8.9 Colormap Installation

Remember, installing your own colormap is very antisocial. This is the window manager’s
job. But if the window manager isn’t doing its job. . . .

16.8.9.1 install_colormap/1

install_colormap(+Colormap)

Make sure Colormap is installed on its screen.

16.8.9.2 uninstall_colormap/1

uninstall_colormap(+Colormap)

Remove Colormap from the required list for its screen.

Chapter 16: The ProXL Package 845

16.8.9.3 installed_colormap/[1,2]

installed_colormap(-Colormap)
installed_colormap(+Screen, -Colormap)

Colormap is a colormap that is installed on Screen.

16.8.10 Checking Colormap Validity

16.8.10.1 valid_colormap/1

valid_colormap(+Colormap)

Colormap is a valid colormap, which hasn’t been destroyed.

16.8.10.2 valid_colormapable/2

valid_colormapable(+Colormapable, -Colormap)

Colormapable is a valid colormapable, which hasn’t been destroyed.

16.8.10.3 ensure_valid_colormap/2

ensure_valid_colormap(+Colormap, +Goal)

Colormap is a valid colormap. If it’s not, an error message mentioning Goal is printed, and
execution is aborted.

16.8.10.4 ensure_valid_colormapable/3

ensure_valid_colormapable(+Colormapable, -Colormap, +Goal)

Colormap is the valid colormap associated with Colormapable. If it’s not, an error message
mentioning Goal is printed, and execution is aborted.

16.9 Pixmaps and Bitmaps

16.9.1 Pixmap Attributes

Following is a list of pixmap attributes:

846 Quintus Prolog

*width(W)
The width of pixmap, in pixels. Default is 100.

*height(H)
The height of pixmap, in pixels. Default is 100.

*size(W, H)
The same as width(W), height(H).

*depth(D)
The number of bits per pixel. Default is the screen’s depth.

*screen(S)
The screen on which this pixmap can be used. Default is the default screen.

gc(V) Default graphics context for drawing on this pixmap. Default is the default gc
for the the pixmap’s screen.

* — starred items cannot be modified once a pixmap is created.

16.9.2 Finding and Changing Pixmap Attributes

16.9.2.1 get_pixmap_attributes/[2,3]

get_pixmap_attributes(+Pixmap, +Attributes)
get_pixmap_attributes(+Pixmap, +Attributes, +Graphics_attribs)

Attributes are a subset of Pixmap’s current attributes. Graphics attribs is a subset of
Pixmap’s graphics attributes.

16.9.2.2 put_pixmap_attributes/[2,3]

put_pixmap_attributes(+Pixmap, +Attributes)
put_pixmap_attributes(+Pixmap, +Attributes, +Graphics_attribs)

Pixmap is modified so that Attributes are a subset of its attributes. The only pixmap
attribute that may be changed is its gc. If Graphics attribs is specified, it is a list of graph-
ics attributes to be given to the pixmap. put_pixmap_attributes(P,A,G) is equivalent
to put_pixmap_attributes(P,A), put_graphics_attributes(P,G), but is slightly more
efficient. But mainly it’s more convenient.

16.9.3 Creating and Freeing Pixmaps

16.9.3.1 create_pixmap/[2,3]

create_pixmap(-Pixmap, +Attributes)
create_pixmap(-Pixmap, +Attributes, +Graphics_attribs)

Chapter 16: The ProXL Package 847

Pixmap is a newly created pixmap having the specified attributes. If Graphics attribs is
given, it is a list of graphics attributes to be given to the pixmap. create_pixmap(P,A,G)
is equivalent to create_pixmap(P,A), put_graphics_attributes(P,G), but slightly more
efficient. But mainly it’s more convenient.

16.9.3.2 free_pixmap/1

free_pixmap(+Pixmap)

Pixmap is freed. It can no longer be used.

16.9.4 Reading and Writing Bitmap Files

These routines allow you to read and write files containing pixmaps of depth 1. Unfortu-
nately, there is no established file format for pixmaps of greater depth.

16.9.4.1 read_bitmap_file/[2,3,4,5]

read_bitmap_file(+Filename, -Pixmap)
read_bitmap_file(+Filename, -Pixmap, -X_hot, -Y_hot)
read_bitmap_file(+Filename, +Screen, -Pixmap)
read_bitmap_file(+Filename, +Screen, -Pixmap, -X_hot, -Y_hot)

Pixmap is the bitmap encoded in file Filename. If Screen is supplied, it is Pixmap’s screen,
if not it defaults to the default screen. If X hot and Y hot are asked for, they are the X
and Y components of Pixmap’s hotspot, if it is specified in the file, and -1 if not specified
in the file.

16.9.4.2 write_bitmap_file/[2,4]

write_bitmap_file(+Filename, +Pixmap)
write_bitmap_file(+Filename, +Pixmap, +X_hot, +Y_hot)

Writes Pixmap out to file Filename in X11 standard encoding. If X hot and Y hot are
supplied, they specify the hotspot for the pixmap, else there is no hotspot.

16.9.5 Checking Pixmap Validity

16.9.5.1 valid_pixmap/1

valid_pixmap(+Pixmap)

Pixmap is a valid pixmap. I.e., it has not been destroyed.

848 Quintus Prolog

16.9.5.2 ensure_valid_pixmap/2

ensure_valid_pixmap(+Pixmap, +Goal)

Pixmap is a valid pixmap. If it’s not, an error message mentioning Goal is printed, and
execution is aborted.

16.10 Cursors

Cursors do not have attributes, as there is nothing about a cursor that can be determined.

16.10.1 Creating and Freeing Cursors

16.10.1.1 create_cursor/[2,3,4,5]

create_cursor(+Cursor_spec, -Cursor)
create_cursor(+Display, +Cursor_spec, -Cursor)
create_cursor(+Cursor_spec, -Cursor, +Foreground_color, +Back-
ground_color)
create_cursor(+Display, +Cursor_spec, -Cursor, +Foreground_color,

+Background_color)

Cursor is a newly created cursor on Display, as specified by Cursor spec. If Display is
not specified, the display of the default screen is used. If Foreground color and Back-
ground color are specified, they must be color specifications (see Section 16.8 [pxl-col],
page 838) indicating the color to give to the two parts of the cursor, otherwise black and
white are used. Note that Foreground color and Background color are not pixel values.

Cursor spec must be one of these:

An atom which names a font cursor.

pixmap_cursor(Source, Mask, X_hot, Y_hot)
Where Source and Mask are pixmaps of the same size, and X hot and Y hot
are integers specifying the hot spot of the cursor, relative to the upper right
corner of the pixmaps.

glyph_cursor(Source_font, Source_char)
Where Source font specifies a font and Source char is the character code of the
character in that font to be used as the image of the cursor.

glyph_cursor(Source_font, Source_char, Mask_char)
Where Source font a font and Source char and Mask char are the character
codes of the characters in that font to be used as source and mask image of the
cursor.

Chapter 16: The ProXL Package 849

glyph_cursor(Source_font, Source_char, Mask_font, Mask_char)
Where Source font specifies a font and Source char is the character code of the
character in that font to be used as the foreground image of the cursor, and
Mask font and Mask char similarly specify a mask image.

Obviously, specifying a cursor by name is simplest. In the other cases, the cursor is specified
as a source and mask bitmap, and a hotspot. The bits that are turned off in the mask bitmap
are transparent in the cursor. The bits turned on in both the mask and source bitmaps
will appear in the cursor’s foreground color. The remaining bits appear in the cursor’s
background color. For glyph_cursor/2 terms, the same image is used as both source and
mask, so there is no background.

16.10.1.2 free_cursor/1

free_cursor(+Cursor)

Free Cursor

16.10.2 Cursor Utilities

16.10.2.1 recolor_cursor/3

recolor_cursor(+Cursor, +Foreground_color, +Background_color)

Change the color of Cursor

16.10.2.2 query_best_cursor/[4,5]

query_best_cursor(+Width, +Height, -Best_width, -Best_height)
query_best_cursor(+Screen, +Width, +Height, -Best_width, -Best_height)

Best width and Best height are the best size for a cursor on Screen that is closest to Width
and Height.

16.10.3 Checking Cursor Validity

16.10.3.1 valid_cursor/1

valid_cursor(+Cursor)

Cursor is a valid ProXL cursor.

850 Quintus Prolog

16.10.3.2 ensure_valid_cursor/2

ensure_valid_cursor(+Cursor, +Goal)

Cursor must be a valid cursor. If it’s not, an error message mentioning Goal is printed, and
execution is aborted.

16.11 Displays and Screens

This section describes displays and screens for ProXL. We also discuss the concepts of
displayables and screenables, and the default screen and display.

Both displays and screens have many attributes that can be examined by the get_display_
attributes/[1,2] and get_screen_attributes/[1,2] predicates. It is not possible to
set any attributes of displays or screens.

16.11.1 Display Attributes

Display attributes include:

bitmap_bit_order(V)
Is leftmost bit in bitmap least or most significant? Either lsb_first or msb_
first.

bitmap_pad(N)
Number of bits each scanline must be padded to.

bitmap_unit(N)
Size of the bitmap’s unit, in bits.

connection_number(N)
Connection number for display (fd under UNIX).

default_screen(V)
The default screen for this display.

display_string(S)
The name of this display, as an atom.

image_byte_order(V)
Is leftmost byte in scanline least or most significant? Either lsb_first or
msb_first.

protocol_revision(N)
Minor X protocol revision number.

protocol_version(N)
The major X protocol version (usually 11).

Chapter 16: The ProXL Package 851

q_length(N)
Number of events in display’s input queue.

screen(N, S)
S is Screen number N of this display (0 origin).

screen_count(N)
Number of screens available on this display.

server_vendor(V)
The name of the supplier of this server, as an atom.

vendor_release(V)
The vendor’s release number for this server.

16.11.1.1 get_display_attributes/[1,2]

get_display_attributes(+Attribs)
get_display_attributes(+Display, +Attribs)

Attribs is a list of attribute specifications. Accepted display attributes are listed above.
Display defaults to the default display.

16.11.2 Opening and Closing Displays

16.11.2.1 open_display/2

open_display(+Displayname, -Display)

Display is the newly opened display named Displayname (an atom). Fails if it can’t open
Displayname.

16.11.2.2 close_display/1

close_display(+Display)

Close Display. Note that Display must be an actual display, not a displayable

16.11.3 Flushing and Syncing Displays

16.11.3.1 flush/[0,1]

flush
flush(+Display)

Flush the output buffer to Display. If Display is omitted, flush output to all open X displays.

852 Quintus Prolog

16.11.3.2 sync/[0,1] and sync_discard/[0,1]

sync
sync(+Display)
sync_discard
sync_discard(+Display)

Flush the output buffer of Display and wait until all request have been processed by the
server. If Display is omitted, we default to syncing all open displays. sync_discard/[0,1]
also throw away all queued events.

16.11.4 Finding Currently Open Displays

16.11.4.1 current_display/1

current_display(?Display)

Display is a currently open ProXL display.

16.11.4.2 default_display/1

default_display(-Display)

Display is the display of the default screen.

16.11.5 Checking Display Validity

16.11.5.1 valid_display/1

valid_display(+Display)

Succeeds if Display is a valid, open, display.

16.11.5.2 valid_displayable/2

valid_displayable(+Displayable, -Display)

Display is the ProXL display associated with Displayable, a displayable. A displayable
is any ProXL resource that has a unique display associated with it, that is, any ProXL
resource. Fails unless Display is a valid, open, display.

Chapter 16: The ProXL Package 853

16.11.5.3 ensure_valid_display/2

ensure_valid_display(+Display, +Goal)

Display is a valid display. If it’s not, an error message mentioning Goal is printed, and
execution is aborted.

16.11.5.4 ensure_valid_displayable/3

ensure_valid_displayable(+Displayable, -Display, +Goal)

Display is the valid display associated with Displayable. If it’s not, an error message men-
tioning Goal is printed, and execution is aborted.

16.11.6 Screen Attributes

Screen attributes include:

black_pixel(V)
Pixel value for black on this screen. An integer.

white_pixel(V)
Pixel value for white on this screen. An integer.

cells(N) Number of entries in default color map.

colormap(C)
The default color map for this screen.

depth(D) Number of planes for default root window.

default_visual(V)
Default way pixel values are shown on this screen. See the documentation of
visuals in Section 16.8.2 [pxl-col-vis], page 839.

visual(V)
A possible way pixel values can be shown on this screen. Multiple results are
possible, one of which will be the default_visual.

does_backing_store(V)
Is this screen capable of saving the obscured part of windows so applications
don’t have to repaint them when they become exposed? Possible values are
when_mapped, not_useful, or always.

does_save_unders(B)
Is this screen capable of saving whatever is hidden by a window so when the
window is unmapped, the exposed area need not be repainted? Possible values
are true or false.

display(D)
The display of this screen.

854 Quintus Prolog

planes(N)
Number of bits/pixel in root window.

width(W) Width of screen, in pixels.

width_mm(W)V
Width of screen, in millimeters.

height(H)
Height of screen, in pixels.

height_mm(H)
Height of screen, in millimeters.

size(W, H)
Width and height of screen, in pixels.

size_mm(W, H)
Width and height of screen in millimeters.

root(V) Root window of this screen.

screen_number(N)
The number of this screen on its display.

16.11.6.1 get_screen_attributes/[1,2]

get_screen_attributes(+Attribs)
get_screen_attributes(+Screen, +Attribs)

Attribs is a list of screen attributes, as listed above, of the screen uniquely associated with
Screenable. Screen defaults the current default screen.

16.11.7 The Default Screen

16.11.7.1 default_screen/2

default_screen(-OldScreen, +NewScreen)

OldScreen is the old default screen, and NewScreen becomes the new default screen.

16.11.8 Checking Screen Validity

16.11.8.1 valid_screen/1

valid_screen(+Screen)

Succeeds if Screen is a screen on a valid, open, display.

Chapter 16: The ProXL Package 855

16.11.8.2 valid_screenable/2

valid_screenable(+Screenable, -Screen)

Screen is the ProXL screen associated with Screenable, a screenable. A screenable is any
ProXL resource that has a unique screen associated with it, that is, a display (which has a
default screen), gc, colormap pixmap, or window. Fails unless Screen is a screen on a valid,
open, display.

16.11.8.3 ensure_valid_screen/2

ensure_valid_screen(+Screen, +Goal)

Screen is a valid screen. If it’s not, an error message mentioning Goal is printed, and
execution is aborted.

16.11.8.4 ensure_valid_screenable/3

ensure_valid_screenable(+Screenable, -Screen, +Goal)

Screen is the valid screen associated with Screenable. If it’s not, an error message mentioning
Goal is printed, and execution is aborted.

16.11.9 Interfacing with Foreign Code

In order to interface your ProXL code with code written in other languages using the Xlib
interface, it will often be necessary to find the XID of a ProXL object, or to create a new
ProXL object from an XID. These primitives allow you to do this.

16.11.9.1 proxl_xlib/[3,4]

proxl_xlib(?ProXLobj, ?Type, ?Xid)
proxl_xlib(?ProXLobj, ?Type, ?Xid, ?Display)

ProXLobj is a ProXL object of Type on Display whose XID is Xid. If Display is not
specified, it is assumed to be the display of the current default screen. Type is one of
window, pixmap, font, cursor, or colormap. Either ProXLobj or all three of Type, Xid,
and Display must be bound. proxl_xlib/3 fails if ProXLobj is bound to a ProXL object
on a display other than the display of the default screen.

16.11.9.2 display_xdisplay/2

display_xdisplay(?Display, ?Xdisplay)

856 Quintus Prolog

Display is the ProXL display corresponding to the X display Xdisplay. May be used to find
the ProXL display given an X display, or to find the X display given a ProXL display. But
one or the other must be bound.

16.11.9.3 screen_xscreen/2

screen_xscreen(?Screen, ?Xscreen)

Screen is the ProXL screen corresponding to the X screen Xscreen. May be used to find the
ProXL screen given an X screen, or to find the X screen given a ProXL screen. But one or
the other must be bound.

16.11.9.4 visual_id/[2,3]

visual_id(?Visual, ?Visual_id)
visual_id(+Screenable, ?Visual, ?Visual_id)

Visual id is the X visual id corresponding to the visual term Visual on the screen associated
with Screenable. Screenable defaults to the default screen.

16.12 Event Handling Functions

Even though the ProXL callback and event handling mechanism is very powerful and easy to
use, there are occasions when the user wants to interact directly with the Display connection
and handle the incoming events without using the callback mechanism.

This section documents the functions that allow the user to bypass the callback mechanism,
as well as a number of utility functions to examine the state of the Display event queue.

16.12.1 active_windows/[0,1]

active_windows
active_windows(+Displayable)

Succeed if there are any ProXL Windows with currently registered callbacks on the given
Displayable, which is the default Display, if omitted.

16.12.2 events_queued/[2,3]

events_queued(+Mode, -Number)
events_queued(+Displayable, +Mode, -Number)

Unify Number with an integer giving the number of events queued for the given Displayable,
which if omitted, is the default Display.

Chapter 16: The ProXL Package 857

If there are currently any events in Xlib’s queue, the predicate returns immediately, unifying
Number, regardless of the value of Mode. Otherwise, it behaves according to the value of
Mode:

already Binds Number to 0 and succeeds.

after_reading
Attempts to read more events from the Display connection to the X server,
without flushing the output buffer, and unifies Number to the number of events
read.

after_flushing
Like after_reading, but also flushes the output buffer.

16.12.3 pending/[1,2]

pending(-Number)
pending(+Displayable, -Number)

Unify Number with the number of events that have been received from the server, but have
not been processed yet, for the given Displayable, which if omitted, is the default Display.

If there are no events in the queue, the output buffer is flushed and Number is unified with
the number of events transferred to the input queue as a result of the flush.

16.12.4 new_event/[1,2]

Under ProXL, the event structures used by X11 are not Prolog terms, but ProXL-specific
data structures whose implementation details are not visible to the user, and they have to
be explicitly allocated and de-allocated7.

ProXL provides routines to examine and set the contents of these structures. The user
should not hang on to any of these structures, and in particular, should not assert them
into the data base.

All of the event handling predicates documented in this section have an XEvent argument,
which is an X11 event structure.

new_event(-XEvent)
new_event(-XEvent, +EventValues)

Will create a new private, X11 event structure and unify XEvent with it.

new_event/1 creates a new, uninitialized event structure.

new_event/2 creates a new event structure, and destructively set its fields from the values
given in EventValues, which must be a list of event fields in the style of the callback

7 In the current implementation, they are not garbage-collected automatically

858 Quintus Prolog

mechanism, and unify XEvent with the initialized result. The list of event values must
specify at least a type. If display is not specified, the default Display is used.

16.12.5 dispose_event/1

dispose_event(+XEvent)

Disposes of the given X11 event structure and returns the storage associated with it to the
system. References to XEvent after it has been disposed of, will certainly cause disasters.
Be careful.

16.12.6 next_event/[2,3]

next_event(-Type, ?XEvent)
next_event(+Displayable, -Type, ?XEvent)

Return the next event from the given Displayable event queue. If Displayable is omitted,
the next event on any ProXL display is returned. Type is unified to the type of event, and
the event is removed from the head of the queue.

If there are no events in the queue, next_event/[2,3] flushes the output queue(s) and
blocks until an event is received. If Displayable is specified, and events for which callbacks
are registered arrive on other displays, they will be handled, and next_event/3 will continue
to wait for an event on the specified Displayable.

The user can pass an existing XEvent X11 structure, which is then destructively filled with
the received event’s contents, or an unbound variable. In the latter case, next_event/[2,3]
will unify XEvent with a private, local structure, which the user cannot hang on to, but is
guaranteed not to change its value until the next call to an event getting routine.

16.12.7 peek_event/[2,3]

peek_event(-Type, ?XEvent)
peek_event(+Displayable, -Type, ?XEvent)

Peek at the next event from the given Displayable event queue. If Displayable is omitted,
the next event on any ProXL display is examined. Type is unified to the type of event. The
event is not removed from the head of the queue.

If there are no events in the queue, peek_event/[2,3] flushes the output queue(s) and
blocks until an event is received. If Displayable is specified, and events for which callbacks
are registered arrive on other displays, they will be handled, and peek_event/3 will continue
to wait for an event on the specified Displayable.

The user can pass an existing XEvent X11 structure, which is then destructively filled with
the received event’s contents, or an unbound variable. In the latter case, peek_event/[2,3]

Chapter 16: The ProXL Package 859

will unify XEvent with a prvate, local structure, which the user can not hang on to, but is
guaranteed not to change its value until the next call to peek_event/[2,3].

16.12.8 window_event/4

window_event(+Window, +EventMask, -Type, ?XEvent)

Searches the event queue for the Window’s Display, and removes the first event that is
intended for Window and is selected by the given EventMask. Unifies Type with the type
of event removed. Other events in the queue are not discarded.

If there is no qualifying event in the queue, window_event/4 flushes the output queue and
blocks until one is received. If events for which callbacks are registered arrive on other
displays, they will be handled, and window_event/4 will continue to wait for an event on
Window’s display.

The user can pass an existing XEvent X11 structure, which is then destructively filled with
the received event’s contents, or an unbound variable. In the latter case, window_event/4
will unify XEvent with a private, local structure, which the user can not hang on to, but is
guaranteed not to change its value until the next call to an event getting routine.

EventMask is an integer bitmask, that specifies the selected events. The predicate event_
list_mask/2 is useful to translate between X11 event mask names and bitmasks.

16.12.9 check_window_event/4

check_window_event(+Window, +EventMask, -Type, ?XEvent)

Is like, window_event/4, but fails if there is no matching event in the queue, and does not
block waiting for one. The output buffer is flushed only on failure.

The user can pass an existing XEvent X11 structure, which is then destructively filled with
the received event’s contents, or an unbound variable. In the latter case, check_window_
event/4 will unify XEvent with a private, local structure, which the user can not hang on
to, but is guaranteed not to change its value until the next call to an event getting routine.

EventMask is an integer bitmask, that specifies the selected events. The predicate event_
list_mask/2 is useful to translate between X11 event mask names and bitmasks.

16.12.10 mask_event/[3,4]

mask_event(+EventMask, -Type, ?XEvent)
mask_event(+Displayable, +EventMask, -Type, ?XEvent)

Search the event queue for the given Displayable and remove the first event that is selected
by the given EventMask. If Displayable is omitted, the queues for all ProXL displays are

860 Quintus Prolog

searched. Unifies Type with the type of event removed. Other events in the queue are not
discarded.

If there is no qualifying event in the queue, mask_event/[3,4] flushes the output queue and
blocks until one is received. If Displayable is specified, and events for which callbacks are
registered arrive on other displays, they will be handled, and mask_event/3 will continue
to wait for an event on the specified Displayable.

The user can pass an existing XEvent X11 structure, which is then destructively filled with
the received event’s contents, or an unbound variable. In the latter case, mask_event/[3,4]
will unify XEvent with a private, local structure, which the user can not hang on to, but is
guaranteed not to change its value until the next call to an event getting routine.

EventMask is an integer bitmask, that specifies the selected events. The predicate event_
list_mask/2 is useful to translate between X11 event mask names and bitmasks.

16.12.11 check_mask_event/[3,4]

check_mask_event(+EventMask, -Type, ?XEvent)
check_mask_event(+Displayable, +EventMask, -Type, ?XEvent)

Are like mask_event/[3,4], but fail if there is no matching event in the queue, and do not
block waiting for one. The output buffer is flushed only on failure.

The user can pass an existing XEvent X11 structure, which is then destructively filled with
the received event’s contents, or an unbound variable. In the latter case, check_mask_
event/[3,4] will unify XEvent with a private, local structure, which the user can not hang
on to, but is guaranteed not to change its value until the next call to an event getting
routine.

EventMask is an integer bitmask, that specifies the selected events. The predicate event_
list_mask/2 is useful to translate between X11 event mask names and bitmasks.

16.12.12 check_typed_event/[2,3]

check_typed_event(+Type, ?XEvent)
check_typed_event(+Displayable, +Type, ?XEvent)

Succeed only if there is an event of the given Type in the event queue for the given Dis-
playable, which if omitted, is the default Display. Other events in the queue are not dis-
carded. If there is no matching event in the queue, they fail, and do not block waiting for
events. The output buffer is flushed only on failure.

The user can pass an existing XEvent X11 structure, which is then destructively filled with
the received event’s contents, or an unbound variable. In the latter case, check_typed_
event/[2,3] will unify XEvent with a private, local structure, which the user can not hang
on to, but is guaranteed not to change its value until the next call to an event getting
routine.

Chapter 16: The ProXL Package 861

16.12.13 check_typed_window_event/3

check_typed_window_event(+Window, +Type, ?XEvent)

Succeeds only if there is an event in the event queue for the Window’s Display, that is
intended for Window and is of the given Type. Other events in the queue are not discarded.
If there is no matching event in the queue, it fails and does not block waiting for events.
The output buffer is flushed only on failure.

The user can pass an existing XEvent X11 structure, which is then destructively filled with
the received event’s contents, or an unbound variable. In the latter case, check_typed_
window_event/3 will unify XEvent with a private, local structure, which the user can not
hang on to, but is guaranteed not to change its value until the next call to an event getting
routine.

16.12.14 put_back_event/[1,2]

put_back_event(+XEvent)
put_back_event(+Displayable, +XEvent)

Pushes back the given XEvent event structure at the front of the event queue for the given
Displayable, which if omitted, is the default Display. No checking of values is performed.
Be careful.

16.12.15 send_event/[4,5]

send_event(+WindowSpec, +Propagate, +EventMask, +XEvent)
send_event(+Displayable, +WindowSpec, +Propagate, +EventMask, +XEvent)

Asks the server to send the event XEvent, an X11 event structure, to the specified window.
Fail if XEvent could not be converted into the server format, usually a sign that the event
type is invalid. The delivered event will have a value of true in its send_event field.

The argument WindowSpec can be:

A valid ProXL Window
In this case the event will be sent to the Window and its Display is used as the
Display connection. If Displayable was specified, it must have the same Display
as the Window.

pointer_window
In this case the event will be send to the window that the pointer is in. If
Displayable was not specified, the default Display is used.

input_focus
In this case, if the focus window contains the pointer, the event will be sent to
the window that contains the pointer. Otherwise, the event will be sent to the
focus window. If Displayable was not specified, the default Display is used.

862 Quintus Prolog

Propagate is a boolean value and EventMask an integer bitmask that specifies the selected
events.

send_event/[4,5] uses the Propagate and EventMask arguments to determine which
clients should receive the specified events as follows:

If EventMask is 0
The event is sent to the client that created the receiving window. If that client
no longer exists, no event is sent.

If Propagate is false
The event is sent to every client selecting any of the event types from EventMask
on the receiving window.

If Propagate is true
The event propagates up the receiving window hierarchy in the normal way.

The predicate event_list_mask/2 is useful to translate between X11 event mask names
and bitmasks.

No checking on the validity of the event contents is performed.

16.12.16 send/[4,5]

send(+WindowSpec, +Propagate, +EventMask, +EventValues)
send(+Displayable, +WindowSpec, +Propagate, +EventMask, +EventValues)

Are analogous to send_event/[4,5], except that instead of taking an XEvent event struc-
ture argument, take EventValues, a list of event field values in the style of the callback
mechanism.

The elements of EventValues will be used to fill an X11 event structure to send, and must
contain at least a type field. If no display is specified, the default Display is used.

No checking on the validity of the event contents is performed.

16.12.17 get_event_values/2

get_event_values(+XEvent, +EventValues)

Unifies the elements of EventValues, a list of event field values in the style of the callback
mechanism, with the contents of the given XEvent event structure.

16.12.18 put_event_values/2

put_event_values(+XEvent, +EventValues)

Destructively sets the contents of the given XEvent event structure to the values given by the
elements of EventValues, a list of event field values in the style of the callback mechanism.

Chapter 16: The ProXL Package 863

EventValues must at least contain a type element, and if the display is not given, the
default Display is used.

No checking on the validity of the event contents is performed.

16.12.19 get_motion_events/4

If your server supports a motion history buffer, the predicate:

get_motion_events(+Window, +Start, +Stop, -TimeEvents)

Unifies TimeEvents with a list of terms of the form time_coord(Time, X, Y).

This are all the events in the motion history buffer that fall between the specified timestamps
Start and Stop (inclusive), and have coordinates that lie within the specified Window.

The Start and Stop arguments should be timestamps, in milliseconds, or the constant
current_time.

16.13 Handling Errors Under ProXL

This section discusses how errors are handled under ProXL, how to set up the action that
you want the system to take when an error occurs and how to install your own error handler.

16.13.1 Introduction

Under X11, error messages are usually asynchronous, because of the nature of the network
connections and the need to batch requests to improve performance.

The server generates error events that are sent to the Display connection and handled, as
soon as they arrive, by one of two error handlers, depending on the severity of the error. It
is not possible to register callback routines for error handling, because of the fundamentally
different way from other events that errors are handled by under X.

16.13.2 Recoverable Errors

Recoverable errors are handled by the ProXL Error handler and are any of the following
types:

bad_request
If the request made to the X Server was invalid.

bad_value
If an integer argument is out of range.

864 Quintus Prolog

bad_window
If a Window argument is invalid.

bad_pixmap
If a Pixmap argument is invalid.

bad_atom If an Atom argument is invalid.

bad_cursor
If a Cursor argument is invalid.

bad_font If a Font argument is invalid.

bad_match
If there is an argument mismatch.

bad_drawable
If an argument is not a Window or Pixmap.

bad_access
If the operation can’t be performed.

bad_alloc
If there are insufficient resources.

bad_color
If there is no such colormap.

bad_gc If a GC argument is invalid.

bad_id_choice
If the choice is not in the appropriate range or is already in use.

bad_name If the named Font or Color do not exist.

bad_length
If the request length is incorrect.

bad_implementation
If your server is defective.

ProXL routines do extensive checking of their arguments to try and detect invalid parame-
ters before actually making a call to the X server. However, it is impossible to cover all the
cases, and sometimes recoverable errors are signaled by the server.

Recoverable errors invoke a user-definable error handler. Under ProXL, the default error
handler provided prints an error message and presents a list of options to the user.

The user can provide her own error handler routine, but it must be written in C and
follow the guidelines set up for handlers under X11. The user should read the Xlib X11
documentation on errors and error handling before attempting to do this.

16.13.3 Fatal Errors

Fatal errors under X11 include I/O errors or system call errors, such as irrecoverable network
problems, attempts to establish a connection to non-existent, or non-accessible server, etc.

Chapter 16: The ProXL Package 865

Since X automatically exits after detecting a fatal error and gives no real chance of correcting
the problem, ProXL uses the default X fatal error handler, which just prints a message and
exists.

If you feel you need to change this handler, we suggest that you consult the X11 documen-
tation.

16.13.4 The ProXL Error Handler

The ProXL error handler, if installed, will print a reasonably intelligent error message and
then act according to the user-specified options. By default, it presents the following prompt
and waits for user input:

ProXL Error Handler (h for help)?

Th options available are:

ProXL Error options:
c continue - do nothing
t trace - debugger will start creeping
d debug - debugger will start leaping
a abort - cause Prolog abort
e exit - irreversible exit from Prolog
A Abort - cause Prolog abort and set this mode as the default
h help - print this message

16.13.5 Error Handling Options

The user can set error handling modes and enter synchronize mode when debugging.

16.13.5.1 error_action/[2,3]

Under ProXL, if the ProXL error handler is installed, it is possible to select a per-Display
action using:

error_action(+Displayable, -Old, +New)
error_action(-Old, +New)

If Displayable is omitted, the default Display is used.

Old is unified with the previous action for the Display and the new value is set from New.

The available options for error_action are:

user If the user is installing her own C error handler.

866 Quintus Prolog

xhandler If the user wants the X11 default error handler.

continue If the user wants the ProXL error handler installed in ’continue’ mode for the
given Display.

trace If the user wants the ProXL error handler installed in trace mode for the given
Display.

debug If the user wants the ProXL error handler installed in debug mode for the given
Display.

abort If the user wants the ProXL error handler installed in abort mode for the given
Display.

exit If the user wants the ProXL error handler installed in exit mode for the given
Display.

menu If the user wants the ProXL error handler installed and the show menu mode
set for the given Display.

default Same as menu.

16.13.5.2 synchronize/[1,2]

Because of the asynchronous nature of X, localizing the source of errors can be very difficult.
By putting the Display connection in synchronous mode, the user is certain that requests are
carried out immediately and that errors will be reported as soon as the offending requests
are finished. The performance of the ProXL system will be severly degraded when operating
under this mode, so it should only be used for debugging purposes.

synchronize(+Displayable, +Goal)
synchronize(+Goal)

If Displayable is omitted, the default Display is used.

When using synchronize/[1,2], the Displayable connection is put in synchronous mode
while the given Goal is executed. Synchronization is turned off when Goal finishes, or if
execution is aborted.

16.14 Window Manager Functions

Most of the functions provided here are most often used by Window Managers, and not
normal applications. Nevertheless, some are useful in other situations.

These functions allow the user to:

• Control the lifetime of a window.
• Grab the pointer.
• Grab the Keyboard.

Chapter 16: The ProXL Package 867

• Grab the server.
• Control event processing.
• Manipulate the keyboard and pointer settings.
• Control the screen saver.

16.14.1 Controlling the Lifetime of a Window

The save set of a client is a list of other client’s windows, which if they are inferiors of one
of the client’s windows at connection close, should not be destroyed, but reparented.

16.14.1.1 change_save_set/[2,3]

change_save_set(+Displayable, +Window, +SaveSetMode)
change_save_set(+Window, +SaveSetMode)

Adds or deletes the given Window from the given Displayable’s save set. If Displayable is
omitted, the default Display is used.

SaveSetMode specifies the action:

insert If Window should be added to the Display’s save set.

delete If Window should be deleted from the Display’s save set.

Window must have been created by another client.

16.14.2 Grabbing the Pointer

Normally mouse events are delivered as soon as they occur to the appropriate window
and client, as determined by the window event masks and the input focus. The routines
described in this section allow the user to grab the mouse. When a grab is in effect, events
are sent to the grabbing client, rather than to the normal client who would have received the
event. If the keyboard or pointer is put in asynchronous mode, further mouse and keyboard
events will continue to be processed. If the keyboard or pointer is put in synchronous mode,
no further events will be processed until the grabbing client allows them (see allow_events).

There are two kinds of grabs: active and passive. An active grab occurs when a single client
grabs the pointer explicitly. Clients can also grab a particular pointer button in a window,
this is called a passive grab and activates when the button is actually pressed.

Many of the operations take a Time argument, which can be current_time (the X server
current time) or an actual timestamp in milliseconds.

868 Quintus Prolog

16.14.2.1 grab_pointer/9

grab_pointer(+Window,
+OwnerEvents, +EventsMask, +PointerMode,
+KeyboardMode,
+WindowConfine, +Cursor, +Time,
-GrabStatus)

This predicate actively grabs control of the pointer and generates enter_notify and leave_
notify events as appropriate.

Window is the ProXL window to which events will be reported while the grab is in effect.

OwnerEvents is one of:

true If pointer events should be reported normally.

false If pointer events should be reported only to the the grab window.

EventsMask is an integer bitmask specifying the events that are selected and should be
reported to the client. The valid event mask names are:

• button_press

• button_release

• enter_window

• leave_window

• pointer_motion

• pointer_motion_hint

• button1_motion

• button2_motion

• button3_motion

• button4_motion

• button5_motion

• button_motion

• keymap_state

The predicate event_list_mask/2 is useful to translate between event mask names and
integer bitmasks.

PointerMode controls further processing of pointer events:

async Pointer event processing continues normally.

sync The state of the pointer, as seen by applications, appears to freeze. No
further pointer events are generated until the grabbing client calls allow_
events/[1,2,3] or the pointer grab is released.

Chapter 16: The ProXL Package 869

KeyboardMode controls further processing of keyboard events:

async Keyboard event processing continues normally.

sync The state of the keyboard, as seen by applications, appears to freeze. No
further keyboard events are generated until the grabbing client calls allow_
events/[1,2,3] or the keyboard grab is released.

WindowConfine is the ProXL window to which the pointer will be confined while the grab
is in effect, or the atom none.

Cursor is the ProXL cursor to be displayed during the grab, or the atom none.

Time is a timestamp in milliseconds (from an event) or the atom current_time.

GrabStatus is unified by grab_pointer/9 with one of:

success If the grab was successful.

already_grabbed
If the attempt is unsuccessful because the pointer is already actively grabbed
by some other client.

invalid_time
If the attempt is unsuccessful because the specified Time is earlier than the
last-pointer-grab time, or later than the current server time.

not_viewable
If the attempt is unsuccessful because either of the grabbing Window or the
WindowConfine is not viewable.

frozen If the attempt is unsuccessful because the pointer is frozen by an active grab of
another client.

16.14.2.2 grab_button/9

grab_button(+ButtonGrab, +ModifiersMask,
+GrabWindow, +OwnerEvents, +EventsMask,
+PointerMode, +KeyboardMode, +WindowConfine,
+Cursor)

This predicate establishes a passive grab on the pointer, activated when a specified button
and set of modifiers are pressed while the pointer is in the grab window.

ButtonGrab is the pointer button to be grabbed, possible values are:

1 to 5 The button number.

any_button

ModifiersMask is one of:

870 Quintus Prolog

An integer A bitmask giving the state of the modifier masks. The predicate modifiers_
mask/2 is useful to translate between modifier specifications and bitmasks.

any_modifier

GrabWindow is the ProXL window to which events will be reported while the grab is in
effect.

OwnerEvents is one of:

true If pointer events should be reported normally.

false If pointer events should be reported only to the grab window.

EventsMask is an integer bitmask specifying the events that are selected and should be
reported to the client. The valid event mask names are:

• button_press

• button_release

• enter_window

• leave_window

• pointer_motion

• pointer_motion_hint

• button1_motion

• button2_motion

• button3_motion

• button4_motion

• button5_motion

• button_motion

• keymap_state

The predicate event_list_mask/2 is useful to translate between event mask names and
integer bitmasks.

PointerMode controls further processing of pointer events:

async If pointer event processing continues normally.

sync If the state of the pointer, as seen by applications, appears to freeze. No
further pointer events are generated until the grabbing client calls allow_
events/[1,2,3] or the pointer grab is released.

KeyboardMode controls further processing of keyboard events:

async If keyboard event processing continues normally.

sync If the state of the keyboard, as seen by applications appears to freeze. No
further keyboard events are generated until the grabbing client calls allow_
events/[1,2,3] or the keyboard grab is released.

Chapter 16: The ProXL Package 871

WindowConfine is the ProXL window to which the pointer will be confined during the grab,
or the atom none.

Cursor is the ProXL cursor to be displayed during the grab, or the atom none.

16.14.2.3 ungrab_button/3

ungrab_button(+ButtonUngrab, +ModifiersMask, +UngrabWindow)

Releases the passive button/key combination grab on the specified window, if it was grabbed
by the client. It has no effect on an active grab.

ButtonUngrab is the pointer button to be released, possible values are:

1 to 5

any_button

ModifiersMask is one of:

An integer A bitmask giving the state of the modifier masks. The predicate modifiers_
mask/2 is useful to translate between modifier specifications and bitmasks.

any_modifier

UngrabWindow is the ProXL window where the grab is in effect.

16.14.2.4 ungrab_pointer/[0,1,2]

ungrab_pointer
ungrab_pointer(+Time)
ungrab_pointer(+Displayable, +Time)

Release the pointer and any queued events if this client has it actively grabbed, unless the
Time specified is earlier that the last-pointer-grab time or later than the current server
time. It also generates focus_in and focus_out events.

Displayable is the ProXL Displayable. If omitted, the default Display is used.

Time is a timestamp in milliseconds (from an event) or current_time. If omitted, current_
time is used.

16.14.2.5 change_active_pointer_grab/[3,4]

change_active_pointer_grab(+Displayable, +EventsMask, +Cursor, +Time)
change_active_pointer_grab(+EventsMask, +Cursor, +Time)

872 Quintus Prolog

Modify the specified dynamic parameters of a grab, if the pointer is actively grabbed by
the client and the specified Time is no earlier than the last-pointer-grab and no later than
the current X server time.

Displayable is the ProXL Displayable. If omitted, the default Display is used.

EventsMask is an integer bitmask specifying the events that are selected and should be
reported to the client. The valid event mask names are:

• button_press

• button_release

• enter_window

• leave_window

• pointer_motion

• pointer_motion_hint

• button1_motion

• button2_motion

• button3_motion

• button4_motion

• button5_motion

• button_motion

• keymap_state

The predicate event_list_mask/2 is useful to translate between event mask names and
integer bitmasks.

Cursor is the ProXL cursor to be displayed during the grab, or the atom none.

Time is a timestamp in milliseconds (from an event), or the atom current_time.

16.14.3 Grabbing the Keyboard

Usually, keyboard events will be delivered as soon as they occur to the appropriate window
and client, which is determined by the window event masks and input focus. With these
routines it is possible to grab the keyboard keys; in this case, events will be sent to the
grabbing client, rather than the normal client who would have received the event. If the
keyboard or pointer is in asynchronous mode, further mouse and keyboard events will
continue to be processed. If the keyboard or pointer is in synchronous mode, no further
events will be processed until the grabbing client allows them.

There are two kinds of grabs: active and passive. An active grab occurs when a single client
grabs the keyboard explicitly. Clients can also grab a particular keyboard key in a window,
this is called a passive grab and it activates when the key is actually pressed.

Chapter 16: The ProXL Package 873

Many of the operations take a Time argument, which can be current_time (the X server
current time) or an actual timestamp in milliseconds.

16.14.3.1 grab_keyboard/6

grab_keyboard(+Window, +OwnerEvents,
+PointerMode, +KeyboardMode,
+Time, -GrabStatus)

Actively grabs control of the keyboard and generates focus_in and focus_out events.

Window is the ProXL window to which events will be reported while the grab is in effect.

OwnerEvents is one of:

true If keyboard events should be reported normally.

false If keyboard events should be reported only to the grab window.

PointerMode controls further processing of pointer events:

async If pointer event processing continues normally.

sync If the state of the pointer, as seen by applications appears to freeze. No
further pointer events are generated until the grabbing client calls allow_
events/[1,2,3] or the pointer grab is released.

KeyboardMode controls further processing of keyboard events:

async If keyboard event processing continues normally.

sync If the state of the keyboard, as seen by applications appears to freeze. No
further keyboard events are generated until the grabbing client calls allow_
events/[1,2,3] or the keyboard grab is released.

Time is a timestamp in milliseconds or current_time.

GrabStatus is unified by grab_keyboard/6 with one of:

success If the grab was successful.

already_grabbed
If the attempt is unsuccessful because the keyboard is already actively grabbed
by some other client.

invalid_time
If the attempt is unsuccessful because the specified Time is earlier than the
last-keyboard-grab time, or later than the current server time.

not_viewable
If the attempt is unsuccessful because the grabbing Window is not viewable.

874 Quintus Prolog

frozen If the attempt is unsuccessful because the keyboard is frozen by an active grab
of another client.

16.14.3.2 ungrab_keyboard/[0,1,2]

ungrab_keyboard(+Displayable, +Time)
ungrab_keyboard(+Time)
ungrab_keyboard

Release the keyboard and any queued events if this client has it actively grabbed, unless the
Time specified is earlier that the last-keyboard-grab time or later than the current server
time. It also generates focus_in and focus_out events.

Displayable is the ProXL Displayable. If omitted, the default Display is used.

Time is a timestamp in milliseconds (from an event) or current_time. If omitted, current_
time is used.

16.14.3.3 grab_key/6

grab_key(+Key, +ModifiersMask, +GrabWindow,
+OwnerEvents, +PointerMode, +KeyboardMode)

Establishes a passive grab on the keyboard, to be activated when the given key and modifiers
are pressed while the pointer is in the window.

Key is the key that should be pressed. Possible values are:

An integer Giving the keycode.

A valid key name
As given by keysym/2.

any_key

ModifiersMask is one of:

An integer A bitmask giving the state of the modifier masks. The predicate modifiers_
mask/2 is useful to translate between modifier specifications and bitmasks.

any_modifier

Window is the ProXL window to which events will be reported while the grab is in effect.

OwnerEvents is one of:

true If keyboard events should be reported normally.

false If keyboard events should be reported only to the grab window.

Chapter 16: The ProXL Package 875

PointerMode controls further processing of pointer events:

async If pointer event processing continues normally.

sync If the state of the pointer, as seen by applications appears to freeze. No
further pointer events are generated until the grabbing client calls allow_
events/[1,2,3] or the pointer grab is released.

KeyboardMode controls further processing of keyboard events:

async If keyboard event processing continues normally.

sync If the state of the keyboard, as seen by applications appears to freeze. No
further keyboard events are generated until the grabbing client calls allow_
events/[1,2,3] or the keyboard grab is released.

16.14.3.4 ungrab_key/3

ungrab_key(+Key, +ModifiersMask, +UngrabWindow)

Releases the passive grab started by the key combination on the specified window if it was
grabbed by this client. Has no effect on an active grab.

Key is the key that should be ungrabbed. One of:

An integer Giving the keycode.

A valid key name
As given by keysym/2.

any_key

ModifiersMask is one of:

An integer A bitmask giving the state of the modifier masks. The predicate modifiers_
mask/2 is useful to translate between modifier specifications and bitmasks.

any_modifier

UngrabWindow is the ProXL window where the grab is in effect.

16.14.3.5 allow_events/[1,2,3]

allow_events(+Displayable, +EventMode, +Time)
allow_events(+EventMode, +Time)
allow_events(+EventMode)

Release some of the queued events, if the client has caused a device to freeze.

Displayable is a valid ProXL Displayable. If omitted, the default Display is used.

876 Quintus Prolog

EventMode is one of:

• async_pointer

• sync_pointer

• replay_pointer

• async_keyboard

• sync_keyboard

• replay_keyboard

• sync_both

• async_both

Time is a timestamp in milliseconds (from an event) or current_time. If omitted, current_
time is used.

16.14.4 Grabbing the Server

Grabbing the server is antisocial, as it does not allow other clients access. The use of this
predicates is highly discouraged.

16.14.4.1 grab_server/[0,1]

grab_server(+Display)
grab_server

Allows a client to grab the server, disabling processing of any other requests.

Display is a ProXL Display. If omitted, the default Display is used.

16.14.4.2 ungrab_server/[0,1]

ungrab_server(+Display)
ungrab_server

Release the server to other connections.

Display is a ProXL Display. If omitted, the default Display is used.

16.14.5 Miscellaneous Control Functions

This section discusses how to:

• Move the pointer arbitrarily.
• Control the input focus.
• Kill clients.

Chapter 16: The ProXL Package 877

16.14.5.1 warp_pointer/8

warp_pointer(+SrcWindow, +DestWindow,
+SrcX, +\SrcY, +SrcW, +SrcH,
+DestX, +DestY)

Moves the pointer to the coordinates specified by DestX and DestY, relative to DestWindow
’s origin. It generates events just as if the user had moved the pointer.

SrcWindow is one of:

A ProXL Window
If the move should only take place if the pointer is currently inside SrcWindow,
and in a visible portion of the rectangle specified by SrcX, SrcY, SrcW, and
SrcH.

none If the move is independent of the current pointer position.

DestWindow is one of:

A ProXL Window
If the final destination of the move is relative to the origin of this window.

none If the move is relative to the current position of the pointer.

SrcX, SrcY, SrcW, SrcH are integers that specify the region, if any, inside SrcWindow where
the pointer must be prior to the move.

DestX, DestY are integers giving the coordinates of the final pointer destination.

warp_pointer/8 allows a lot of freedom for specifying pointer movements, but its use is
rarely necessary because put_pointer_attributes/2 handles the usual cases.

16.14.5.2 set_input_focus/3

set_input_focus(+WindowSpec, +RevertTo, +Time)

Changes the input focus and the last-focus-change time. It has no effect if the specified
Time is earlier than the current last-focus-change-time or later than the current X server
time. It generates focus_in and focus_out events.

WindowSpec is one of:

A ProXL Window
The window that will acquire the input focus.

pointer_root
If the focus window should be dynamically taken to be the root window of
whatever screen the pointer is on at each keyboard event.

878 Quintus Prolog

none If all keyboard arguments should be discarded until a new focus window is set.

RevertTo specifies which window that the input focus should revert to, if the current focus
becomes not viewable. One of:

• parent

• pointer_root

• none

Time is a timestamp in milliseconds (from an event) or current_time.

16.14.5.3 get_input_focus/[2,3]

get_input_focus(+Displayable, -Focus, -RevertTo)
get_input_focus(-Focus, -RevertTo)

Obtain the current input focus window and the revert to state.

Displayable is a ProXL Displayable. If omitted, the default Display is used.

Focus returns the current focus window. One of:

• The ProXL focus window.
• pointer_root.
• none

RevertTo returns the current focus reverts state. One of :

• parent

• pointer_root

• none

16.14.5.4 set_close_down_mode/[1,2]

set_close_down_mode(+Displayable, +CloseMode)
set_close_down_mode(+CloseMode)

Defines what happens to the client’s resources when the connection is closed.

Displayable is a ProXL Displayable. If omitted, the default Display is used.

CloseMode is one of:

• destroy_all

• retain_permanent

• retain_temporary

Chapter 16: The ProXL Package 879

16.14.5.5 kill_client/[0,1,2]

kill_client(+Display, +Resource)
kill_client(+Resource)
kill_client

Force a close down of the client that created the associated resource.

Display is a ProXL Display. If omitted, the default Display is used.

Resource is one of:

Any ProXL resource associated with the client.

all_temporary
If required to destroy resources of all clients that have terminated in retain_
temporary mode.

16.14.6 Pointer Control

ProXL uses the concept of pointer attributes to query and control the state of the pointer.

16.14.6.1 get_pointer_attributes/[1,2]

get_pointer_attributes(+AttributeList)
get_pointer_attributes(+Screenable, +AttributeList)

Allows the user to find the state of the pointer.

Screenable is a ProXL Screenable. If omitted, the default Screen is used.

AttributeList is a List of pointer attributes, whose elements will be unified with the actual
state of the pointer. Valid attributes are:

acceleration(A)
Unifies A with a term of the form N/D, where N and D are integers, the
numerator and denominator of the pointer acceleration multiplier.

threshold(T)
Unifies T with the integer value of the pointer threshold parameter.

mapping(B1, B2, B3, B4, B5)
Unifies B1 to B5 with integers in the range 0 to 5, denoting the current mapping
of physical pointer buttons to logical pointer buttons. The nominal mapping is
Bi = i. A value of 0, means that the button is disabled.

root_position(X, Y)
Unifies X and Y with the current pointer coordinates, relative to the root win-
dow origin.

880 Quintus Prolog

window(W, X, Y)
Unifies W with a ProXL window the pointer is inside of, and X and Y to the
pointer coordinates, relative to the window’s origin. If W is unbound, get_
pointer_attributes will backtrack over all windows in the hierarchy that
contain the pointer, except for the root window.

deepest(W, X, Y)
Unifies W with the innermost ProXL window the pointer is inside of, and X
and Y to the pointer coordinates, relative to the window’s origin.

state(B, M)
Unifies B with a term describing the state of the pointer buttons, and M with a
term describing the state of the modifier keys. The predicates state_mask/2,
buttons_mask/2 and modifiers_mask/2 are useful for translating between but-
tons and modifiers representations and bitmasks.

16.14.6.2 put_pointer_attributes/[1,2]

put_pointer_attributes(+AttributeList)
put_pointer_attributes(+Screenable, +AttributeList)

Allows the user to change the state of the pointer.

Screenable is a ProXL Screenable. If omitted, the default Screen is used.

AttributeList is a List of pointer attributes, whose elements will be used to change the state
of the pointer. Valid attributes are:

acceleration(A)
Where A is either N/D, with N and D are non-negative integers, or default,
to restore the pointer default acceleration.

threshold(T)
T is either a non-negative integer, or default, to restore the pointer default
threshold.

mapping(B1, B2, B3, B4, B5)
B1 to B5 are non-duplicate integers in the range 1 to 5, or 0, denoting the
desired mapping of physical pointer buttons to logical pointer buttons. A value
of 0 means that the button should be disabled.

root_position(X, Y)
X and Y are non-negative integers. Has the effect of warping the pointer to the
given coordinates, relative to the root window origin.

window(W, X, Y)
Warps the pointer to window W, at the position given by the coordinates X and
Y. If W is a valid ProXL window, the coordinates are relative to the window’s
origin. If W is none, the coordinates are interpreted as offsets relative to the
current pointer position.

Chapter 16: The ProXL Package 881

16.14.7 Keyboard Control

ProXL uses the concept of keyboard attributes to query and control the state of the key-
board.

16.14.7.1 get_keyboard_attributes/[1,2]

get_keyboard_attributes(+AttributeList)
get_keyboard_attributes(+Displayable, +AttributeList)

Allows the user to find the state of the keyboard.

Displayable is a ProXL Displayable. If omitted, the default Display is used.

AttributeList is a List of keyboard attributes, whose elements will be unified with the actual
state of the keyboard. Valid attributes are:

key_click_percent(C)
Unifies C with an integer between 0 and 100, giving the volume for key clicks.

bell_percent(B)
Unifies B with an integer between 0 and 100, giving the base volume for the
bell.

bell_pitch(P)
Unifies P with a non-negative integer that gives the bell pitch, in Hz.

bell_duration(D)
Unifies D with a non-negative integer that gives the duration of the bell, in
milliseconds.

led_mask(L)
Unifies L with an integer mask, where each bit set to 1 indicates that the
corresponding led is on. The least significant bit of L corresponds to led 1.

global_auto_repeat(G)
Unifies G with one of on or off.

auto_repeats(A)
Unifies A with a list of bytes that indicate what keyboard keys have auto repeat
enabled. The predicate key_auto_repeat/2 is useful for interpreting the result.

keymap(K)
Unifies K with a list of bytes that indicate the logical state of the keyboard.
The predicate key_state/2 is useful for interpreting the result.

16.14.7.2 put_keyboard_attributes/[1,2]

put_keyboard_attributes(+AttributeList)
put_keyboard_attributes(+Displayable, +AttributeList)

882 Quintus Prolog

Allows the user to change the state of the keyboard.

Displayable is a ProXL Displayable. If omitted, the default Display is used.

AttributeList is a List of keyboard attributes, whose elements will be used to change the
state of the keyboard. Valid attributes are:

key_click_percent(C)
C is either an integer between 0 and 100, or default, to restore the keyboard
default.

bell_percent(B)
B is either an integer between 0 and 100, or default, to restore the keyboard
default.

bell_pitch(P)
P is either a non-negative integer, or default, to restore the keyboard default.

bell_duration(D)
D is either a non-negative integer, or default, to restore the keyboard default.

led(N) N specifies the led number, an integer between 1 and 32.

led_mode(M)
M is either on or off.

auto_repeat_mode(R)
R is either on, off or default.

16.14.7.3 bell/[1,2]

bell(+Displayable, +Percent)
bell(+Percent)

Rings the keyboard bell.

Displayable is a ProXL Displayable. If omitted, the default Display is used.

Percent is an integer between -100 and 100, specifying the volume, relative to the base
volume

16.14.8 Screen Saver Control

16.14.8.1 set_screen_saver/[4,5]

set_screen_saver(+Displayable, +Timeout, +Interval, +Blanking, +Expo-
sures)
set_screen_saver(+Timeout, +Interval, +Blanking, +Exposures)

Modify the screen saver parameters for the given Displayable.

Chapter 16: The ProXL Package 883

Displayable is a ProXL Displayable. If omitted, the default Display is used.

Timeout specifies the screen saver timeout value. One of:

An integer Giving the timeout in seconds before the screen saver activates.

default To install default value.

disable To disable the screen saver.

Interval is An integer giving the interval between screen saver invocations.

Blanking Specifies screen blanking mode. One of:

• dont_prefer

• prefer

• default

Exposures Specifies the screen save control. One of:

• dont_allow

• allow

• default

16.14.8.2 force_screen_saver/[1,2]

force_screen_saver(+Displayable, +Mode)
force_screen_saver(+Mode)

Set the screen saver on or off.

Displayable is a ProXL Displayable. If omitted, the default Display is used.

Mode sets The screen saver mode. One of:

reset To deactivate.

active To activate.

16.14.8.3 get_screen_saver/[4,5]

get_screen_saver(+Displayable, -Timeout, -Interval, -Blanking, -Expo-
sures)
get_screen_saver(-Timeout, -Interval, -Blanking, -Exposures)

Allows the user to check the state of the screen saver.

Displayable is a ProXL Displayable. If omitted, the default Display is used.

Timeout is the integer specifying the timeout in seconds before the screen saver activates.

884 Quintus Prolog

Interval is the integer specifying the interval, in seconds, between screen saver invocations.

Blanking is the current screen blanking preference. One of:

• dont_prefer

• prefer

• default

Exposures is the current screen saver control value. One of:

• dont_allow

• allow

• default

16.15 Utility Functions

This section describes various utility predicates.

16.15.1 Bitmask Handling

16.15.1.1 state_mask/2

state_mask(?State, ?Mask)

Translates between events state fields that consist of button and modifier specifications
and the corresponding integer bitmasks.

State is unified with a term of the form state(Buttons, Modifiers), where Buttons is the
buttons specification used by buttons_mask/2 and Modifiers is the modifiers specification
used by modifiers_mask/2.

Mask is the integer bitmask representing the given set of buttons and modifiers.

16.15.1.2 buttons_mask/2

buttons_mask(?Buttons, ?Mask)

Translates between button specifications and the corresponding integer bitmask.

Buttons is a term of the form buttons(B1, B2, B3, B4, B5), where button number i has
argument position i in the term and the value of each argument is either up or down.

Mask is the integer bitmask representing the given set of buttons.

Chapter 16: The ProXL Package 885

16.15.1.3 modifiers_mask/2

modifiers_mask(?Modifiers, ?Mask)

Translates between modifier specifications and the corresponding integer bitmask.

Modifiers is a term of the form modifiers(Shift, Control, Lock, Mod1, Mod2, Mod3,
Mod4, Mod5), where the value of each argument is either up or down.

Mask is the integer bitmask representing the given set of modifiers.

16.15.1.4 event_list_mask/2

event_list_mask(?EventList, ?Mask)

Translates between a list of events names and the corresponding integer bitmask.

EventList is a list of event mask names, taken from the following:

• key_press

• key_release

• button_press

• button_release

• enter_window

• leave_window

• pointer_motion

• pointer_motion_hint

• button1_motion

• button2_motion

• button3_motion

• button4_motion

• button5_motion

• button_motion

• keymap_state

• exposure

• visibility_change

• structure_notify

• resize_redirect

• substructure_notify

• substructure_redirect

• focus_change

• property_change

• colormap_change

886 Quintus Prolog

• owner_grab_button

Mask is the corresponding integer bitmask.

16.15.1.5 bitset_composition/3

bitset_composition(?Mask1, ?Mask2, ?Mask3)

Take any of two mutually exclusive bitmasks and produce a third one, such that the argu-
ments obey Mask3 is Mask1 \/ Mask2.

16.15.2 Key Handling

16.15.2.1 rebind_key/[3,4]

rebind_key(+Displayable, +Key, +ModifiersList, +Atom)
rebind_key(+Key, +ModifiersList, +Atom)

Rebind a key, with a possible set of modifiers, to a new atom.

Displayable is a ProXL Displayable. If omitted, the default Display is used.

Key is a valid key name, as given by keysym/2.

ModifiersList is a list containing any of the following modifier key names:

• ’Shift_L’

• ’Shift_R’

• ’Control_L’

• ’Control_R’

• ’Caps_Lock’

• ’Shift_Lock’

• ’Meta_L’

• ’Meta_R’

• ’Alt_L’

• ’Alt_R’

• ’Super_L’

• ’Super_R’

• ’Hyper_L’

• ’Hyper_R’

Atom is an atom giving the new binding of Key

Chapter 16: The ProXL Package 887

16.15.2.2 key_keycode/[3,4]

key_keycode(+Displayable, ?Key, ?Keycode, ?Index)
key_keycode(?Key, ?Keycode, ?Index)

Translates between keys and keycodes.

Under X11, physical keys are mapped to unique server-dependent keycodes and keycodes
are mapped to a list of server-independent keysyms.

Displayable is a ProXL Displayable. If omitted, the default Display is used.

Key is a key name, as given by keysym/2.

Keycode is an integer, between 8 and 255, corresponding to the Key.

Index is an integer, typically 0 or 1, that identifies which of the keysyms attached to Keycode
corresponds to Key. The usual case is that Keysym number 0 corresponds to the lower case
variant of the key, and Keysym number 1 to the upper case variant, if it exists.

16.15.2.3 keysym/[1,2]

keysym(-KeysymSet)
keysym(?Keysym, ?Key)

keysym/1 is true when KeysymSet is an atom giving the name of a pre-loaded keysym. The
preloaded keysym sets are:

• miscellany

• latin1

• latin2

• latin3

• latin4

• greek

keysym/2 is true when Keysym is the integer, server-independent keysym for the the key
named Key, which is an atom. In general, the name of a key is just the atom (quoted,
if necessary). See the Xlib documentation on keysyms for a list of the keysyms and key
names.

16.15.2.4 is_key/[2,3]

is_key(?Type, +Key, -Keysym)
is_key(?Type, +Key)

Identify various subclasses of keys and their keysyms.

Type is one of:

888 Quintus Prolog

keypad For keypad keys.

cursor For cursor control keys.

pf For pf keys.

function For function keys.

misc_function
For various other function keys.

modifier For modifier keys.

Key is the key name.

Keysym is the integer, server-independent, keysym.

16.15.2.5 key_state/[3,4]

key_state(+Displayable, +Keymap, -Key, -State)
key_state(+Keymap, -Key, -State)

Allows the user to find out the state of a key in a keymap.

Displayable is a ProXL Displayable. If omitted, the default Display is used.

Keymap is a keymap, typically obtained by get_keyboard_attributes/N.

Key is the name of a key.

State is either up or down.

16.15.2.6 key_auto_repeat/[3,4]

key_auto_repeat(+Displayable, +AutoRepeatMap,
-Key, -State)

key_auto_repeat(+AutoRepeatMap, -Key, -State)

Allows the user to find out if a key has auto repeat enabled or not.

Displayable is a ProXL Displayable. If omitted, the default Display is used.

AutoRepeatMap is an auto repeat keymap, typically obtained by

get_keyboard_attributes/N.

Key is the name of a key.

State is either on or off.

Chapter 16: The ProXL Package 889

16.15.3 Application Preferences

16.15.3.1 get_default/[3,4]

get_default(+Displayable, +Program, +Option, -Value)
get_default(+Program, +Option, -Value)

Provides a simple interface for clients that want to find out about application prefer-
ences without using the Resource Manager. Defaults are usually loaded into the RE-
SOURCE MANAGER property on the root window at login. If no such property exists, the
resource file ‘~/.Xdefaults’ is loaded. Additional defaults are obtained from the filename
specified by the environment variable XENVIRONMENT.

Displayable is a ProXL Displayable. If omitted, the default Display is used.

Program is an atom specifying the name of the program.

Option is an atom specifying the option name.

Value is an atom giving the preferred value for the option.

16.15.3.2 parse_geometry/5

parse_geometry(+Geometry, -X, -Y, -W, -H)

Parses standard X11 geometry descriptions that describe size and placement.

Geometry is an atom of the form

’=<width>x<height>{+-}<xoffset>{+-}<yoffset>’

X is unified with the x coordinate value from the atom.

Y is unified with the y coordinate value from the atom.

W is unified with the width value from the atom.

H is unified with the height value from the atom.

16.15.3.3 geometry/[12,13]

geometry(+Displayable, +ScreenNum,
+Position, +Default, +BW, +FH, +FW,
+XAdd, +YAdd, -X, -Y, -W, -H)

geometry(+ScreenNum, +Position, +Default,
+BW, +FH, +FW, +XAdd, +YAdd, -X,
-Y, -W, -H)

890 Quintus Prolog

Parses a window geometry given an specification geometry, and a default geometry. The
arguments are:

Displayable
a ProXL Displayable. If omitted, the default Display is used.

ScreenNum
an integer specifying which screen the window is on.

Position an atom specifying a possible incomplete geometry description in standard X
format. See parse_geometry/5 for details.

Default an atom specifying a complete geometry description in standard X format.

BW an integer specifying the border width.

FH an integer specifying the font height in pixels.

FW an integer specifying the font width in pixels.

XAdd an integer specifying additional horizontal padding, in pixels, needed in the
window.

YAdd an integer specifying additional vertical padding, in pixels, needed in the win-
dow.

X an integer giving back the x coordinate, or unbound.

Y an integer giving back the y coordinate, or unbound.

W an integer giving back the width, or unbound.

H an integer giving back the height, or unbound.

16.16 ProXL for Xlib speakers

This section documents some of the most important differences between ProXL and Xlib.
We assume that you are familiar with Xlib and, have read Section 16.1 [pxl-bas], page 749
and Section 16.2 [pxl-tut], page 757 from this manual.

16.16.1 Naming Conventions

ProXL has many primitives that are very similar (though none that are identical) to Xlib
functions. Unfortunately, Xlib’s naming conventions are not very convenient in Prolog,
so ProXL uses different names. ProXL names are all lowercase, with underscores used to
separate words. Also, ProXL names do not have prefixes or suffixes to specify the context
they are to be used in; in Prolog, context is sufficient to disambiguate. For example, the
line style called LineDoubleDash by Xlib is called simply double_dash by Prolog, since the
context in which it is used will make clear that it is a line style.

To be a little more formal about it, here’s a rough algorithm for translating names:

Chapter 16: The ProXL Package 891

1. Strip off the X prefix from a function or structure name, or the context prefix or suffix
from a #defined symbol.

2. Insert an underscore before the last in any sequence of one or more uppercase letters.
3. Make all letters lowercase.

So XOpenDisplay would become open_display, NorthWestGravity would become north_
west, and LSBFirst would become lsb_first.

Note that not all X functions have direct ProXL counterparts. In some cases, a single ProXL
procedure fills the role of many Xlib functions. For example, ProXL has no set_fill_
rule procedure, instead you use put_graphics_attributes/2. Also, in a few cases, Xlib
functions that take boolean arguments have been split into two different ProXL procedures,
one for each boolean state.

16.16.2 Arguments

Arguments and argument order to ProXL primitives are not always directly predictable
from their Xlib counterparts, but some rules of thumb can be helpful:

1. Almost all Xlib functions take a display as first argument. ProXL doesn’t need this
argument at all if any X resource (i.e., a server-side resource, like a window or GC or
font) appears in the call. So few ProXL primitives take a display argument.

2. All the ProXL primitives that DO require a display have a version that allows the
display to be defaulted. Also, several ProXL primitives require a screen as argument,
and these, too, allow that argument to be defaulted. See the section on the default
screen below for details.

3. Several Xlib functions take a window as argument (or some other X resource) when all
they really want to know is a screen. In these cases, the analogous ProXL primitive
takes a screen as argument. Note that rule 2 above applies in these cases.

ProXL doesn’t always use the same argument order as Xlib. There are a few reasons for
different argument order. Firstly, ProXL has defaults for some arguments, so sometimes
argument orders are changed to facilitate defaults. ProXL also rearranges arguments to
make parallels among families of procedures more obvious. In most cases, however, the
argument order for ProXL procedures is the same as their Xlib counterparts.

16.16.3 Data Structures

Xlib has three basic kinds of data structures: documented C structures, undocumented C
structures, and XIDs. The documented C structures are used as any C structure would be;
the undocumented C structures are accessed through standard macros and functions; and
the XIDs are used only as arguments to Xlib functions.

892 Quintus Prolog

ProXL doesn’t have these types, instead it has only foreign terms and regular Prolog terms.
Foreign terms are Prolog terms that represent X objects. These objects are analogous to
undocumented C structures in that their contents are not directly accessible, but it is not
necessary to send a message to the server to get the contents.

Foreign terms, at the moment, are simply unary Prolog terms whose functor indicates the
type of the foreign term and whose argument specifies the location of the contents of the
data structure. Note that this implementation may be changed at any time, so you should
not count on it.

One useful property of the current implementation is that the printed representation of a
foreign term may be read back in, and will yield the same data structure. This is useful
when debugging and when prototyping, since it means you can grab results of a goal you
just ran and feed them in as arguments to the next goal you want to run.

All foreign terms representing XIDs contain not only the XID of the X resource, but also the
display, and, where appropriate, the screen, on which this XID lives. This means that where
Xlib requires both a display and an XID, ProXL only needs the foreign term. Therefore,
very few ProXL procedures take a display as argument.

16.16.4 Prolog Terms

Prolog terms represent a few of the documented C structures. Most of the documented
C structures are not needed in ProXL, for example the XWindowChanges structure. The
documented structures that are represented in ProXL by Prolog terms are XPoint, XSeg-
ment, XRectangle, XArc, and XColor. The functor of these terms is the structure name
translated by the naming conventions above. The first four kinds of terms have the same
arguments as the corresponding C struct members, except that the angles in an arc specifi-
cation are given in degrees, rather than 64ths of a degree, as in Xlib. Color terms have only
the red, green, and blue components, and these are given as numbers between 0 and 1. For
example, a 30 by 40 pixel rectangle at location (10, 20) would be represented by the term
rectangle(10,20,30,40), and the color magenta would be represented by color(1,0,1).
See the section of the ProXL manual on colors for information.

16.16.5 Convenience Functions

Xlib provides many convenience functions to make it simpler to change attributes of X
resources. ProXL doesn’t provide these functions, since the put_*_attributes/2 proce-
dures are quite simple to use, so there is no need for them in Prolog. For example, Xlib
provides separate functions to change each GC attribute, as well as a general function that
can change all the attributes of a GC at once; ProXL only provides the procedure to change
all attributes at once, since it is easy to use. Leaving out all these unnecessary convenience
functions makes ProXL simpler and smaller than Xlib.

Chapter 16: The ProXL Package 893

16.16.6 Caching

It’s also important to know what is not in a foreign term. Foreign terms do not contain
any information about an X resource that may be changed. The sole exception to this
rule is graphics contexts, which are discussed below. For example, a ProXL window may
remember its depth (which cannot be changed once the window is created), but it won’t
remember its width or height, since they can change. This means that it is possible for
other programs, running in the same or different address space, to share X resources with
ProXL. ProXL will have no problems with window managers moving or resizing windows,
since it goes to the server when it wants to know a window’s size.

An unfortunate result of this is that not all attributes that can be changed can be gotten.
This is because the X protocol does not provide a way to get all information about every
X resource. For example, it is possible to set the background of a window, but it is not
possible to get it. There aren’t many such attributes, and they are documented in the
ProXL manual.

16.16.7 Default Screen and Display

ProXL maintains a default screen, which the user may set. It starts out as the default screen
on the default display. This default screen is used in many primitives when an optional
screen argument is not specified. The display on which the default screen is present is
considered to be the default display. The default display is used when an optional display
argument is not given. The default display cannot be set directly, it is always determined
by the default screen.

16.16.8 Graphics Contexts

ProXL, like Xlib, caches the current state of each graphics context. Therefore, it is possible
for a ProXL application to determine the current state of a GC. Therefore, ProXL does not
permit its GCs to be shared with foreign code in the same or different address space.

16.16.9 Default GCs

To make simple graphics easier, ProXL associates a default graphics context with each
drawable. Thus you may omit the GC argument to all the drawing primitives, in which
case the destination drawable’s default GC is used. Alternatively, you may specify a GC in
drawing primitives and ignore the default GC. You may also replace a drawable’s default
GC at any time.

The concept of a drawable’s GC allows you to forget about GCs as separate entities, and
instead think of drawables as having graphics attributes. ProXL manages this for you. So

894 Quintus Prolog

if you want to draw in a window in green, you can set the window’s foreground to green,
and then draw. You needn’t worry about GCs at all.

16.16.10 Modifying GCs

The primitive put_graphics_attributes/2 is used to modify GCs. There are two ways
to change a GC: it may be modified directly, by calling put_graphics_attributes/2 with
a GC as argument, or through a drawable, by passing a drawable as argument.

16.16.11 Sharing and Cloning of GCs

When you create a drawable without specifying a GC or any GC attributes, the drawable
gets the default GC for that depth and screen. This default GC has all the default GC
attributes, except that foreground is black and background is white. So in fact, you can
often create a drawable and draw into it without worrying about GCs or graphics attributes
at all. You are not permitted to modify the default GC.

When a drawable gets the default GC, it is actually sharing that GC with all the other
drawables that use the default. And if you specify a GC when creating a drawable, or if you
change the GC of a drawable, you are sharing that GC with any other drawables that use
that GC. If you should modify a shared GC, all the drawables that use that GC will feel
the effect. However, if you modify the graphics attributes of a drawable, only that drawable
will feel the effect. This is accomplished by cloning the shared GC, modifying the new copy
as specified, and installing the clone as the drawable’s GC.

It helps to think of two different levels of use. If you never create a GC, and only modify
graphics attributes of drawables, then you can think of the graphics attributes as belonging
to drawables directly. The graphics attributes of a drawable will only change when you do it
directly. However, if you create GCs, install them in drawables, and modify them directly,
then a drawable’s graphics attributes can change out from under it.

This can be very useful. You can change many drawables’ graphics attributes all at once
by changing their shared GC. And you can still change one of these drawables’ graphics
attributes directly, without changing the others. However, once you do this, that drawable
will no longer share GCs with the other, so changes to the shared GC will no longer be felt
by that drawable.

16.16.12 Memory Management

Memory management is a complex issue for ProXL. In C, programmers are used to having
to keep track of their resources; in Prolog, however, resource reclamation is done by the
Prolog garbage collector.

Chapter 16: The ProXL Package 895

Unfortunately, it’s not that simple. The X Window System does not make this possible.
For example, there is no way to tell whether or not a given colormap is used by any
windows, nor is there a way to tell the X server that a colormap should be reclaimed
when no more windows require it. The only function provided by X actually destroys the
colormap immediately, and any windows that use that colormap find themselves without
any colormap.

Fonts are another matter. Since the only X resource that can refer to a font is a GC, and
since ProXL GCs are not shared with other languages or other processes, ProXL can be
careful about freeing a font that is relied on by some GC.

There is another difficulty, though: ProXL has no way of knowing whether or not the user’s
Prolog code is holding onto a font explicitly. For example, the user may assert it into the
Prolog database, or pass it around as an argument throughout his program. To Prolog, this
font looks just like any other term; it has no way of knowing that it represents a foreign
term. This means that the Prolog garbage collector cannot collect foreign terms.

All this means that ProXL has two different mechanisms for freeing resources. Most re-
sources can only be freed by explicit action, and the resource is freed immediately (the next
time the output buffer is flushed). GCs and fonts are instead released. Releasing an X
resource means that (you are proclaiming that) Prolog does not have any references to the
resource. When no X resources refer to the released resource, it will be freed. Fonts can
only be referred to by GCs. GCs can be referred to by drawables.

16.16.13 Mixed Language Programming

It may be desirable to write programs in which some X graphics is done by Prolog code using
ProXL and other parts are done in C or another procedural language using Xlib. ProXL
makes this possible by providing a way to translate between ProXL and Xlib resources from
both C and Prolog code.

On the C side, there is a function to translate each kind of X resource into the corresponding
ProXL object, and a macro to get the X resource from the ProXL object. From Prolog, there
is a predicate to translate between X and ProXL displays, another to translate between X
and ProXL screens, and a third to translate between XIDs and their ProXL counterparts.

ProXL does not permit ProXL GCs to be used in foreign code, nor will it allow a foreign
GC to be used in ProXL. Therefore, none of these translations are available for GCs.

896 Quintus Prolog

Chapter 17: The ProXT Package 897

17 The ProXT Package

17.1 Technical Overview and Manual

17.1.1 Introduction

ProXT is a Prolog interface to the Motif widget set and the X Toolkit (Xt). Widgets are
ready-made graphical components for building user-interfaces, for example, menus, dialog
boxes, scroll bars and command buttons. The X Toolkit provides routines for creating and
using such widgets. ProXT provides access from Prolog to all the widgets in Motif and to
the Xt routines necessary for using the widgets.

ProXT permits the rapid development of user-interfaces with the Motif “look and feel”. The
interactive development environment of Prolog greatly shortens the edit-test-debug cycle.
Individual files can be recompiled incrementally, avoiding the need to exit the application
and re-link it. In addition, ProXT provides the programmer with a more logical view of the
Motif widget set and reinforces its object-oriented nature.

Almost all of the predicates in ProXT are interfaced directly to functions from the underly-
ing C interface. Also, there is a straightforward correspondence between the data structures
used: for example ProXT expects a list where Xt expects an array. This makes it very easy
to switch between writing Prolog code for ProXT and C code for Xt and Motif. In addition,
ProXT can readily be used in conjunction with C code written for Motif and Xt.

ProXT is not available under Windows.

17.1.2 Using ProXT

ProXT is very easy to use if you already know Motif and Xt. If you do not already know
Motif and Xt, experimentation with ProXT is an excellent way to learn. There is a wide
array of books on the market covering X and Motif. O’Reilly & Associates publish The
Definitive Guides to the X Window System, a series of books in the area of the X Window
System. For a tutorial on how to use the Motif widget set refer to The X Window System:
Programming and Applications with Xt, OSF/Motif Edition (Douglas Young, Prentice-
Hall).

ProXT interfaces to Motif2.1 with the X11 Release 6 libraries. The user is expected to use
the Motif and X Toolkit manuals when working with ProXT. This document concentrates
on providing rules for applying that information to ProXT because the original manuals
address the C interface. Section 17.5 [pxt-exp], page 934 lists the predicates in ProXT and
the types of their arguments. Section 17.4 [pxt-wid], page 924 lists the widget resources
and their types while Section 17.3 [pxt-typ], page 908 lists the data types and their Prolog
representation.

898 Quintus Prolog

17.1.3 Naming Conventions

ProXT preserves the original naming conventions used in the X Toolkit except that the first
letter of each name is converted to lower case, since Prolog treats names beginning with an
upper case letter as variables. Thus all Xt functions start with the prefix ‘xt’, and all Motif
functions start with ‘xm’. Motif resource names start with the prefix ‘xmN’.

There is a set of ProXT predicates that do not correspond directly to functions from the
underlying C interface. Such predicates start with the prefix ‘proxt’.

17.1.4 Predicate Arguments

The order of the arguments in ProXT predicates is the same as that of the functions
interfaced to them. The return value of a function, if it exists, always appears as the last
argument of the predicate. Motif functions that return a Boolean value are mapped to
ProXT predicates that succeed or fail depending on whether the Motif function returns
True or False.

There is a general class of C functions that take an array and a count of the elements in the
array as arguments. In ProXT, arrays are replaced by Prolog lists and the count argument
is dropped.

The table in Section 17.5 [pxt-exp], page 934 contains all of the built-in predicates in ProXT
with their arguments and types.

17.1.5 Type Matching

The table in Section 17.3 [pxt-typ], page 908 lists the types used in ProXT.

The rule of thumb is that simple types in C are mapped to simple types in Prolog.

In most cases C struct types are represented as handles. A handle is a term whose functor is
the type name and whose argument is the address of the structure in memory. The address
of a C structure would be of interest to programmers interfacing to foreign code.

Character strings are represented by atoms and arrays are represented by lists.

17.1.6 Widget Resources

The table in Section 17.4 [pxt-wid], page 924 shows the types of the widget resource values
in ProXT.

Chapter 17: The ProXT Package 899

In the ProXT documentation the terms resource and attribute are used interchangeably.
A widget attribute is represented as a term whose functor is the resource name and whose
argument is the value of the attribute. This defines the type Attribute.

17.1.7 Callbacks

In ProXT, callbacks are specified as Prolog goals. The number of arguments in a goal is
the same as the number of arguments in the corresponding type of C callback functions.
For example, the widget callback goals are of arity 3 with arguments +Widget, +ClientData
and +CallData.

17.1.8 Using ProXT with ProXL

ProXL is a direct interface to the X Window System. You may want to use ProXL in your
ProXT programs in order to do graphics or use some of the X Window System’s more subtle
features not supported directly by the X toolkit.

ProXT provides a library file, library(xif), which allows ProXL predicates to be used
smoothly in your ProXT programs. In order to use any of these predicates, you must load
library(xif). Quintus distributes the source code for ‘xif.pl’ and users are encouraged
to look at it for examples of mixed ProXL/ProXT programming.

If you need to use ProXT and ProXL together, make sure your code has:

:- use_module(library(proxt)).
:- use_module(library(proxl)).
:- use_module(library(xif)).

17.1.8.1 xif_initialize/3

xif_initialize(+Name, +Class, -Widget)

Call this predicate instead of xtInitialize/3 to initialize Xt when you plan to use ProXL.
The arguments and usage are the same as for xtInitialize/3.

xif_initialize/3 sets ProXL’s notion of default screen to the same screen ProXT is using.
This will ensure that ProXL objects you create can be used with your widgets.

17.1.8.2 widget_window/2

widget_window(+Widget, -Window)
widget_window(-Widget, +Window)

Given a ProXT Widget, return the associated ProXL Window, or given a ProXL Window
that is already associated with a widget, return that widget. Note that every Xt widget has

900 Quintus Prolog

an associated window, so you can supply any widget and get its window, but the reverse is
not true.

Once you have a ProXL window, you may use any ProXL drawing or any other operation
on that window.

17.1.8.3 widget_to_screen/2

widget_to_screen(+Widget, -Screen)

Given a ProXT Widget, return the ProXL Screen on which Widget resides.

17.1.8.4 widget_to_display/2

widget_to_display(+Widget, -Display)

Given a ProXT Widget, return the ProXL Display on which Widget resides.

17.1.8.5 xif_main_loop/[0,1,2,3]

xif_main_loop
xif_main_loop(+ExitCond)
xif_main_loop(+ExitCond, +Context)
xif_main_loop(+Displayable, +ExitCond, +Context)

These handle both ProXT and ProXL events. ProXT and ProXL have their own event
handling mechanisms. If you combine ProXL and ProXT callbacks, you must use one of
xif_main_loop/[0,1,2,3] instead of xtMainLoop/0.

These predicates are direct analogues of the ProXL predicates handle_events/[0,1,2,3],
and are used in exactly the same way. See the ProXL documentation for more detailed
information on the arguments, and how they tie in with ProXL callbacks.

If you do not use ProXL callbacks, you do not need these predicates; you can just call
xtMainLoop/0. You may mix ProXT and ProXL callbacks freely.

17.2 Tutorial

17.2.1 Introduction

This tutorial provides an introduction to the elementary concepts of programming with
ProXT. It incorporates some instruction on the basic ideas behind the X Toolkit (Xt)
and the Motif widget set. However, this is not a comprehensive tutorial on Motif and Xt
programming. For such refer to The X Window System: Programming and Applications

Chapter 17: The ProXT Package 901

with Xt, OSF/Motif Edition (Douglas Young, Prentice-Hall). Programmers who are already
familiar with Motif will find this tutorial useful in translating their knowledge to ProXT.
In addition the original Motif and Xt naming conventions are preserved to a great extent,
which is intended to facilitate the transition to ProXT.

17.2.2 The ProXT programming model

The ProXT programming model can be summarized best in the following program example,
which creates a push button, and maps it on the screen.

create_button :-
xtAppInitialize(App,’Demo’,[],Shell),
xmCreatePushButton(Shell,push_button,

[xmNwidth(100), xmNheight(100)],Button),
xtManageChild(Button),
xtRealizeWidget(Shell),
xtAppMainLoop(App).

First, the Toolkit must be initialized. The call to xtAppInitialize/4 returns an appli-
cation context and a shell widget, which is the root widget of the application. The sec-
ond argument is the application class, attributes can be specified in the third argument.
Then the push button widget is created as a child of the shell widget with the call to
xmCreatePushButton/4. In order to be visible on the screen a widget must be managed.
This is accomplished with the call to xtManageChild/1. Note that the shell widget should
not be managed. The next step is to realize every widget. This can be achieved by realizing
the root widget. xtRealizeWidget/1 propagates the realization recursively to all of the
children. Then the program must enter the event loop by calling xtAppMainLoop/1 where
the server dispatches events for the widgets in this application context and certain actions
that occur within the application.

17.2.3 The Motif Widget Set

Motif has a variety of widgets and gadgets, each designed to accomplish a specific set
of tasks, either individually or in combination with others. Convenience functions create
certain widgets or sets of widgets for a specific purpose. xmCreatePushButton/4 in the
program above is an example of such a procedure.

The widgets are grouped into several classes, depending on the function of the widget.
Logically, a widget class consists of the procedures and data associated with all widgets
belonging to that class. These procedures and data can be inherited by subclasses. Detailed
information on the properties of each widget and the procedures associated with it can be
found in books on Motif.

902 Quintus Prolog

17.2.4 Widget Resources

The widgets are objects and they have resources, also called attributes. These can be set at
creation time by passing the list of attributes as an argument to the predicate that creates
the widget or in later time by calling xtSetValues/2. In the example above the third
argument of xmCreatePushButton/4 is the attribute list and the size of the push button is
set initially to 100x100 pixels. If that argument was an empty list then no attributes would
have been set. Each attribute is represented as a term whose functor is its resource name
and whose argument is its value. In Section 17.4 [pxt-wid], page 924 all of the resources are
listed with the types of their values.

There is a method to inspect the values of the attributes. This can be accomplished using
the predicate xtGetValues/2, which is almost the same as xtSetValues/2 except that the
argument of the attribute term is a variable, which is to be bound as a result of the call
with the value of the attribute. For example to inspect the size of the push button from
the previous example call:

xtGetValues(Button, [xmNwidth(X), xmNheight(Y)]).

At last, a word of caution. Not all resources can be set at creation time or set/get at a later
time. To check for that look at the Motif and X Toolkit manuals.

17.2.5 Event Handling

Handling of events is what enables the application to respond to input, i.e. to be alive.
The X Toolkit and Motif provide means for procedures to be mapped to the occurrence of
an event in the application. Actually, there are few different types of events within the X
Toolkit paradigm.

17.2.5.1 Widget Callbacks

One type of events corresponds to changes in the widget state. They are known as widget
callbacks and each widget has its own set of them. There is a logical connection between
the type of the widgets and their callbacks. For example, the push button widget has a
callback, which is activated when it is pressed.

There are few alternative ways of registering callback procedures. First, the callbacks are
widget resources whose values are the corresponding procedures, therefore they can be set as
such at creation. In addition, the X Toolkit provides a way for callbacks to be set explicitly.
This can be done with the predicates xtAddCallback/4 and xtAddCallbacks/3.

In xtAddCallback/4 the first argument is the widget for which the callback is registered,
the second is the callback name. The third argument is the name of the procedure to
be called and the last argument is some data that the programmer wants to pass to the
callback procedure. In xtAddCallbacks/3 the last argument is a list of terms of type

Chapter 17: The ProXT Package 903

callback(Predicate,ClientData) where Predicate is the name of the procedure to be
called and ClientData is the data that the programmer wants to pass to the callback proce-
dure. If the callback is set as a widget resource then the resource value is of the same term
as used in the xtAddCallbacks/3 list. For example,

xmCreatePushButton(Shell,push_button,
[xmNactivateCallback(callback(pressed,’Hello Quintus!’))])

would add a callback to the push button at creation time.

The callback procedures must be of arity 3. The first argument is the widget for which the
callback was registered. The second argument is reserved for data that the programmer
may want pass to the procedure and the last argument is used by the Motif widgets to pass
widget specific data to the application.

Following is an extension of the first example showing how to register a widget callback
using xtAddCallbacks/3:

create_button :-
xtAppInitialize(App,’Demo’,[],Shell),
xmCreatePushButton(Shell,push_button,

[xmNwidth(100), xmNheight(100)],Button),
xtManageChild(Button),
xtAddCallback(Button,xmNactivateCallback,pressed,

’Hello Quintus!’),
xtRealizeWidget(Shell),
xtAppMainLoop(App).

pressed(Widget, ClientData, CallData) :-
write(Widget), nl,
write(ClientData), nl,
write(CallData), nl.

To remove callbacks use xtRemoveCallback, xtRemoveCallbacks, or
xtRemoveAllCallbacks.

17.2.5.2 Translations

The translation mechanism provides the application developers with a powerful syntax for
specifying sequences of events and means to map them to actions. Actually, a level of
redirection is introduced at this level. The event sequences are mapped into strings, which
are mapped to executable procedures further in the program. This is intended to allow the
mapping of events to actions to be specified through the resource database.

To specify translations programmatically the programmer can use one of these predicates:
xtAugmentTranslations/2 or xtOverrideTranslations/2. Both of these predicates reg-
ister a translation table with a particular widget. xtAugmentTranslations/2 merges the

904 Quintus Prolog

new translation table with the current one while xtOverrideTranslations/2 not only
does that but also replaces existing translations with entries from the new translation table
whenever there is a conflict.

The translation table is a structure that is opaque to the Prolog programmer. One can use
the predicate xtParseTranslationTable/2 to parse the translations string and generate
the translation table. The exact syntax of the translations string is explained in the X
Toolkit documentation.

The predicate xtAppAddActions/2 is used to map the action names to executable proce-
dures. The first argument is the application context and the second argument is a list of
terms of type Action. In ProXT the translation procedures have three arguments — the
first argument is the widget where the event occurred, the second argument is the event
that invoked the action and the third is a list of parameters specified in the action name.

Following is a reimplementation of the previous example using translations for event han-
dling.

create_button :-
xtAppInitialize(App,’Demo’,[],Shell),
xmCreateLabel(Shell,push_button,

[xmNwidth(100), xmNheight(100)],Button),
xtManageChild(Button),
xtAppAddActions(App, [action(foo,pressed)]),
xtParseTranslationTable(’<Btn1Down: foo("Hello Quintus")’,

TranslationTable),
xtAugmentTranslations(Button,TranslationTable),
xtRealizeWidget(Shell),
xtAppMainLoop(App).

pressed(Widget, Event, ParamList) :-
write(Widget), nl,
write(Event), nl,
write(ParamList), nl.

Registering translations through the resource database is covered to the section dedicated
on the resource database.

17.2.5.3 Accelerators

Accelerators are like translations but they map sequences of events in one widget to actions
in another. This mechanism is needed when adding a keyboard interface in the application
allowing, for example, a menu to pop up as a result of a key stroke.

Every widget has a xmNAccelerators resource, inherited from the Core widget class. The
application must then call xtInstallAccelerators or xtInstallAllAccelerators to

Chapter 17: The ProXT Package 905

specify which widget will be used as the source of the actions to be invoked, and which
will be the source of the events that invoke them.

17.2.5.4 Event Handlers

The X Toolkit allows applications to catch low level X events occurring in a window owned
by a widget. This can be accomplished with a call to xtAddEventHandler/5. This predicate
is exactly like the corresponding X Toolkit function, therefore refer to the Xt manual for
more information about it. Note that the event mask is represented as a list of event names
in ProXT. There is also the xtAddRawEventHandler/5 predicate, which is almost the same
as xtAddEventHandler/5 except that it does not affect the widget’s event mask. To remove
an event handler use xtAddRawEventHandler/5 or xtAddRawEventHandler/5 accordingly.

Following is the first example rewritten in order to utilize event handlers.

create_button :-
xtAppInitialize(App,’Demo’,[],Shell),
xmCreatePushButton(Shell,push_button,

[xmNwidth(100), xmNheight(100)],Button),
xtManageChild(Button),
xtAddEventHandler(Button,[buttonPressMask],false,

pressed,’Hello Quintus!’),
xtRealizeWidget(Shell),
xtAppMainLoop(App).

pressed(Widget, ClientData, CallData) :-
write(Widget), nl,
write(ClientData), nl,
write(CallData), nl.

17.2.5.5 Other Events Types

Many X applications require input from sources other than the X event queue. The X
Toolkit provides a way for registering procedures to be invoked when there is input coming
from a source such as UNIX file. The call to xtAppAddInput/6 accomplishes that. The first
argument in xtAppAddInput/6 is the application context, the UNIX file descriptor for the
input source is second, the third is the input condition mask and the next two arguments
are the predicate and client data. An Id is returned in the final argument, which can be
used to unregister the procedure.

Another useful facility in the X Toolkit allows applications to register callback procedures
to be invoked when a specified interval has elapsed. The call to xtAppAddTimeOut/5 ac-
complishes that. The time interval is measured in milliseconds and the registered procedure
must be of arity 2, where the first argument is the client data and the second is the interval

906 Quintus Prolog

id. Following is an extension to the first example, which sets a timer when the push button
is activated. This in turn activates a procedure some 2 seconds later.

timer(_ClientData,_IntervalId) :-
write(’Button pressed approximately 2 seconds earlier...’),
nl.

set_timer(Widget,Interval,_CallData) :-
xtWidgetToApplicationContext(Widget, App),
xtAppAddTimeOut(App,Interval,timer,_,_Id).

time :-
xtAppInitialize(App,’Test’,[],Shell),
xmCreatePushButton(Shell,push_button,

[xmNactivateCallback([callback(set_timer,2000)]),
xmNwidth(100),
xmNheight(100)],
Button),

xtManageChild(Button),
xtRealizeWidget(Shell),
xtAppMainLoop(App).

The X Toolkit includes another type of callback mechanism, known as a WorkProc, that
provides a limited form of background processing. It allows the application to invoke a
callback whenever there are no events pending. The application can register WorkProc
procedures using the call to xtAppAddWorkProc/4.

17.2.5.6 Event Handling Loop

At some point the application must start handling events. The procedure for obtaining
these events is xtAppNextEvent/2 and the procedure for dispatching them to the widgets
is xtDispatchEvent/1. The call to xtAppMainLoop/1 starts an endless loop where these
two procedures are called one after another. Of course, the programmer can always write
her own event loop, specifying some exit conditions, etc. The following example is a slight
modification of the first program, which exits the event loop when the button is pressed.

Chapter 17: The ProXT Package 907

:- dynamic exit_loop/1.

exit_loop(no).

exit_callback(_Widget,_CLientData,_CallData) :-
retract(exit_loop(no)),
assert(exit_loop(yes)).

create_button :-
xtAppInitialize(App,’Test’,[],Shell),
xmCreatePushButton(Shell,push_button,

[xmNwidth(100), xmNheight(100)],
Button),

xtManageChild(Button),
xtAddCallback(Button,xmNactivateCallback,exit_callback,_),
xtRealizeWidget(Shell),
main_loop(App).

main_loop(App) :-
(exit_loop(yes)
-> write(’Exiting...’), nl
; xtAppNextEvent(App,Event),

xtDispatchEvent(Event),
main_loop(App)

).

17.2.6 Using The Resource Database

As mentioned earlier, most widget resources can be specified through the resource database.
According to some authors this is the preferred way of resource setting as opposed to hard
wiring in the program. During the initialization of the application the resource manager
loads the resource database. Most end-users take advantage of that mechanism in customiz-
ing their applications without the need to recompile or know anything about programming.
There are few places where the resource information may reside but the usual place is the
file ‘.Xdefaults’ in the user’s home directory. Also, the application may keep a file of
the application defaults settings in the directory: ‘/usr/lib/X11/app-defaults’, and the
filename must match the application name.

More on the syntax of specifying resource values can be found in any book on the X Toolkit.
Following is another reimplementation of the first example with the widget resources and
translations set through the resource database.

908 Quintus Prolog

button_pressed(_Widget,_Event,[Param]) :-
write(Param), nl.

create_button :-
xtAppInitialize(App,’Test’,[],Shell),
xmCreateLabel(Shell,button,[],Button),
xtManageChild(Button),
xtAppAddActions(App, [action(foo,button_pressed)]),
xtRealizeWidget(Shell),
xtAppMainLoop(App).

Entries in the resource file:

Test.button.translations: #augment <Btn1Down>:foo("Hello Quintus")
Test.button.labelString: "Press Here"
Test.button.height: 100
Test.button.width: 100

17.2.7 Interaction with Xlib

In many instances the application will need to use functions from the Xlib layer for graphics
or pure flexibility. Most of the the Xlib procedures take as arguments the display, screen,
window, or gc structures. Therefore proxt provides the predicates xtDisplay, xtScreen,
xtWindow, xCreateGC and xtWindowToWidget to facilitate the mapping between Xt and
Xlib. Also, the predicate xLoadQueryFont is provided to supply the font structure needed
by Motif font predicates such as xmFontCreateList.

17.3 ProXT 3.5 Data Types

Action Represented as action(ActionName,Predicate), where ActionName is the ac-
tion name to be mapped to a Prolog goal whose functor is Predicate.

ActionsList
Represented as a list of items of type Action.

AnyTerm This can be any Prolog term

Attribute Represented as a term whose functor is the resource name and whose argument
is the value of the attribute.

AttributeList
Represented as a list of items of type Attribute.

Boolean Represented as atom. Accepted values: true or false.

CallbackList
Represented as a list of items of type CallbackTerm.

CallbackProc
This must be a Prolog predicate.

Chapter 17: The ProXT Package 909

CallbackTerm
Represented as callback(Predicate,ClientData), where Predicate is the
name of the callback goal and ClientData is the callback client data.

Calldata A term returned in the callback call data.

CalldataFields
A list of the fields and their values from the term returned in the callback call
data.

Cardinal Represented as integer.

Char Represented as a single character atom.

ClipboardStatus
Represented as atom. Accepted values:
• xmClipboardFail

• xmClipboardSuccess

• xmClipboardTruncate

• xmClipboardLocked

• xmClipboardBadFormat

• xmClipboardNoData

Colormap Represented as integer.

CopyStatus
Represented as atom. Accepted values:
• xmCOPY_FAILED

• xmCOPY_SUCCEEDED

• xmCOPY_TRUNCATED

Cursor Represented as integer.

Dimension
Represented as integer.

Display Represented as xtdisplay(Address).

EventFields
A list of the fields and their values from the XEvent structure.

EventProc
This must be a Prolog predicate.

InputProc This must be a Prolog predicate.

Integer Of course, this is an integer.

IntegerList
This is a list of integers.

KeySym Represented as a single character atom.

KeySymTable
Represented as a list of items of type KeySym.

910 Quintus Prolog

Pixel Represented as integer.

Pixmap Represented as integer.

Position Represented as integer.

Screen Represented as xtscreen(Address).

String This is an atom.

StringTable
Represented as a list of atoms.

Time Represented as integer.

TimerProc
This must be a Prolog predicate.

Visual Represented as integer.

Widget Represented as widget(Address).

WidgetCallbackType
Represented as atom. Accepted values are the resource names for resources of
type CallbackProc

WidgetClass
Represented as atom. Accepted values:
• compositeWidgetClass

• constraintWidgetClass

• coreWidgetClass

• widgetClass

• objectClass

• rectObjClass

• shellWidgetClass

• overrideShellWidgetClass

• wmShellWidgetClass

• transientShellWidgetClass

• topLevelShellWidgetClass

• applicationShellWidgetClass

• vendorShellWidgetClass

• xmArrowButtonWidgetClass

• xmArrowButtonGadgetClass

• xmBulletinBoardWidgetClass

• xmCascadeButtonWidgetClass

• xmCascadeButtonGadgetClass

• xmCommandWidgetClass

• xmDialogShellWidgetClass

Chapter 17: The ProXT Package 911

• xmDropSiteManagerObjectClass

• xmDragIconObjectClass

• xmDropTransferObjectClass

• xmDrawingAreaWidgetClass

• xmDrawnButtonWidgetClass

• xmFileSelectionBoxWidgetClass

• xmFormWidgetClass

• xmFrameWidgetClass

• xmGadgetClass

• xmLabelWidgetClass

• xmLabelGadgetClass

• xmListWidgetClass

• xmMainWindowWidgetClass

• xmManagerWidgetClass

• xmMenuShellWidgetClass

• xmMessageBoxWidgetClass

• xmPanedWindowWidgetClass

• xmPrimitiveWidgetClass

• xmPushButtonWidgetClass

• xmPushButtonGadgetClass

• xmRowColumnWidgetClass

• xmScaleWidgetClass

• xmScrollBarWidgetClass

• xmScrolledWindowWidgetClass

• xmSelectionBoxWidgetClass

• xmSeparatorWidgetClass

• xmSeparatorGadgetClass

• xmTextWidgetClass

• xmTextFieldWidgetClass

• xmToggleButtonWidgetClass

• xmToggleButtonGadgetClass

WidgetList
Represented as a list of items of type Widget.

Window Represented as integer.

WorkProc This must be a Prolog predicate.

XAtom Represented as integer.

XAtomList
Represented as a list of items of type XAtom.

912 Quintus Prolog

XEvent Represented as xtevent(Address).

XEventMask
Represented as a list of atoms. Accepted values:
• keyPressMask

• keyReleaseMask

• buttonPressMask

• buttonReleaseMask

• enterWindowMask

• leaveWindowMask

• pointerMotionMask

• pointerMotionHintMask

• button1MotionMask

• button2MotionMask

• button3MotionMask

• button4MotionMask

• button5MotionMask

• buttonMotionMask

• keymapStateMask

• exposureMask

• visibilityChangeMask

• structureNotifyMask

• resizeRedirectMask

• substructureNotifyMask

• substructureRedirectMask

• focusChangeMask

• propertyChangeMask

• colormapChangeMask

• ownerGrabButtonMask

XFont Represented as xtfontstruct(Address).

XFontSet Represented as xtfontset(Address).

XGC Represented as xtgc(Address).

XGCMask Represented as a list of atoms. Accepted values:
• gcFunction

• gcPlaneMask

• gcForeground

• gcBackground

• gcLindWidth

• gcLineStyle

Chapter 17: The ProXT Package 913

• gcCapStyle

• gcJoinStyle

• gcFillStyle

• gcFillRule

• gcTile

• gcStipple

• gcTileStipXOrigin

• gcFont

• gcSubwindowMode

• gcGraphicsExposures

• gcClipXOrigin

• gcClipYOrigin

• gcClipMask

• gcDashOffset

• gcDashList

• gcArcMode

XGCValues
Represented as a list of terms whose functor is the name of a XGCMask field
and whose argument is the field value.

XImage Represented as xtimage(Address).

XRectangle
Represented as a term of the form rectangle(X,Y,Width,Height), where X,
Y, Width and Height are all integers.

XRectangleList
Represented as a list of items of type XRectangle.

XmAlignment
Represented as atom. Accepted values:
•

xmALIGNMENT_BEGINNING

• xmALIGNMENT_CENTER

• xmALIGNMENT_END

XmAnimationStyle
Represented at atom. Accepted values:
• xmDRAG_UNDER_NONE

• xmDRAG_UNDER_PIXMAP

• xmDRAG_UNDER_SHADOW_IN

• xmDRAG_UNDER_SHADOW_OUT

• xmDRAG_UNDER_HIGHLIGHT

914 Quintus Prolog

XmArrowDirection
Represented as atom. Accepted values:
• xmARROW_UP

• xmARROW_DOWN

• xmARROW_LEFT

• xmARROW_RIGHT

XmAttachment
Represented as atom. Accepted values:
• xmATTACH_NONE

• xmATTACH_FORM

• xmATTACH_OPPOSITE_FORM

• xmATTACH_WIDGET

• xmATTACH_OPPOSITE_WIDGET

• xmATTACH_POSITION

• xmATTACH_SELF

XmAudibleWarning
Represented as atom. Accepted values:
• xmNONE

• xmBELL

XmBlendModel
Represented as atom. Accepted values:
• xmBLEND_ALL

• xmBLEND_STATE_SOURCE

• xmBLEND_JUST_SOURCE

• xmBLEND_NONE

XmButtonType
Represented as atom. Accepted values:
• xmPUSHBUTTON

• xmTOGGLEBUTTON

• xmRADIOBUTTON

• xmCASCADEBUTTON

• xmSEPARATOR

• xmDOUBLE_SEPARATOR

• xmTITLE

XmButtonTypeTable
Represented as a list of items of type XmButtonType.

XmChildPlacement
Represented as atom. Accepted values:
• xmPLACE_TOP

Chapter 17: The ProXT Package 915

• xmPLACE_ABOVE_SELECTION

• xmPLACE_BELOW_SELECTION

XmChildType
Represented as atom. Accepted values:
• xmDIALOG_NONE

• xmDIALOG_APPLY_BUTTON

• xmDIALOG_CANCEL_BUTTON

• xmDIALOG_DEFAULT_BUTTON

• xmDIALOG_OK_BUTTON

• xmDIALOG_FILTER_LABEL

• xmDIALOG_FILTER_TEXT

• xmDIALOG_HELP_BUTTON

• xmDIALOG_HISTORY_LIST

• xmDIALOG_LIST

• xmDIALOG_LIST_LABEL

• xmDIALOG_MESSAGE_LABEL

• xmDIALOG_SELECTION_LABEL

• xmDIALOG_SYMBOL_LABEL

• xmDIALOG_TEXT

• xmDIALOG_SEPARATOR

• xmDIALOG_DIR_LIST

• xmDIALOG_DIR_LIST_LABEL

XmChildVerticalAlignment
Represented as atom. Accepted values:
• xmALIGNMENT_BASELINE_TOP

• xmALIGNMENT_CENTER

• xmALIGNMENT_BASELINE_BOTTOM

• xmALIGNMENT_WIDGET_TOP

• xmALIGNMENT_WIDGET_BOTTOM

XmClipboardPendingList
Represented as a list
of terms of the form clipboardpending(DataId,PrivateId), where DataId
and PrivateId are integers.

XmCommandWindowLocation
Represented as atom. Accepted values:
• xmCOMMAND_ABOVE_WORKSPACE

• xmCOMMAND_BELOW_WORKSPACE

XmDefaultButtonType
Represented as atom. Accepted values:

916 Quintus Prolog

• xmDIALOG_NONE

• xmDIALOG_CANCEL_BUTTON

• xmDIALOG_OK_BUTTON

• xmDIALOG_HELP_BUTTON

XmDeleteResponse
Represented as atom. Accepted values:
• xmDESTROY

• xmUNMAP

• xmDO_NOTHING

XmDialogStyle
Represented as atom. Accepted values:
• xmDIALOG_MODELESS xmDIALOG_PRIMARY_APPLICATION_MODAL

• xmDIALOG_FULL_APPLICATION_MODAL

• xmDIALOG_SYSTEM_MODAL

XmDialogType
Represented as atom. Accepted values:
• xmDIALOG_TEMPLATE

• xmDIALOG_ERROR

• xmDIALOG_INFORMATION

• xmDIALOG_MESSAGE

• xmDIALOG_WARNING

• xmDIALOG_WORKING

• xmDIALOG_WORK_AREA

• xmDIALOG_PROMPT

• xmDIALOG_SELECTION

• xmDIALOG_COMMAND

• xmDIALOG_FILE_SELECTION

XmDragAttachment
Represented as atom. Accepted values:
• xmATTACH_NORTH_WEST

• xmATTACH_NORTH

• xmATTACH_NORTH_EAST

• xmATTACH_EAST

• xmATTACH_SOUTH_EAST

• xmATTACH_SOUTH

• xmATTACH_SOUTH_WEST

• xmATTACH_WEST

• xmATTACH_CENTER

• xmATTACH_HOT

Chapter 17: The ProXT Package 917

XmDragDropOperations
Represented as atom. Accepted values:
• xmDRAG_NOOP

• xmDRAG_MOVE

• xmDRAG_COPY

• xmDRAG_LINK

XmDragProtocolStyle
Represented as atom. Accepted values:
• xmDRAG_NONE

• xmDRAG_DROP_ONLY

• xmDRAG_PREFER_PREREGISTER

• xmDRAG_PREREGISTER

• xmDRAG_PREFER_DYNAMIC

• xmDRAG_DYNAMIC

• xmDRAG_PREFER_RECEIVER

XmDropSiteActivity
Represented as atom. Accepted values:
• xmDROP_SITE_ACTIVE

• xmDROP_SITE_INACTIVE

XmDropSiteType
Represented as atom. Accepted values:
• xmDROP_SITE_SIMPLE

• xmDROP_SITE_COMPOSITE

XmDropTransfers
Represented as list of terms of the form droptransfer(Widget,Target), where
Widget is of type Widget and Target is of type XAtom.

XmEditMode
Represented as atom. Accepted values:
• xmMULTI_LINE_EDIT

• xmSINGLE_LINE_EDIT

XmFileTypeMask
Represented as atom. Accepted values:
• xmFILE_DIRECTORY

• xmFILE_REGULAR

• xmFILE_ANY_TYPE

XmFontContext
Represented as xmfontcontext(Address).

XmFontList
Represented as xmfontlist(Address).

918 Quintus Prolog

XmFontListEntry
Represented as xmfontlistentry(Address).

XmFontListTag
Represented as char_ptr(Address) or as the atom xmFONTLIST_DEFAULT_TAG

XmFontType
Represented as atom. Accepted values:
• xmFONT_IS_FONT

• xmFONT_IS_FONTSET

XmHighlightMode
Represented as atom. Accepted values:
• xmHIGHLIGHT_NORMAL

• xmHIGHLIGHT_SELECTED

• xmHIGHLIGHT_SECONDARY_SELECTED

XmIndicatorType
Represented as atom. Accepted values:
• xmN_OF_MANY

• xmONE_OF_MANY

XmKeyboardFocusPolicy
Represented as atom. Accepted values:
• xmEXPLICIT

• xmPOINTER

XmLabelType
Represented as atom. Accepted values:
• xmPIXMAP

• xmSTRING

XmListSizePolicy
Represented as atom. Accepted values:
• xmVARIABLE

• xmCONSTANT

• xmRESIZE_IF_POSSIBLE

XmMultiClick
Represented as atom. Accepted values:
• xmMULTICLICK_DISCARD

• xmMULTICLICK_KEEP

XmNavigationType
Represented as atom. Accepted values:
• xmNONE

• xmTAB_GROUP

• xmSTICKY_TAB_GROUP

Chapter 17: The ProXT Package 919

• xmEXCLUSIVE_TAB_GROUP

• xmDYNAMIC_DEFAULT_TAB_GROUP

XmOrientation
Represented as atom. Accepted values:
• xmNO_ORIENTATION

• xmVERTICAL

• xmHORIZONTAL

XmPacking
Represented as atom. Accepted values:
• xmNO_PACKING

• xmPACK_TIGHT

• xmPACK_COLUMN

• xmPACK_NONE

XmPositionIndex
Represented as atom. Accepted values:
• xmLAST_POSITION

• xmFIRST_POSITION

XmProcessingDirection
Represented as atom. Accepted values:
• xmMAX_ON_TOP

• xmMAX_ON_BOTTOM

• xmMAX_ON_LEFT

• xmMAX_ON_RIGHT

XmRepTypeEntry
Represented as xmreptypeentry(Address).

XmRepTypeId
Represented as an integer.

XmRepTypeList
Represented as xmreptypelist(Address).

XmResizePolicy
Represented as atom. Accepted values:
• xmRESIZE_NONE

• xmRESIZE_GROW

• xmRESIZE_ANY

XmRowColumnType
Represented as atom. Accepted values:
• xmWORK_AREA

• xmMENU_BAR

• xmMENU_PULLDOWN

920 Quintus Prolog

• xmMENU_POPUP

• xmMENU_OPTION

XmScrollBarDisplayPolicy
Represented as atom. Accepted values:
• xmSTATIC

• xmAS_NEEDED

XmScrollBarPlacement
Represented as atom. Accepted values:
• xmBOTTOM_RIGHT

• xmTOP_RIGHT

• xmBOTTOM_LEFT

• xmTOP_LEFT

XmScrollingPolicy
Represented as atom. Accepted values:
• xmAUTOMATIC

• xmAPPLICATION_DEFINED

XmSelectionArray
Represented as list of items of type XmSelectionType.

XmSelectionPolicy
Represented as atom. Accepted values:
• xmSINGLE_SELECT

• xmMULTIPLE_SELECT

• xmEXTENDED_SELECT

• xmBROWSE_SELECT

XmSelectionType
Represented as atom. Accepted values:
• xmSELECT_POSITION

• xmSELECT_WHITESPACE

• xmSELECT_WORD

• xmSELECT_LINE

• xmSELECT_ALL

• xmSELECT_PARAGRAPH

XmSeparatorType
Represented as atom. Accepted values:
• xmNO_LINE

• xmSINGLE_LINE

• xmDOUBLE_LINE

• xmSINGLE_DASHED_LINE

• xmDOUBLE_DASHED_LINE

Chapter 17: The ProXT Package 921

• xmSHADOW_ETCHED_IN

• xmSHADOW_ETCHED_OUT

• xmSHADOW_ETCHED_IN_DASH

• xmSHADOW_ETCHED_OUT_DASH

• xmINVALID_SEPARATOR_TYPE

XmShadowType
Represented as atom. Accepted values:
• xmSHADOW_ETCHED_IN

• xmSHADOW_ETCHED_OUT

• xmSHADOW_IN

• xmSHADOW_OUT

XmStackMode
Represented as atom. Accepted values:
• xmABOVE

• xmBELOW

XmString Represented as xmstring(Address).

XmStringCharSet
Represented as xmstringcharset(Address) or as an atom with the following
accepted values:
• xmFONTLIST_DEFAULT_TAG

• xmSTRING_DEFAULT_CHARSET

• xmSTRING_FALLBACK_CHARSET

• xmSTRING_ISO8859_1

XmStringCharSets
Represented as list of
items of type XmStringCharSet xmstringcharset(Address) or atoms with
values:

XmStringComponentType
Represented as atom. Accepted values:
• xmSTRING_COMPONENT_UNKNOWN

• xmSTRING_COMPONENT_CHARSET

• xmSTRING_COMPONENT_TEXT

• xmSTRING_COMPONENT_DIRECTION

• xmSTRING_COMPONENT_SEPARATOR

• xmSTRING_COMPONENT_END

• xmSTRING_COMPOUND_STRING

• xmSTRING_COMPONENT_USER_BEGIN

• xmSTRING_COMPONENT_USER_END

922 Quintus Prolog

XmStringContext
Represented as xmstringcontext(Address).

XmStringDirection
Represented as atom. Accepted values:
• xmSTRING_DIRECTION_L_TO_R

• xmSTRING_DIRECTION_R_TO_L

• xmSTRING_DIRECTION_DEFAULT

XmStringTable
Represented as a list of items of type XmString.

XmTearOffModel
Represented as atom. Accepted values:
• xmTEAR_OFF_ENABLED

• xmTEAR_OFF_DISABLED

XmTextDirection
Represented as atom. Accepted values:
• xmTEXT_FORWARD

• xmTEXT_BACKWARD

XmTextPosition
Represented as integer.

XmTextSource
Represented as xmtextsource(Address).

XmTransferStatus
Represented as atom. Accepted values:
• xmTRANSFER_FAILURE

• xmTRANSFER_SUCCESS

XmTraversalDirection
Represented as atom. Accepted values:
• xmTRAVERSE_CURRENT

• xmTRAVERSE_NEXT

• xmTRAVERSE_PREV

• xmTRAVERSE_HOME

• xmTRAVERSE_NEXT_TAB_GROUP

• xmTRAVERSE_PREV_TAB_GROUP

• xmTRAVERSE_UP

• xmTRAVERSE_DOWN

• xmTRAVERSE_LEFT

• xmTRAVERSE_RIGHT

XmUnitType
Represented as atom. Accepted values:

Chapter 17: The ProXT Package 923

• xmPIXELS

• xm100TH_MILLIMETERS

• xm1000TH_INCHES

• xm100TH_POINTS

• xm100TH_FONT_UNITS

XmUnpostBehavior
Represented as atom. Accepted values:
• xmUNPOST

• xmUNPOST_AND_REPLAY

XmValueWcs
Represented as wchar_ptr(Address).

XmVerticalAlignment
Represented as atom. Accepted values:
• xmALIGNMENT_BASELINE_TOP

• xmALIGNMENT_CENTER

• xmALIGNMENT_BASELINE_BOTTOM

• xmALIGNMENT_CONTENTS_TOP

• xmALIGNMENT_CONTENTS_BOTTOM

XmVisibility
Represented as atom. Accepted values:
• xmVISIBLILITY_UNOBSCURED

• xmVISIBLILITY_PARTIALLY_OBSCURED

• xmVISIBLILITY_FULLY_OBSCURED

XmVisualPolicy
Represented as atom. Accepted values:
• xmVARIABLE

• xmCONSTANT

XtAccelerators
Represented as xtaccelerators(Address).

XtAppContext
Represented as app_context(Address).

XtCallbackStatus
Represented as atom. Accepted values:
• xtCallbackNoList

• xtCallbackHasNone

• xtCallbackHasSome

XtGrabKind
Represented as atom. Accepted values:
• xtGrabNone

924 Quintus Prolog

• xtGrabNonexclusive

• xtGrabExclusive

XtInputCondMask
Represented as a list of atoms. Accepted values:
• xtInputReadMask

• xtInputWriteMask

• xtInputExceptMask

XtInputId Represented as integer.

XtInputMask
Represented as a list of atoms. Accepted values:
• xtIMXEvent

• xtIMTimer

• xtIMAlternateInput

• xtIMAll

XtIntervalId
Represented as integer.

XtPointer Represented as xtpointer(Address).

XtTranslations
Represented as xttranslations(Address).

XtWorkProcId
Represented as integer.

17.4 ProXT 3.5 Widget Resource Data Types

xmNaccelerator: String
xmNacceleratorText: XmString
xmNaccelerators: XtAccelerators
xmNactivateCallback: CallbackTerm
xmNadjustLast: Boolean
xmNadjustMargin: Boolean
xmNalignment: XmAlignment
xmNallowOverlap: Boolean
xmNallowResize: Boolean
xmNallowShellResize: Boolean
xmNancestorSensitive: Boolean
xmNanimationMask: Pixmap
xmNanimationPixmap: Pixmap
xmNanimationPixmapDepth: Integer
xmNanimationStyle: XmAnimationStyle

Chapter 17: The ProXT Package 925

xmNapplyCallback: CallbackTerm
xmNapplyLabelString: XmString
xmNargc: Integer
xmNargv: StringTable
xmNarmCallback: CallbackTerm
xmNarmColor: Pixel
xmNarmPixmap: Pixmap
xmNarrowDirection: XmArrowDirection
xmNattachment: XmAttachment
xmNaudibleWarning: XmAudibleWarning
xmNautoShowCursorPosition: Boolean
xmNautoUnmanage: Boolean
xmNautomaticSelection: Boolean
xmNbackground: Pixel
xmNbackgroundPixmap: Pixmap
xmNbaseHeight: Integer
xmNbaseWidth: Integer
xmNblendModel: XmBlendModel
xmNblinkRate: Integer
xmNborderColor: Pixel
xmNborderPixmap: Pixmap
xmNborderWidth: Dimension
xmNbottomAttachment: XmAttachment
xmNbottomOffset: Integer
xmNbottomPosition: Integer
xmNbottomShadowColor: Pixel
xmNbottomShadowPixmap: Pixmap
xmNbottomWidget: Widget
xmNbrowseSelectionCallback: CallbackTerm
xmNbuttonAcceleratorText: XmStringTable
xmNbuttonAccelerators: StringTable
xmNbuttonCount: Integer
xmNbuttonFontList: XmFontList
xmNbuttonMnemonicCharSets: XmStringCharSets
xmNbuttonMnemonics: KeySymTable
xmNbuttonSet: Integer
xmNbuttonType: XmButtonTypeTable
xmNbuttons: XmStringTable
xmNcancelButton: Widget
xmNcancelCallback: CallbackTerm
xmNcancelLabelString: XmString
xmNcascadePixmap: Pixmap
xmNcascadingCallback: CallbackTerm
xmNchildHorizontalAlignment: XmAlignment
xmNchildHorizontalSpacing: Dimension
xmNchildPlacement: XmChildPlacement
xmNchildType: XmChildType

926 Quintus Prolog

xmNchildVerticalAlignment: XmChildVerticalAlignment
xmNchildren: WidgetList
xmNclientData: Widget
xmNclipWindow: Widget
xmNcolormap: Colormap
xmNcolumns: Integer
xmNcommand: XmString
xmNcommandChangedCallback: CallbackTerm
xmNcommandEnteredCallback: CallbackTerm
xmNcommandWindow: Widget
xmNcommandWindowLocation: XmCommandWindowLocation
xmNconvertProc: CallbackProc
xmNcreatePopupChildProc: CallbackProc
xmNcursorBackground: Pixel
xmNcursorForeground: Pixel
xmNcursorPosition: XmTextPosition
xmNcursorPositionVisible: Boolean
xmNdarkThreshold: Integer
xmNdecimalPoints: Integer
xmNdecrementCallback: CallbackTerm
xmNdefaultActionCallback: CallbackTerm
xmNdefaultButton: Widget
xmNdefaultButtonShadowThickness: Dimension
xmNdefaultButtonType: XmDefaultButtonType
xmNdefaultCopyCursorIcon: Widget
xmNdefaultFontList: XmFontList
xmNdefaultInvalidCursorIcon: Widget
xmNdefaultLinkCursorIcon: Widget
xmNdefaultMoveCursorIcon: Widget
xmNdefaultNoneCursorIcon: Widget
xmNdefaultPosition: Boolean
xmNdefaultSourceCursorIcon: Widget
xmNdefaultValidCursorIcon: Widget
xmNdeleteResponse: XmDeleteResponse
xmNdepth: Integer
xmNdestroyCallback: CallbackTerm
xmNdialogStyle: XmDialogStyle
xmNdialogTitle: XmString
xmNdialogType: XmDialogType
xmNdirListItemCount: Integer
xmNdirListItems: XmStringTable
xmNdirListLabelString: XmString
xmNdirMask: XmString
xmNdirSearchProc: CallbackProc
xmNdirSpec: XmString
xmNdirectory: XmString
xmNdirectoryValid: Boolean

Chapter 17: The ProXT Package 927

xmNdisarmCallback: CallbackTerm
xmNdoubleClickInterval: Integer
xmNdragCallback: CallbackTerm
xmNdragDropFinishCallback: CallbackTerm
xmNdragInitiatorProtocolStyle: XmDragProtocolStyle
xmNdragMotionCallback: CallbackTerm
xmNdragOperations: XmDragDropOperations
xmNdragProc: CallbackProc
xmNdragReceiverProtocolStyle: XmDragProtocolStyle
xmNdropFinishCallback: CallbackTerm
xmNdropProc: CallbackProc
xmNdropRectangles: XRectangleList
xmNdropSiteActivity: XmDropSiteActivity
xmNdropSiteEnterCallback: CallbackTerm
xmNdropSiteLeaveCallback: CallbackTerm
xmNdropSiteOperations: XmDragDropOperations
xmNdropSiteType: XmDropSiteType
xmNdropStartCallback: CallbackTerm
xmNdropTransfers: XmDropTransfers
xmNeditMode: XmEditMode
xmNeditable: Boolean
xmNentryAlignment: XmAlignment
xmNentryBorder: Dimension
xmNentryCallback: CallbackTerm
xmNentryClass: WidgetClass
xmNentryVerticalAlignment: XmVerticalAlignment
xmNexportTargets: XAtomList
xmNexposeCallback: CallbackTerm
xmNextendedSelectionCallback: CallbackTerm
xmNfileListItemCount: Integer
xmNfileListItems: XmStringTable
xmNfileListLabelString: XmString
xmNfileSearchProc: CallbackProc
xmNfileTypeMask: XmFileTypeMask
xmNfillOnArm: Boolean
xmNfillOnSelect: Boolean
xmNfilterLabelString: XmString
xmNfocusCallback: CallbackTerm
xmNfont: XFont
xmNfontList: XmFontList
xmNforeground: Pixel
xmNforegroundThreshold: Integer
xmNfractionBase: Integer
xmNgainPrimaryCallback: CallbackTerm
xmNgeometry: String
xmNheight: Dimension
xmNheightInc: Integer

928 Quintus Prolog

xmNhelpCallback: CallbackTerm
xmNhelpLabelString: XmString
xmNhighlightColor: Pixel
xmNhighlightOnEnter: Boolean
xmNhighlightPixmap: Pixmap
xmNhighlightThickness: Dimension
xmNhistoryItemCount: Integer
xmNhistoryItems: XmStringTable
xmNhistoryMaxItems: Integer
xmNhistoryVisibleItemCount: Integer
xmNhorizontalFontUnit: Integer
xmNhorizontalScrollBar: Widget
xmNhorizontalSpacing: Dimension
xmNhotX: Position
xmNhotY: Position
xmNiconMask: Pixmap
xmNiconName: String
xmNiconNameEncoding: XAtom
xmNiconPixmap: Pixmap
xmNiconWindow: Window
xmNiconX: Integer
xmNiconY: Integer
xmNiconic: Boolean
xmNimportTargets: XAtomList
xmNincrement: Integer
xmNincrementCallback: CallbackTerm
xmNincremental: Boolean
xmNindicatorOn: Boolean
xmNindicatorSize: Dimension
xmNindicatorType: XmIndicatorType
xmNinitialDelay: Integer
xmNinitialFocus: Widget
xmNinitialResourcesPersistent: Boolean
xmNinitialState: Integer
xmNinput: Boolean
xmNinputCallback: CallbackTerm
xmNinputMethod: String
xmNinsertPosition: CallbackProc
xmNinvalidCursorForeground: Pixel
xmNisAligned: Boolean
xmNisHomogeneous: Boolean
xmNitemCount: Integer
xmNitems: XmStringTable
xmNkeyboardFocusPolicy: XmKeyboardFocusPolicy
xmNlabelFontList: XmFontList
xmNlabelInsensitivePixmap: Pixmap
xmNlabelPixmap: Pixmap

Chapter 17: The ProXT Package 929

xmNlabelString: XmString
xmNlabelType: XmLabelType
xmNleftAttachment: XmAttachment
xmNleftOffset: Integer
xmNleftPosition: Integer
xmNleftWidget: Widget
xmNlightThreshold: Integer
xmNlistItemCount: Integer
xmNlistItems: XmStringTable
xmNlistLabelString: XmString
xmNlistMarginHeight: Dimension
xmNlistMarginWidth: Dimension
xmNlistSizePolicy: XmListSizePolicy
xmNlistSpacing: Dimension
xmNlistUpdated: Boolean
xmNlistVisibleItemCount: Integer
xmNlosePrimaryCallback: CallbackTerm
xmNlosingFocusCallback: CallbackTerm
xmNmainWindowMarginHeight: Dimension
xmNmainWindowMarginWidth: Dimension
xmNmapCallback: CallbackTerm
xmNmappedWhenManaged: Boolean
xmNmappingDelay: Integer
xmNmargin: Dimension
xmNmarginBottom: Dimension
xmNmarginHeight: Dimension
xmNmarginLeft: Dimension
xmNmarginRight: Dimension
xmNmarginTop: Dimension
xmNmarginWidth: Dimension
xmNmask: Pixmap
xmNmaxAspectX: Integer
xmNmaxAspectY: Integer
xmNmaxHeight: Integer
xmNmaxLength: Integer
xmNmaxWidth: Integer
xmNmaximum: Integer
xmNmenuAccelerator: String
xmNmenuBar: Widget
xmNmenuCursor: String
xmNmenuHelpWidget: Widget
xmNmenuHistory: Widget
xmNmenuPost: String
xmNmessageAlignment: XmAlignment
xmNmessageString: XmString
xmNmessageWindow: Widget
xmNminAspectX: Integer

930 Quintus Prolog

xmNminAspectY: Integer
xmNminHeight: Integer
xmNminWidth: Integer
xmNminimizeButtons: Boolean
xmNminimum: Integer
xmNmnemonic: KeySym
xmNmnemonicCharSet: XmFontListTag
xmNmodifyVerifyCallback: CallbackTerm
xmNmodifyVerifyCallbackWcs: CallbackTerm
xmNmotionVerifyCallback: CallbackTerm
xmNmoveOpaque: Boolean
xmNmultiClick: XmMultiClick
xmNmultipleSelectionCallback: CallbackTerm
xmNmustMatch: Boolean
xmNmwmDecorations: Integer
xmNmwmFunctions: Integer
xmNmwmInputMode: Integer
xmNmwmMenu: String
xmNnavigationType: XmNavigationType
xmNnoMatchCallback: CallbackTerm
xmNnoMatchString: XmString
xmNnoResize: Boolean
xmNnoneCursorForeground: Pixel
xmNnumChildren: Cardinal
xmNnumColumns: Integer
xmNnumDropRectangles: Cardinal
xmNnumDropTransfers: Cardinal
xmNnumExportTargets: Cardinal
xmNnumImportTargets: Cardinal
xmNoffsetX: Position
xmNoffsetY: Position
xmNokCallback: CallbackTerm
xmNokLabelString: XmString
xmNoperationChangedCallback: CallbackTerm
xmNoperationCursorIcon: Widget
xmNoptionLabel: XmString
xmNoptionMnemonic: KeySym
xmNorientation: XmOrientation
xmNoverrideRedirect: Boolean
xmNpacking: XmPacking
xmNpageDecrementCallback: CallbackTerm
xmNpageIncrement: Integer
xmNpageIncrementCallback: CallbackTerm
xmNpaneMaximum: Dimension
xmNpaneMinimum: Dimension
xmNpattern: XmString
xmNpendingDelete: Boolean

Chapter 17: The ProXT Package 931

xmNpixmap: Pixmap
xmNpopdownCallback: CallbackTerm
xmNpopupCallback: CallbackTerm
xmNpopupEnabled: Boolean
xmNpositionIndex: XmPositionIndex
xmNpostFromButton: Integer
xmNpreeditType: String
xmNprocessingDirection: XmProcessingDirection
xmNpromptString: XmString
xmNpushButtonEnabled: Boolean
xmNqualifySearchDataProc: CallbackProc
xmNradioAlwaysOne: Boolean
xmNradioBehavior: Boolean
xmNrecomputeSize: Boolean
xmNrefigureMode: Boolean
xmNrepeatDelay: Integer
xmNresizable: Boolean
xmNresizeCallback: CallbackTerm
xmNresizeHeight: Boolean
xmNresizePolicy: XmResizePolicy
xmNresizeWidth: Boolean
xmNrightAttachment: XmAttachment
xmNrightOffset: Integer
xmNrightPosition: Integer
xmNrightWidget: Widget
xmNrowColumnType: XmRowColumnType
xmNrows: Integer
xmNrubberPositioning: Boolean
xmNsashHeight: Dimension
xmNsashIndent: Position
xmNsashShadowThickness: Dimension
xmNsashWidth: Dimension
xmNsaveUnder: Boolean
xmNscaleHeight: Dimension
xmNscaleMultiple: Integer
xmNscaleWidth: Dimension
xmNscreen: Screen
xmNscrollBarDisplayPolicy: XmScrollBarDisplayPolicy
xmNscrollBarPlacement: XmScrollBarPlacement
xmNscrollHorizontal: Boolean
xmNscrollLeftSide: Boolean
xmNscrollTopSide: Boolean
xmNscrollVertical: Boolean
xmNscrolledWindowMarginHeight: Dimension
xmNscrolledWindowMarginWidth: Dimension
xmNscrollingPolicy: XmScrollingPolicy
xmNselectColor: Pixel

932 Quintus Prolog

xmNselectInsensitivePixmap: Pixmap
xmNselectPixmap: Pixmap
xmNselectThreshold: Integer
xmNselectedItemCount: Integer
xmNselectedItems: XmStringTable
xmNselectionArray: XmSelectionArray
xmNselectionArrayCount: Integer
xmNselectionLabelString: XmString
xmNselectionPolicy: XmSelectionPolicy
xmNsensitive: Boolean
xmNseparatorOn: Boolean
xmNseparatorType: XmSeparatorType
xmNset: Boolean
xmNshadow: XmShadowType
xmNshadowThickness: Dimension
xmNshadowType: XmShadowType
xmNshellUnitType: XmUnitType
xmNshowArrows: Boolean
xmNshowAsDefault: Dimension
xmNshowSeparator: Boolean
xmNshowValue: Boolean
xmNsimpleCallback: CallbackProc
xmNsingleSelectionCallback: CallbackTerm
xmNskipAdjust: Boolean
xmNsliderSize: Integer
xmNsource: XmTextSource
xmNsourceCursorIcon: Widget
xmNsourcePixmapIcon: Widget
xmNspacing: Dimension
xmNstateCursorIcon: Widget
xmNstringDirection: XmStringDirection
xmNsubMenuId: Widget
xmNsymbolPixmap: Pixmap
xmNtearOffMenuActivateCallback: CallbackTerm
xmNtearOffMenuDeactivateCallback: CallbackTerm
xmNtearOffModel: XmTearOffModel
xmNtextAccelerators: XtAccelerators
xmNtextColumns: Integer
xmNtextFontList: XmFontList
xmNtextString: XmString
xmNtextTranslations: XtTranslations
xmNtitle: String
xmNtitleEncoding: XAtom
xmNtitleString: XmString
xmNtoBottomCallback: CallbackTerm
xmNtoPositionCallback: CallbackTerm
xmNtoTopCallback: CallbackTerm

Chapter 17: The ProXT Package 933

xmNtopAttachment: XmAttachment
xmNtopCharacter: XmTextPosition
xmNtopItemPosition: Integer
xmNtopLevelEnterCallback: CallbackTerm
xmNtopLevelLeaveCallback: CallbackTerm
xmNtopOffset: Integer
xmNtopPosition: Integer
xmNtopShadowColor: Pixel
xmNtopShadowPixmap: Pixmap
xmNtopWidget: Widget
xmNtransferProc: CallbackProc
xmNtransferStatus: XmTransferStatus
xmNtransient: Boolean
xmNtransientFor: Widget
xmNtranslations: XtTranslations
xmNtraversalOn: Boolean
xmNtraverseObscuredCallback: CallbackTerm
xmNtroughColor: Pixel
xmNunitType: XmUnitType
xmNunmapCallback: CallbackTerm
xmNunpostBehavior: XmUnpostBehavior
xmNuseAsyncGeometry: Boolean
xmNuserData: XtPointer
xmNvalidCursorForeground: Pixel
xmNvalue: Integer
xmNvalue: Integer
xmNvalue: String
xmNvalue: String
xmNvalueChangedCallback: CallbackTerm
xmNvalueWcs: XmValueWcs
xmNverifyBell: Boolean
xmNverticalFontUnit: Integer
xmNverticalScrollBar: Widget
xmNverticalSpacing: Dimension
xmNvisibleItemCount: Integer
xmNvisibleWhenOff: Boolean
xmNvisual: Visual
xmNvisualPolicy: XmVisualPolicy
xmNwaitForWm: Boolean
xmNwhichButton: Integer
xmNwidth: Dimension
xmNwidthInc: Integer
xmNwinGravity: Integer
xmNwindowGroup: Window
xmNwmTimeout: Integer
xmNwordWrap: Boolean
xmNworkWindow: Widget

934 Quintus Prolog

xmNx: Position
xmNy: Position

17.5 ProXT 3.5 Exported Predicates

17.5.1 Motif Predicates

xmActivateProtocol(+Shell,+Property,+Protocol)
Shell: Widget
Property: XAtom
Protocol: XAtom

xmActivateWMProtocol(+Shell,+Protocol)
Shell: Widget
Protocol: XAtom

xmAddProtocolCallback(+Shell,+Property,+Protocol,+Callback,+ClientData
)
Shell: Widget
Property: XAtom
Protocol: XAtom
Callback: CallbackProc
ClientData: AnyTerm

xmAddProtocols(+Shell,+Property,+Protocols)
Shell: Widget
Property: XAtom
Protocols: XAtomList

xmAddTabGroup(+TabGroup)
TabGroup: Widget

xmAddWMProtocolCallback(+Shell,+Protocol,+Callback,+ClientData)
Shell: Widget
Protocol: XAtom
Callback: CallbackProc
ClientData: AnyTerm

xmAddWMProtocols(+Shell,+Protocols)
Shell: Widget
Protocol: XAtomList

xmCascadeButtonGadgetHighlight(+CascadeButtonGadget, +Highlight)
CascadeButtonGadget: Widget
Highlight: Boolean

Chapter 17: The ProXT Package 935

xmCascadeButtonHighlight(+CascadeButton, +Highlight)
CascadeButton: Widget
Highlight: Boolean

xmChangeColor(+Widget, +Background)
CascadeButton: Widget
Background: Pixel

xmClipboardCancelCopy(+Display,+Window,+ItemId)
Display: Display
Window: Window
ItemId: Integer

xmClipboardCopy(+Display,+Window,+ItemId,+FormatName,+Buffer,+Length,
+PrivateId,+DataId, -ReturnValue)

Display: Display
Window: Window
ItemId: Integer
FormatName: String
Buffer: String
Length: Integer
PrivateId: Integer
DataId: Integer
ReturnValue: ClipboardStatus

xmClipboardCopyByName(+Display,+Window,+DataId,+Buffer,+Length,+PrivateId,
-ReturnValue)

Display: Display
Window: Window
DataId: Integer
Buffer: String
Length: Integer
PrivateId: Integer
ReturnValue: ClipboardStatus

xmClipboardEndCopy(+Display,+Window,+ItemId,-ReturnValue)
Display: Display
Window: Window
ItemId: Integer
ReturnValue: ClipboardStatus

xmClipboardEndRetrieve(+Display,+Window,-ReturnValue)
Display: Display
Window: Window
ReturnValue: ClipboardStatus

936 Quintus Prolog

xmClipboardInquireCount(+Display,+Window,-Count,-MaxFormatLen,
-ReturnValue)

Display: Display
Window: Window
Count: Integer
MaxFormatLen: Integer
ReturnValue: ClipboardStatus

xmClipboardInquireFormat(+Display,+Window,+Index,-Format,
+BufferLen,-CopiedLen,-ReturnValue)

Display: Display
Window: Window
Index: Integer
Format: String
BufferLen: Integer
CopiedLen: Integer
ReturnValue: ClipboardStatus

xmClipboardInquireLength(+Display,+Window,+Format,-Length,-ReturnValue
)
Display: Display
Window: Window
Format: String
Length: Integer
ReturnValue: ClipboardStatus

xmClipboardInquirePendingItems(+Display,+Window,+Format,-ItemList,-
Count,

-ReturnValue)
Display: Display
Window: Window
Format: String
ItemList: XmClipboardPendingList
Count: Integer
ReturnValue: ClipboardStatus

xmClipboardLock(+Display,+Window,-ReturnValue)
Display: Display
Window: Window
ReturnValue: ClipboardStatus

xmClipboardRegisterFormat(+Display,+Format,+FormatLength,-ReturnValue)
Display: Display
Format: String
FormatLength: Integer
ReturnValue: ClipboardStatus

Chapter 17: The ProXT Package 937

xmClipboardRetrieve(+Display,+Window,+Format,-Buffer,
+Length,-NumBytes,-PrivateId,-ReturnValue)

Display: Display
Window: Window
Format: String
Buffer: String or XtPointer
Length: Integer
NumBytes: Integer
PrivateId: Integer
ReturnValue: ClipboardStatus

xmClipboardStartCopy(+Display,+Window,+ClipLabel,+TimeStamp,
+Widget,+Callback,-ItemId,-ReturnValue)

Display: Display
Window: Window
ClipLabel: XmString
TimeStamp: Time
Widget: Widget
Callback: CallbackProc
ItemId: Integer
ReturnValue: ClipboardStatus

xmClipboardStartRetrieve(+Display,+Window,+TimeStamp)
Display: Display
Window: Window
TimeStamp: Time

xmClipboardUndoCopy(+Display,+Window,-ReturnValue)
Display: Display
Window: Window
ReturnValue: ClipboardStatus

xmClipboardUnlock(+Display,+Window,+RemoveAllLocks,-ReturnValue)
Display: Display
Window: Window
RemoveAllLocks: Boolean
ReturnValue: ClipboardStatus

xmClipboardWithdrawFormat(+Display,+Window,+DataId,-ReturnValue)
Display: Display
Window: Window
DataId: Integer
ReturnValue: ClipboardStatus

xmCommandAppendValue(+Widget, +Command)
Widget: Widget
Command: XmString

938 Quintus Prolog

xmCommandError(+Widget, +Error)
Widget: Widget
Error: XmString

xmCommandGetChild(+Widget, +ChildType, -Child)
Widget: Widget
ChildType: XmChildType
Child: Widget

xmCommandSetValue(+Widget, +Command)
Widget: Widget
Command: XmString

xmConvertUnits(+Widget,+Orientation,+FromUnitType,+FromValue,
+ToUnitType,-ToValue)

Widget: Widget
Orientation: XmOrientation
FromUnitType: XmUnitType
FromValue: Integer
ToUnitType: XmUnitType
ToValue: Integer

xmCreateArrowButton(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateArrowButtonGadget(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateBulletinBoard(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateBulletinBoardDialog(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

Chapter 17: The ProXT Package 939

xmCreateCascadeButton(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateCascadeButtonGadget(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateCommand(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateDialogShell(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateDragIcon(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateDrawingArea(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateDrawnButton(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateErrorDialog(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

940 Quintus Prolog

xmCreateFileSelectionBox(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateFileSelectionDialog(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateForm(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateFormDialog(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateFrame(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateInformationDialog(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateLabel(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateLabelGadget(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

Chapter 17: The ProXT Package 941

xmCreateList(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateMainWindow(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateMenuBar(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateMenuShell(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateMessageBox(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateMessageDialog(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateOptionMenu(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreatePanedWindow(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

942 Quintus Prolog

xmCreatePopupMenu(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreatePromptDialog(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreatePulldownMenu(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreatePushButton(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreatePushButtonGadget(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateQuestionDialog(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateRadioBox(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateRowColumn(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

Chapter 17: The ProXT Package 943

xmCreateScale(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateScrollBar(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateScrolledList(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateScrolledText(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateScrolledWindow(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateSelectionBox(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateSelectionDialog(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateSeparator(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

944 Quintus Prolog

xmCreateSeparatorGadget(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateSimpleCheckBox(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateSimpleMenuBar(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateSimpleOptionMenu(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateSimplePopupMenu(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateSimplePulldownMenu(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateSimpleRadioBox(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateTemplateDialog(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

Chapter 17: The ProXT Package 945

xmCreateText(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateTextField(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateToggleButton(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateToggleButtonGadget(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateWarningDialog(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateWorkArea(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCreateWorkingDialog(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmCvtCTToXmString(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

946 Quintus Prolog

xmCvtXmStringToCT(+Parent,+Name,+Attributes,-Widget)
Parent: Widget
Name: String
Attributes: AttributeList
Widget: Widget

xmDeactivateProtocol(+Shell,+Property,+Protocol)
Shell: Widget
Property: XAtom
Protocol: XAtom

xmDeactivateWMProtocol(+Shell,+Protocol)
Shell: Widget
Protocol: XAtom

xmDestroyPixmap(+Screen, +Pixmap)
Screen: Screen
Pixmap: Pixmap

xmDragCancel(+DragContext)
DragContext: Widget

xmDragStart(+Widget,+Event,+Attributes,-DragContext)
Widget: Widget
Event: XEvent
Attributes: AttributeList
DragContext: Widget

xmDropSiteConfigureStackingOrder(+Widget,+Sibling,+StackMode)
Widget: Widget
Sibling: Widget
StackMode: XmStackMode

xmDropSiteEndUpdate(+Widget)
Widget: Widget

xmDropSiteQueryStackingOrder(+Widget,-Parent,-Children)
Widget: Widget
Parent: Widget
Children: WidgetList

xmDropSiteRegister([+Widget],+Attributes
Widget: Widget
Attributes: AttributeList

xmDropSiteRetrieve(+Widget,+Attributes)
Widget: Widget
Attributes: AttributeList

Chapter 17: The ProXT Package 947

xmDropSiteStartUpdate(+Widget)
Widget: Widget

xmDropSiteUnregister(+Widget)
Widget: Widget

xmDropSiteUpdate(+Widget,+Attributes)
Widget: Widget
Attributes: AttributeList

xmDropTransferAdd(+DropTransfer,+Transfers)
DropTransfer: Widget
Transfers: XmDropTransfers

xmDropTransferStart(+Widget,+Attributes,-DropWidget)
Widget: Widget
Attributes: AttributeList
DropWidget: Widget

xmFileSelectionBoxGetChild(+Widget, +ChildType, -Child)
Widget: Widget
ChildType: XmChildType
Child: Widget

xmFileSelectionDoSearch(+Widget, +DirMask)
Widget: Widget
DirMask: XmString

xmFontListAdd(+OldList,+NewFont,+Charset,-NewList)
OldList: XmFontList
NewFont: XFont
Charset: XmStringCharSet
NewList: XmFontList

xmFontListAppendEntry(+OldList,+Entry,-NewList)
OldList: XmFontList
Entry: XmFontListEntry
NewList: XmFontList

xmFontListCopy(+FontList,-NewFontList)
FontList: XmFontList
NewFontList: XmFontList

xmFontListCreate(+Font,+Charset,-FontList)
Font: XFont
Charset: XmStringCharSet
FontList: XmFontList

948 Quintus Prolog

xmFontListEntryCreate(+Tag,+Type,+Font,-Entry)
Tag: XmFontListTag
Type: XmFontType
Font: XFont or XFontSet
Entry: XmFontListEntry

xmFontListEntryFree(+Entry)
Entry: XmFontListEntry

xmFontListEntryGetFont(+Entry,-Type,-Font)
Entry: XmFontListEntry
Type: XmFontType
Font: XFont or XFontSet

xmFontListEntryGetTag(+Entry,-Tag)
Entry: XmFontListEntry
Tag: XmFontListTag

xmFontListEntryLoad(+Display,+FontName,+Type,+Tag,-Entry)
Display: Display
FontName: String
Type: XmFontType
Tag: XmFontListTag
Entry: XmFontListEntry

xmFontListFree(+FontList)
FontList: XmFontList

xmFontListFreeFontContext(+Context)
Context: XmFontContext

xmFontListGetNextFont(+Context,-Charset,-Font)
Context: XmFontContext
Charset: XmStringCharSet
Font: XFont

xmFontListInitFontContext(-Context,+FontList)
Context: XmFontContext
FontList: XmFontList

xmFontListNextEntry(+Context,-Entry)
Context: XmFontContext
Entry: XmFontListEntry

xmFontListRemoveEntry(+OldList,+Entry,-NewList)
OldList: XmFontList
Entry: XmFontListEntry
NewList: XmFontList

Chapter 17: The ProXT Package 949

xmGetAtomName(+Display,+Atom,-AtomName)
Display: Display
Atom: XAtom
AtomName: String

xmGetColorCalculation(-ColorProc)
ColorProc: CallbackProc

xmGetColors(+Screen,+Colormap,+Background,
-Foreground,-TopShadow,-BottomShadow,-Select)

Screen: Screen
Colormap: Colormap
Background: Pixel
Foreground: Pixel
TopShadow: Pixel
BottomShadow: Pixel
Select: Pixel

xmGetDestination(+Display, -Widget)
Display: Display
Widget: Widget

xmGetDragContext(+RefWidget, +TimeStamp, -Widget)
RefWidget: Widget
TimeStamp: Time
Widget: Widget

xmGetFocusWidget(+Widget, -FocusWidget)
Widget: Widget
FocusWidget: Widget

xmGetMenuCursor(+Display, -Cursor)
Display: Display
Cursor: Cursor

xmGetPixmap(+Screen,+ImageName,+ForeG,+BackG,-Pixmap)
Screen: Screen
ImageName: String
ForeG: Pixel
BackG: Pixel
Pixmap: Pixmap

950 Quintus Prolog

xmGetPixmapByDepth(+Screen,+ImageName,+ForeG,+BackG,+Depth,-Pixmap)
Screen: Screen
ImageName: String
ForeG: Pixel
BackG: Pixel
Depth: Integer
Pixmap: Pixmap

xmGetPostedFromWidget(+Menu,-Widget)
Menu: Widget
Widget: Widget

xmGetTabGroup(+Widget,-TabGroup)
Widget: Widget
TabGroup: Widget

xmGetTearOffControl(+Menu,-Widget)
Menu: Widget
Widget: Widget

xmGetVisibility(+Widget,-Visibility)
Widget: Widget
Visibility: XmVisibility

xmGetXmDisplay(+Widget,-DisplayObject)
Widget: Widget
DisplayObject: Widget

xmGetXmScreen(+Widget,-ScreenObject)
Widget: Widget
ScreenObject: Widget

xmInstallImage(+Image, +Name)
Image: XImage
Name: String

xmInternAtom(+Display,+AtomName,+OnlyIfExists,-Atom)
Display: Display
AtomName: String
OnlyIfExists: Boolean
Atom: XAtom

xmIsMotifWMRunning(+Shell)
Shell: Widget

xmIsTraversable(+Widget)
Widget: Widget

Chapter 17: The ProXT Package 951

xmListAddItem(+Widget, +Item, +Position)
Widget: Widget
Item: XmString
Position: Integer

xmListAddItemUnselected(+Widget, +Item, +Position)
Widget: Widget
Item: XmString
Position: Integer

xmListAddItems(+Widget, +ItemList, +Position)
Widget: Widget
ItemList: XmStringTable
Position: Integer

xmListAddItemsUnselected(+Widget, +ItemList, +Position)
Widget: Widget
ItemList: XmStringTable
Position: Integer

xmListDeleteAllItems(+Widget)
Widget: Widget

xmListDeleteItem(+Widget, +Item)
Widget: Widget
Item: XmString

xmListDeleteItems(+Widget, +ItemList)
Widget: Widget
ItemList: XmStringTable

xmListDeleteItemsPos(+Widget, +ItemCount, +Position)
Widget: Widget
ItemCount: Integer
Position: Integer

xmListDeletePos(+Widget, +Position)
Widget: Widget
Position: Integer

xmListDeletePositions(+Widget, +PositionList)
Widget: Widget
PositionList: IntegerList

xmListDeselectAllItems(+Widget)
Widget: Widget

952 Quintus Prolog

xmListDeselectItem(+Widget, +Item)
Widget: Widget
Item: XmString

xmListDeselectPos(+Widget, +Position)
Widget: Widget
Position: Integer

xmListGetKbdItemPos(+Widget, -Position)
Widget: Widget
Position: Integer

xmListGetMatchPos(+Widget, +Item, -PositionList)
Widget: Widget
Item: XmString
PositionList: IntegerList

xmListGetSelectedPos(+Widget, -PositionList)
Widget: Widget
PositionList: IntegerList

xmListItemExists(+Widget, +Item)
Widget: Widget
Item: XmString

xmListItemPos(+Widget, +Item, -Position)
Widget: Widget
Item: XmString
Position: Integer

xmListPosSelected(+Widget, +Position)
Widget: Widget
Position: Integer

xmListPosToBounds(+Widget, +Position, -X, -Y, -Width, -Height)
Widget: Widget
Position: Integer
X: Integer
Y: Integer
Width: Integer
Height: Integer

xmListReplaceItems(+Widget, +OldItems, +NewItems)
Widget: Widget
OldItems: XmStringTable
NewItems: XmStringTable

Chapter 17: The ProXT Package 953

xmListReplaceItemsPos(+Widget, +NewItems, +Position)
Widget: Widget
NewItems: XmStringTable
Position: Integer

xmListReplaceItemsPosUnselected(+Widget, +NewItems, +Position)
Widget: Widget
NewItems: XmStringTable
Position: Integer

xmListReplaceItemsUnselected(+Widget, +OldItems, +NewItems)
Widget: Widget
OldItems: XmStringTable
NewItems: XmStringTable

xmListReplacePositions(+Widget, +PosList, +NewItems)
Widget: Widget
PosList: IntegerList
NewItems: XmStringTable

xmListSelectItem(+Widget, +Item, +Notify)
Widget: Widget
Item: XmString
Notify: Boolean

xmListSelectPos(+Widget, +Position, +Notify)
Widget: Widget
Position: Integer
Notify: Boolean

xmListSetAddMode(+Widget, +State)
Widget: Widget
State: Boolean

xmListSetBottomItem(+Widget, +Item)
Widget: Widget
Item: XmString

xmListSetBottomPos(+Widget, +Position)
Widget: Widget
Position: Integer

xmListSetHorizPos(+Widget, +Position)
Widget: Widget
Position: Integer

954 Quintus Prolog

xmListSetItem(+Widget, +Item)
Widget: Widget
Item: XmString

xmListSetKbdItemPos(+Widget, +Position)
Widget: Widget
Position: Integer

xmListSetPos(+Widget, +Position)
Widget: Widget
Position: Integer

xmListUpdateSelectedList(+Widget)
Widget: Widget

xmListYToPos(+Widget, +Y, -Position)
Widget: Widget
Y: Position
Position: Integer

xmMainWindowSep1(+MainWindow, -Separator1)
MainWindow: Widget
Separator1: Widget

xmMainWindowSep2(+MainWindow, -Separator2)
MainWindow: Widget
Separator2: Widget

xmMainWindowSep3(+MainWindow, -Separator3)
MainWindow: Widget
Separator3: Widget

xmMainWindowSetAreas(+MainWindow, +MenuBar, +CommandWindow,
+HorizontalScrollbar, +VerticalScrollbar, +WorkRegion)

MainWindow: Widget
MenuBar: Widget
CommandWindow: Widget
HorizontalScrollbar: Widget
VerticalScrollbar: Widget
WorkRegion: Widget

xmMapSegmentEncoding(+FontListTag,-Encoding)
FontListTag: XmFontListTag
Encoding: String

xmMenuPosition(+Menu, +Event)
Menu: Widget
Event: XEvent

Chapter 17: The ProXT Package 955

xmMessageBoxGetChild(+MessageBox, +ChildType, -Child)
MessageBox: Widget
ChildType: XmChildType
Child: Widget

xmOptionButtonGadget(+OptionMenu, -ButtonGadget)
OptionMenu: Widget
ButtonGadget: Widget

xmOptionLabelGadget(+OptionMenu, -LabelGadget)
OptionMenu: Widget
LabelGadget: Widget

xmProcessTraversal(+Widget,+Direction)
Widget: Widget
Direction: XmTraversalDirection

xmRegisterSegmentEncoding(+FontListTag,+Encoding,-NewTag)
FontListTag: XmFontListTag
Encoding: String
NewTag: XmFontListTag

xmRemoveProtocolCallback(+Shell,+Property,+Protocol,+Callback,+ClientData
)
Shell: Widget
Property: XAtom
Protocol: XAtom
Callback: CallbackProc
ClientData: AnyTerm

xmRemoveProtocols(+Shell,+Property,+Protocols)
Shell: Widget
Property: XAtom
Protocols: XAtomList

xmRemoveTabGroup(+TabGroup)
TabGroup: Widget

xmRemoveWMProtocolCallback(+Shell,+Protocol,+Callback,+ClientData)
Shell: Widget
Protocol: XAtom
Callback: CallbackProc
ClientData: AnyTerm

xmRemoveWMProtocols(+Shell,+Protocols)
Shell: Widget
Protocols: XAtomList

956 Quintus Prolog

xmRepTypeAddReverse(+RepTypeId)
RepTypeId: XmRepTypeId

xmRepTypeGetId(+RepType, -RepTypeId)
RepType: String
RepTypeId: XmRepTypeId

xmRepTypeGetNameList(+RepTypeId, UseUC, -NameList)
RepTypeId: XmRepTypeId
UseUC: Boolean
NameList: StringTable

xmRepTypeGetRecord(+RepTypeId, -RepTypeRecord)
RepTypeId: XmRepTypeId
RepTypeRecord: XmRepTypeEntry

xmRepTypeGetRegistered(-RepTypeList)
RepTypeList: XmRepTypeList

xmRepTypeInstallTearOffModelConverter

xmRepTypeRegister(+RepType, +ValueNames, -RepTypeId)
RepType: String
ValueNames: StringTable
RepTypeId: XmRepTypeId

xmRepTypeValidValue(+RepTypeId, +TestValue, +EnableWarning)
RepTypeId: XmRepTypeId
TestValue: Integer
EnableWarning: Widget

xmScaleGetValue(+Widget, -Value)
Widget: Widget
Value: Integer

xmScaleSetValue(+Widget, +Value)
Widget: Widget
Value: Integer

xmScrollBarGetValues(+Widget, -Value, -SliderSize, -Increment,
-PageIncrement)

Widget: Widget
Value: Integer
SliderSize: Integer
Increment: Integer
PageIncrement: Integer

Chapter 17: The ProXT Package 957

xmScrollBarSetValues(+Widget, -Value, -SliderSize, -Increment,
-PageIncrement,-Notify)

Widget: Widget
Value: Integer
SliderSize: Integer
Increment: Integer
PageIncrement: Integer
Notify: Boolean

xmScrollVisible(+ScrollWidget,+Widget,+LRMargin,+TopBtmMargin)
ScrollWidget: Widget
Widget: Widget
LRMargin: Dimension
TopBtmMargin: Dimension

xmScrolledWindowSetAreas(+Widget,+MenuBar,+HorizontalScrollbar,
+VerticalScrollbar,+WorkRegion)

Widget: Widget
HorizontalScrollbar: Widget
VerticalScrollbar: Widget
WorkRegion: Widget

xmSelectionBoxGetChild(+Widget,+ChildType,-Child)
Widget: Widget
ChildType: XmChildType
Child: Widget

xmSetColorCalculation(+ColorProc, -PrevProc)
ColorProc: CallbackProc
PrevProc: CallbackProc

xmSetFontUnit(+Display, +FontUnitValue)
Display: Display
FontUnitValue: Integer

xmSetFontUnits(+Display, +HValue, +VValue)
Display: Display
HValue: Integer
VValue: Integer

xmSetMenuCursor(+Display, +Cursor)
Display: Display
CursorId Cursor

958 Quintus Prolog

xmSetProtocolHooks(+Shell,+Property,+Protocol,+PreHook,
+PreHookData,+PostHook,+PostHookData)

Shell: Widget
Property: XAtom
Protocol: XAtom
PreHook: CallbackProc
PreHookData: AnyTerm
PostHook: CallbackProc
PostHookData: AnyTerm

xmSetWMProtocolHooks(+Shell,+Protocol,+PreHook,
+PreHookData,+PostHook,+PostHookData)

Shell: Widget
Protocol: XAtom
PreHook: CallbackProc
PreHookData: AnyTerm
PostHook: CallbackProc
PostHookData: AnyTerm

xmStringBaseline(+Fontlist, +String, -Baseline)
Fontlist: XmFontList
String: XmString
Baseline: Dimension

xmStringByteCompare(+String1, +String2)
String1: XmString
String2: XmString

xmStringCompare(+String1, +String2)
String1: XmString
String2: XmString

xmStringConcat(+String1, +String2, -ResultString)
String1: XmString
String2: XmString
ResultString: XmString

xmStringCopy(+String, -ResultString)
String: XmString
ResultString: XmString

xmStringCreate(+Text, +Tag, -String)
Text: String
Tag: XmFontListTag
String: XmString

Chapter 17: The ProXT Package 959

xmStringCreateLocalized(+Text, -String)
Text: String
String: XmString

xmStringCreateLtoR(+Text, +Tag, -String)
Text: String
Tag: XmFontListTag
String: XmString

xmStringCreateSimple(+Text, -String)
Text: String
String: XmString

xmStringDirectionCreate(+Direction, -String)
Direction: XmStringDirection
String: XmString

xmStringDraw(+Display,+Window,+FontList,+String,+GC,
+X,+Y,+Width,+Alignment,+LayoutDirection,+Clip)

Display: Display
Window: Window
FontList: XmFontList
String: XmString
GC: XGC
X: Position
Y: Position
Width: Dimension
Alignment: XmAlignment
LayoutDirection: XmStringDirection
Clip: XRectangle

xmStringDrawImage(+Display,+Window,+FontList,+String,+GC,
+X,+Y,+Width,+Alignment,+LayoutDirection,+Clip)

Display: Display
Window: Window
FontList: XmFontList
String: XmString
GC: XGC
X: Position
Y: Position
Width: Dimension
Alignment: XmAlignment
LayoutDirection: XmStringDirection
Clip: XRectangle

960 Quintus Prolog

xmStringDrawUnderline(+Display,+Window,+FontList,+String,+GC,
+X,+Y,+Width,+Alignment,+LayoutDirection,+Clip,+Underline)

Display: Display
Window: Window
FontList: XmFontList
String: XmString
GC: XGC
X: Position
Y: Position
Width: Dimension
Alignment: XmAlignment
LayoutDirection: XmStringDirection
Clip: XRectangle
Underline: XmString

xmStringEmpty(+String)
String: XmString

xmStringExtent(+FontList, +String, +Width, +Height)
FontList: XmFontList
String: XmString
Width: Dimension
Height: Dimension

xmStringFree(+String)
String: XmString

xmStringFreeContext(+Context)
Context: XmStringContext

xmStringGetLtoR(+String, +Tag, -Text)
String: XmString
Tag: XmFontListTag
Text: String

xmStringGetNextComponent(+Context, -Text, -Tag,
-Direction, -UnknownTag, -UnknownLength, -UnknownValue, -

Result)
Context: XmStringContext
Text: String
Tag: XmFontListTag
Direction: XmStringDirection
UnknownTag: XmStringComponentType
UnknownLength Integer
UnknownValue: String
Result: XmStringComponentType

Chapter 17: The ProXT Package 961

xmStringGetNextSegment(+Context, -Text, -Tag,
-Direction, -Separator)

Context: XmStringContext
Text: String
Tag: XmFontListTag
Direction: XmStringDirection
Separator: Boolean

xmStringHasSubstring(+String, +SubString)
String: XmString
SubString: XmString

xmStringHeight(+FontList, +String, -Height)
FontList: XmFontList
String: XmString
Height:: Dimension

xmStringInitContext(-Context, +String)
Context: XmStringContext
String: XmString

xmStringLength(+String, -Length)
String: XmString
Length: Integer

xmStringLineCount(+String, -Lines)
String: XmString
Lines: Integer

xmStringNConcat(+String1, +String2, -NumBytes, -ResultString)
String1: XmString
String2: XmString
NumBytes: Integer
ResultString: XmString

xmStringNCopy(+String,+NumBytes, -ResultString)
String: XmString
NumBytes: Integer
ResultString: XmString

xmStringPeekNextComponent(+StringContext, -Component)
StringContext: XmStringContext
Component: XmStringComponentType

962 Quintus Prolog

xmStringSegmentCreate(+Text, +Tag, +Direction, +Separator, -String)
Text: String
Tag: XmFontListTag
Direction: XmStringDirection
Separator: Boolean
String: XmString

xmStringSeparatorCreate(-Separator)
Separator: XmString

xmStringWidth(+FontList, +String, -Width)
FontList: XmFontList
String: XmString
Width: Dimension

xmTargetsAreCompatible(+Display,+ExportTargets,+ImportTargets)
Display: Display
ExportTargets: XAtomList
ImportTargets: XAtomList

xmTextClearSelection(+Widget, +Time)
Widget: Widget
Time: Time

xmTextCopy(+Widget,+Time)
Widget: Widget
Time: Time

xmTextCut(+Widget,+Time)
Widget: Widget
Time: Time

xmTextDisableRedisplay(+Widget)
Widget: Widget

xmTextEnableRedisplay(+Widget)
Widget: Widget

xmTextFieldClearSelection(+Widget,+Time)
Widget: Widget
Time: Time

xmTextFieldCopy(+Widget,+Time)
Widget: Widget
Time: Time

Chapter 17: The ProXT Package 963

xmTextFieldCut(+Widget,+Time)
Widget: Widget
Time: Time

xmTextFieldGetBaseline(+Widget,-Position)
Widget: Widget
Position: Integer

xmTextFieldGetCursorPosition(+Widget,-Position)
Widget: Widget
Position: XmTextPosition

xmTextFieldGetEditable(+Widget)
Widget: Widget

xmTextFieldGetInsertionPosition(+Widget,-Position)
Widget: Widget
Position: XmTextPosition

xmTextFieldGetLastPosition(+Widget,-Position)
Widget: Widget
Position: XmTextPosition

xmTextFieldGetMaxLength(+Widget,-Length)
Widget: Widget
Length: Integer

xmTextFieldGetSelection(+Widget,-Selection)
Widget: Widget
Selection: String

xmTextFieldGetSelectionPosition(+Widget,-Left,-Right)
Widget: Widget
Left: XmTextPosition
Right: XmTextPosition

xmTextFieldGetSelectionWcs(+Widget,-Selection)
Widget: Widget
Selection: XmValueWcs

xmTextFieldGetString(+Widget,-Text)
Widget: Widget
Text: String

xmTextFieldGetStringWcs(+Widget,-Text)
Widget: Widget
Text: XmValueWcs

964 Quintus Prolog

xmTextFieldGetSubstring(+Widget,+Start,+Length,-Text,-Status)
Widget: Widget
Start: XmTextPosition
Length: Integer
Text: String
Status: CopyStatus

xmTextFieldGetSubstringWcs(+Widget,+Start,+Length,-Text,-Status)
Widget: Widget
Start: XmTextPosition
Length: Integer
Text: XmValueWcs
Status: CopyStatus

xmTextFieldInsert(+Widget,+Position,+Value)
Widget: Widget
Position: XmTextPosition
Value: String

xmTextFieldInsertWcs(+Widget,+Position,+Value)
Widget: Widget
Position: XmTextPosition
Value: XmValueWcs

xmTextFieldPaste(+Widget)
Widget: Widget

xmTextFieldPosToXY(+Widget,+Position,-X,-Y)
Widget: Widget
Position: XmTextPosition
X: Position
Y: Position

xmTextFieldRemove(+Widget)
Widget: Widget

xmTextFieldReplace(+Widget,+FromPos,+ToPos,+Text)
Widget: Widget
FromPos: XmTextPosition
ToPos: XmTextPosition
Text: String

xmTextFieldReplaceWcs(+Widget,+FromPos,+ToPos,+Text)
Widget: Widget
FromPos: XmTextPosition
ToPos: XmTextPosition
Text: XmValueWcs

Chapter 17: The ProXT Package 965

xmTextFieldSetAddMode(+Widget,+State)
Widget: Widget
State: Boolean

xmTextFieldSetCursorPosition(+Widget,+Position)
Widget: Widget
Position: XmTextPosition

xmTextFieldSetEditable(+Widget,+Editable)
Widget: Widget
Editable: Boolean

xmTextFieldSetHighlight(+Widget,+Left,+Right,+Mode)
Widget: Widget
Left: XmTextPosition
Right: XmTextPosition
Mode: XmHighlightMode

xmTextFieldSetInsertionPosition(+Widget,+Position)
Widget: Widget
Position: XmTextPosition

xmTextFieldSetMaxLength(+Widget,+MaxLength)
Widget: Widget
MaxLength: Integer

xmTextFieldSetSelection(+Widget,+First,+Last,+Time)
Widget: Widget
First: XmTextPosition
Last: XmTextPosition
Time: Time

xmTextFieldSetString(+Widget,+String)
Widget: Widget
String: String

xmTextFieldSetStringWcs(+Widget,+String)
Widget: Widget
String: XmValueWcs

xmTextFieldShowPosition(+Widget,+Position)
Widget: Widget
Position: XmTextPosition

966 Quintus Prolog

xmTextFieldXYToPos(+Widget,+X,+Y,-Position)
Widget: Widget
X: Position
Y: Position
Position: XmTextPosition

xmTextFindString(+Widget,+Start,+String,+Direction,-Position)
Widget: Widget
Start: XmTextPosition
String: String
Direction: XmTextDirection
Position: XmTextPosition

xmTextFindStringWcs(+Widget,+Start,+String,+Direction,-Position)
Widget: Widget
Start: XmTextPosition
String: XmValueWcs
Direction: XmTextDirection
Position: XmTextPosition

xmTextGetBaseline(+Widget,-Position)
Widget: Widget
Position: Integer

xmTextGetCursorPosition(+Widget,-Position)
Widget: Widget
Position: XmTextPosition

xmTextGetEditable(+Widget)
Widget: Widget

xmTextGetInsertionPosition(+Widget, -Position)
Widget: Widget
Position: XmTextPosition

xmTextGetLastPosition(+Widget, -Position)
Widget: Widget
LastPosition: XmTextPosition

xmTextGetMaxLength(+Widget, -Length)
Widget: Widget
Length: Integer

xmTextGetSelection(+Widget, -Selection)
Widget: Widget
Selection: String

Chapter 17: The ProXT Package 967

xmTextGetSelectionPosition(+Widget, -Left, -Right, -Success)
Widget: Widget
Left: XmTextPosition
Right: XmTextPosition
Success: Boolean

xmTextGetSelectionWcs(+Widget,-Selection)
Widget: Widget
Selection: XmValueWcs

xmTextGetSource(+Widget,-Source)
Widget: Widget
Source: XmTextSource

xmTextGetString(+Widget,-Text)
Widget: Widget
Text: String

xmTextGetStringWcs(+Widget,-Text)
Widget: Widget
Text: XmValueWcs

xmTextGetSubstring(+Widget,+Start,+Length,-Text,-Status)
Widget: Widget
Start: XmTextPosition
Length: Integer
Text: String
Status: CopyStatus

xmTextGetSubstringWcs(+Widget,+Start,+Length,-Text,-Status)
Widget: Widget
Start: XmTextPosition
Length: Integer
Text: XmValueWcs
Status: CopyStatus

xmTextGetTopCharacter(+Widget, -Position)
Widget: Widget
Position: XmTextPosition

xmTextInsert(+Widget,+Position,+Value)
Widget: Widget
Position: XmTextPosition
Value: String

968 Quintus Prolog

xmTextInsertWcs(+Widget,+Position,+Value)
Widget: Widget
Position: XmTextPosition
Value: XmValueWcs

xmTextPaste(+Widget)
Widget: Widget

xmTextPosToXY(+Widget, +Position, -X, -Y)
Widget: Widget
Position: XmTextPosition
X: Position
Y: Position

xmTextRemove(+Widget)
Widget: Widget

xmTextReplace(+Widget,+FromPos,+ToPos,+Text)
Widget: Widget
FromPos: XmTextPosition
ToPos: XmTextPosition
Text: String

xmTextReplaceWcs(+Widget,+FromPos,+ToPos,+Text)
Widget: Widget
FromPos: XmTextPosition
ToPos: XmTextPosition
Text: XmValueWcs

xmTextScroll(+Widget, +Lines)
Widget: Widget
Lines: Integer

xmTextSetAddMode(+Widget,+State)
Widget: Widget
State: Boolean

xmTextSetCursorPosition(+Widget,+Position)
Widget: Widget
Position: XmTextPosition

xmTextSetEditable(+Widget, +Editable)
Widget: Widget
Editable: Boolean

Chapter 17: The ProXT Package 969

xmTextSetHighlight(+Widget,+Left,+Right,+Mode)
Widget: Widget
Left: XmTextPosition
Right: XmTextPosition
Mode: XmHighlightMode

xmTextSetInsertionPosition(+Widget, +Position)
Widget: Widget
Position: XmTextPosition

xmTextSetMaxLength(+Widget, +MaxLength)
Widget: Widget
MaxLength: Integer

xmTextSetSelection(+Widget, +First, +Last, +Time)
Widget: Widget
First: XmTextPosition
Last: XmTextPosition
Time: Time

xmTextSetSource(+Widget, +Source, +TopChar, +CursorPos)
Widget: Widget
Source: XmTextSource
TopChar: XmTextPosition
CursorPos: XmTextPosition

xmTextSetString(+Widget, +String)
Widget: Widget
String: String

xmTextSetStringWcs(+Widget, +String)
Widget: Widget
String: XmValueWcs

xmTextSetTopCharacter(+Widget, +Position)
Widget: Widget
Position: XmTextPosition

xmTextShowPosition(+Widget,+Position)
Widget: Widget
Position: XmTextPosition

xmTextXYToPos(+Widget, +X, +Y, -Position)
Widget: Widget
X: Position
Y: Position
Position: XmTextPosition

970 Quintus Prolog

xmToggleButtonGadgetGetState(+Gadget)
Gadget: Widget

xmToggleButtonGadgetSetState(+Gadget,+State,+Notify)
Gadget: Widget
State: Boolean
Notify: Boolean

xmToggleButtonGetState(+Widget)
Widget: Widget

xmToggleButtonSetState(+Widget, +State, +Notify)
Widget: Widget
State: Boolean
Notify: Boolean

xmTrackingEvent(+Widget, +Cursor, +ConfineTo, -Event, -Result)
Widget: Widget
Cursor: Cursor
ConfineTo: Boolean
Event: XEvent
Result: Widget

xmTrackingLocate(+Widget, +Cursor, +ConfineTo, -Event, -Result)
Widget: Widget
Cursor: Cursor
ConfineTo: Boolean
Result: Widget

xmTranslateKey(+Display,+KeyCode,+Modifiers, -ModifiersRtn,-KeySym)
Widget: Widget
KeyCode: Integer
Modifiers: Integer
ModifiersRtn: Integer
KeySym: KeySym

xmUninstallImage(+Image)
Image: XImage

xmUpdateDisplay(+Widget)
Widget: Widget

xmWidgetGetBaselines(+Widget, -BaseLines, -LineCount)
Widget: Widget
BaseLines: IntegerList
LineCount: Integer

Chapter 17: The ProXT Package 971

xmWidgetGetDisplayRect(+Widget, -Rectangle)
Widget: Widget
Rectangle: XRectangle

17.5.2 X Toolkit Predicates

xtAddActions(+Actions)
Actions: ActionsList

xtAddCallback(+Widget,+WidgetCallback,+Callback,+ClientData)
Widget: Widget
WidgetCallback: WidgetCallbackType
Callback: CallbackProc
ClientData: AnyTerm

xtAddCallbacks(+Widget,+WidgetCallback,+Callbacks)
Widget: Widget
WidgetCallback: WidgetCallbackType
Callbacks: CallbackList

xtAddEventHandler(+Widget,+EventMask,+NonMaskable,+EventHandler,+ClientData
)
Widget: Widget
EventMask: XEventMask
NonMaskable: Boolean
EventHandler: EventProc
ClientData: AnyTerm

xtAddGrab(+Widget,+Exclusive,+SpringLoaded)
Widget: Widget
Exclusive: Boolean
SpringLoaded: Boolean

xtAddInput(+Source,+Condition,+InputProc,+ClientData,-InputId)
Source: Integer
Condition: XtInputCondMask
InputProc: InputProc
ClientData: AnyTerm
InputId: XtInputId

xtAddRawEventHandler(+Widget,+EventMask,+NonMaskable,+EventHandler,
+ClientData)

Widget: Widget
EventMask: XEventMask
NonMaskable: Boolean
EventHandler: EventProc
ClientData: AnyTerm

972 Quintus Prolog

xtAddTimeOut(+Interval,+TimerProc,+ClientData,-IntervalId)
Interval: Integer
TimerProc: TimerProc
ClientData: AnyTerm
IntervalId: XtIntervalId

xtAddWorkProc(+WorkProc,+ClientData,-WorkProcId)
WorkProc: WorkProc
ClientData: AnyTerm
WorkProcId: XtWorkProcId

xtAppAddActions(+AppContext,+Actions)
AppContext: XtAppContext
Actions: ActionsList

xtAppAddInput(+AppContext,+Source,+Condition,+InputProc,+ClientData,-
InputId)
AppContext: XtAppContext
Source: Integer
Condition: XtInputCondMask
InputProc: InputProc
ClientData: AnyTerm
InputId: XtInputId

xtAppAddTimeOut(+AppContext,+Interval,+TimerProc,+ClientData,-
IntervalId)
AppContext: XtAppContext
Interval: Integer
TimerProc: TimerProc
ClientData: AnyTerm
IntervalId: XtIntervalId

xtAppAddWorkProc(+AppContext,+WorkProc,+ClientData,-WorkProcId)
AppContext: XtAppContext
WorkProc: WorkProc
ClientData: AnyTerm
WorkProcId: XtWorkProcId

xtAppCreateShell(+Name,+Class,+WidgetClass,+Display,
+Attributes,-Widget)

Name: String
Class: String
WidgetClass: WidgetClass
Display: Display
Attributes: AttributeList
Widget: Widget

Chapter 17: The ProXT Package 973

xtAppGetSelectionTimeout(+AppContext, +Timeout)
AppContext: XtAppContext
Timeout: Integer

xtAppInitialize(-AppContext, +Class, +Attributes, -Widget)
AppContext: XtAppContext
Class: String
Attributes: AttributeList
Widget: Widget

xtAppMainLoop(+AppContext)
AppContext: XtAppContext

xtAppNextEvent(+AppContext, +Event)
AppContext: XtAppContext
Event: XEvent

xtAppPeekEvent(+AppContext, +Event)
AppContext: XtAppContext
Event: XEvent

xtAppPending(+AppContext, -Mask)
AppContext: XtAppContext
Mask XtInputMask

xtAppProcessEvent(+AppContext, +Mask)
AppContext: XtAppContext
Mask XtInputMask

xtAppSetErrorHandler(+AppContext, +ErrorProc)
AppContext: XtAppContext
ErrorProc: CallbackProc

xtAppSetSelectionTimeout(+AppContext, +Timeout)
AppContext: XtAppContext
Timeout: Integer

xtAppSetWarningHandler(+AppContext, +WarnProc)
AppContext: XtAppContext
WarnProc: CallbackProc

xtAugmentTranslations(+Widget, +TranslationTable)
Widget: Widget
TranslationTable: XtTranslations

xtBuildEventMask(+Widget,-EventMask)
Widget: Widget
EventMask: XEventMask

974 Quintus Prolog

xtCallbackExclusive(+Widget,+Shell,+DummyClientData)
Widget: Widget
Shell: Widget
DummyClientData: Integer

xtCallbackNone(+Widget,+Shell,+DummyClientData)
Widget: Widget
Shell: Widget
DummyClientData: Integer

xtCallbackNonexclusive(+Widget,+Shell[+DummyClientData])
Widget: Widget
Shell: Widget
DummyClientData: Integer

xtCallbackPopdown(+Widget,+Shell,+DummyClientData)
Widget: Widget
Shell: Widget
DummyClientData: Integer

xtClass(+Widget,-WidgetClass)
Widget: Widget
WidgetClass: WidgetClass

xtCloseDisplay(+Display)
Display: Display

xtConvert(+Widget,+FromType,+From,+FromLen,+ToType,-To,-ToLen)
Widget: Widget
FromType: String
From: String or Integer
FromLen: Integer
ToType: String
To: String or Integer
ToLen: Integer

xtCreateApplicationContext(-AppContext)
AppContext

xtCreateApplicationShell(+Name,+WidgetClass,+Attributes,-Widget)
Name: String
WidgetClass: WidgetClass
Attributes: AttributeList
Widget: Widget

Chapter 17: The ProXT Package 975

xtCreateManagedWidget(+Name,+WidgetClass,+Parent,+Attributes,-Widget)
Name: String
WidgetClass: WidgetClass
Parent: Widget
Attributes: AttributeList
Widget: Widget

xtCreatePopupShell(+Name,+WidgetClass,+Parent,+Attributes,-Widget)
Name: String
WidgetClass: WidgetClass
Parent: Widget
Attributes: AttributeList
Widget: Widget

xtCreateWidget(+Name,+WidgetClass,+Parent,+Attributes,-Widget)
Name: String
WidgetClass: WidgetClass
Parent: Widget
Attributes: AttributeList
Widget: Widget

xtDestroyApplicationContext(+AppContext)
AppContext: XtAppContext

xtDestroyWidget(+Widget)
Widget: Widget

xtDispatchEvent(+Event)
Event: XEvent

xtDisplay(+Widget,-Display)
Widget: Widget
Display: Display

xtDisplayInitialize(+AppContext,+Display,+Name,+Class)
AppContext: XtAppContext
Display: Display
Name: String
Class: String

xtDisplayOfObject(+Widget,-Display)
Widget: Widget
Display: Display

xtDisplayToApplicationContext(+Display, -AppContext)
Display: Display
AppContext: XtAppContext

976 Quintus Prolog

xtFree(+Object)
Object: AnyTerm

xtGetSelectionTimeout(+AppContext, +Timeout)
Timeout: Integer

xtGetValues(+Widget,+Attributes)
Widget: Widget
Attributes: AttributeList

xtHasCallbacks(+Widget,+WidgetCallback,+CallbackStatus)
Widget: Widget
WidgetCallback: WidgetCallbackType
CallbackStatus: XtCallbackStatus

xtInitialize(+Name,+Class,-Widget)
Name: String
Class: String
Widget: Widget

xtInitializeWidgetClass(+Widget)
Widget: Widget

xtInstallAccelerators(+Destination,+Source)
Destination: Widget
Source: Widget

xtInstallAllAccelerators(+Destination,+Source)
Destination: Widget
Source: Widget

xtIsManaged(+Widget)
Widget: Widget

xtIsObject(+Widget)
Widget: Widget

xtIsRealized(+Widget)
Widget: Widget

xtIsSensitive(+Widget)
Widget: Widget

xtIsSubclass(+Widget, +WidgetClass)
Widget: Widget
WidgetClass: WidgetClass

xtMainLoop

Chapter 17: The ProXT Package 977

xtManageChild(+Widget)
Widget: Widget

xtManageChildren(+WidgetList)
WidgetList: WidgetList

xtName(+Widget,-Name)
Widget: Widget
Name: String

xtNameToWidget(+Reference, +Name, -Widget)
Reference: Widget
Name: String
Widget: Widget

xtNextEvent(+Event)
Event: XEvent

xtOpenDisplay(+AppContext,+Name,AppName,+Class,-Display)
AppContext: XtAppContext
Name: String
AppName: String
Class: String
Display: Display

xtOverrideTranslations(+Widget, +TranslationTable)
Widget: Widget
TranslationTable: XtTranslations

xtParent(+Child,-Parent)
Child: Widget
Parent: Widget

xtParseAcceleratorTable(+Accelerators, -AcceleratorTable)
Accelerators: String
AcceleratorTable: XtAccelerators

xtParseTranslationTable(+Translations, -TranslationTable)
Translations: String
TranslationTable: XtTranslations

xtPeekEvent(-Event)
Event: XEvent

xtPending(-InputMask)
InputMask: XEventMask

978 Quintus Prolog

xtPopdown(+Widget)
Widget: Widget

xtPopup(+Widget,+GrabKind)
Widget: Widget
GrabKind: XtGrabKind

xtProcessEvent(+InputMask)
InputMask: XEventMask

xtRealizeWidget(+Widget)
Widget: Widget

xtRemoveAllCallbacks(+Widget,+WidgetCallback)
Widget: Widget
WidgetCallback: WidgetCallbackType

xtRemoveCallback(+Widget,+WidgetCallback,+Callback,+ClientData)
Widget: Widget
WidgetCallback: WidgetCallbackType
Callback: CallbackProc
ClientData: AnyTerm

xtRemoveCallbacks(+Widget,+WidgetCallback,+Callbacks)
Widget: Widget
WidgetCallback: WidgetCallbackType
Callbacks: CallbackList

xtRemoveEventHandler(+Widget,+EventMask,+NonMaskable,+EventHandler,
+ClientData)

Widget: Widget
EventMask: XEventMask
NonMaskable: Boolean
EventHandler: EventProc
ClientData: AnyTerm

xtRemoveGrab(+Widget)
Widget: Widget

xtRemoveInput(+InputId)
InputId: XtInputId

Chapter 17: The ProXT Package 979

xtRemoveRawEventHandler(+Widget,+EventMask,+NonMaskable,+EventHandler,
+ClientData)

Widget: Widget
EventMask: XEventMask
NonMaskable: Boolean
EventHandler: EventProc
ClientData: AnyTerm

xtRemoveTimeOut(+IntervalId)
IntervalId: XtIntervalId

xtRemoveWorkProc(+WorkProcId)
WorkProcId: XtWorkProcId

xtScreen(+Widget,-Screen)
Widget: Widget
Screen: Screen

xtScreenOfObject(+Widget,-Screen)
Widget: Widget
Screen: Screen

xtSetErrorHandler(+ErrorProc)
ErrorProc: CallbackProc

xtSetKeyboardFocus(+Subtree,+Descendant)
Subtree: Widget
Descendant: Widget

xtSetMappedWhenManaged(+Widget,+MappedWhenManaged)
Widget: Widget
MappedWhenManaged: Boolean

xtSetSelectionTimeout(+Timeout)
Timeout: Integer

xtSetSensitive(+Widget, +Sensitive)
Widget: Widget
Sensitive: Boolean

xtSetValues(+Widget,+Attributes)
Widget: Widget
Attributes: AttributeList

xtSetWarningHandler(+WarnProc)
WarnProc: CallbackProc

980 Quintus Prolog

xtSuperclass(+Widget, -WidgetClass)
Widget: Widget
WidgetClass: WidgetClass

xtToolkitInitialize

xtTranslateCoords(+Widget, +X, +Y, -RootX, -RootY)
Widget: Widget
X: Position
Y: Position
RootXReturn: Position
RootYReturn: Position

xtUninstallTranslations(+Widget)
Widget: Widget

xtUnmanageChild(+Widget)
Widget: Widget

xtUnmanageChildren(+WidgetList)
WidgetList: WidgetList

xtUnrealizeWidget(+Widget)
Widget: Widget

xtWidgetToApplicationContext(+Widget,-AppContext)
Widget: Widget
AppContext: XtAppContext

xtWindow(+Widget,-Window)
Widget: Widget
Window: Window

xtWindowOfObject(+Widget,-Window)
Widget: Widget
Window: Window

xtWindowToWidget(+Display, +Window, +Widget)
Display: Display
Window: Window
Widget: Widget

xCreateGC(+Display, +Window, +Values, -GC)
Display: Display
Window: Window
Values: XGCValues
GC: XGC

Chapter 17: The ProXT Package 981

xFreeGC(+Display, +GC)
Display: Display
GC: XGC

xLoadQueryFont(+Display, +FontName, -Font)
Display: Display
FontName: String
Font: XFont

17.5.3 ProXT Specific Predicates

proxtGetCallbackEvent(+CallData,-Event)
CallData: Calldata
Event: XEvent

proxtGetCallbackReason(+CallData,-Reason)
CallData: Calldata
Reason: String

proxtGetCallbackFields(+CallData,-CallDataList)
CallData: Calldata
CallDataList: CalldataFields

proxtGetWidgetClass(+Widget,-WidgetClass)
Widget: Widget
WidgetClass: WidgetClass

proxtGetEventFields(+Event,-Fields)
Event: XEvent
Fields: EventFields

proxtSetCallbackFields(+CallData,-CallDataList)
CallData: Calldata
CallDataList: CalldataFields

17.6 Changes from ProXT 3.1

17.6.1 Highlights

There are a number of changes from the previous version of ProXT that was released with
Quintus Prolog 3.1. These changes are summarized as follows:

• Predicates and attributes that used to take a CharPtr type now take a String

982 Quintus Prolog

type, which is represented as a Prolog atom. This means that the predicates
proxtCharPtrToString/2 and proxtStringToCharPtr/2 are obsolete.

• The predicate proxtGetDefaultCharset/1 is obsolete. In Motif2.1, most functions
that used to take a Charset parameter now take a FontListTag parameter and the
atom xmDEFAULT_FONTLIST_TAG can be used as a FonListTag.

• All predicates that correspond to Boolean functions in Motif now succeed or fail ac-
cording to whether the Motif function returns true or false. This means that some
predicates that used to include a Results parameter have been replaced by predicates
with that argument removed.

• The Calldata argument returned by widget callbacks is now a handle, rather than a
list of field, that can be inspected (and modified) by three new proxt predicates: the
callback reason can be extracted by the predicate proxtGetCallbackReason/2; a list
of all fields is returned by proxtGetCallbackFields/2 (the contents of this list varies
depending on the type of callback); and finally a list of fields to be modified can be
specified in proxtSetCallbackFields/2.

• ProXT will now backtrack through callback predicates if they return nondeterminately.
• The client data argument in the Action datatype has been dropped and similarly the

client data argument to action callbacks has been dropped. Instead parameters specified
in the translation table are now passed into the action callback as a list of items of type
String in the third argument. The second argument to the action callback is now the
Event.

• Attributes that used to be of type CallbackList are now of type CallbackTerm, that is,
they take a single callback as value, not a list of callbacks.
The format of datatype XRectangle has changed. This is now a term of the form
rectangle(X,Y,Width,Height).

• The format of datatype XmClipboardPendingList has changed. This is now a list of
terms of the form clipboardpending(DataId,PrivateId).

• The return value of xtPending/1 has changed, returning an XEventMask type rather
than a mask/1 structure.

• The predicate proxtGetDefaultGC/2 is obsolete. The predicate xCreateGC/4 should
be used to define a GC graphics context.

• The predicate proxtFree/1 has been renamed xtFree/1.
• The values returned as datatype ClipboardStatus have been renamed from clipboard*

to xmClipboard* in line with the change made in Motif2.1.
• Some values included in the datatype XmDialogType have changed.
• The predicate xtOpenDisplay now has an additional argument specifying the App-

Name.

One of the main changes to ProXT 3.5 concerns the ability to extend ProXT with new
widget classes and resources. The file demo(proxrt.pl) demonstrates how a graph widget
can be incorporated into ProXT.

Chapter 17: The ProXT Package 983

17.6.2 Backward Compatibility

Definitions for the predicates that are now obsolete in ProXT 3.5 are provided in the file
library(proxtbc). Many ProXT 3.1 programs will be able to run simply by adding the
following declaration in the program:

:- use_module(library(proxtbc)).

This module includes appropriate definitions for proxtCharPtrToString/2,
proxtStringToCharPtr/2 and proxtGetDefaultCharset/1 to enable programs that use
these in conjunction with ‘xmString’ and ‘xmText’ predicates to continue to work.

984 Quintus Prolog

Chapter 18: Prolog Reference Pages 985

18 Prolog Reference Pages

18.1 Reading the Reference pages

18.1.1 Overview

The reference pages for Quintus Prolog built-in predicates conform to certain conventions
concerning

• mode annotations
• predicate categories
• argument types

These are particularly important in utilizing the Synopsis and Arguments fields of each
reference page. The Synopsis field consists of the goal template(s) with mode annotations
and a brief description of the purpose of the predicate. For example, consider this excerpt
from the reference page for assert/[1,2]:

Synopsis

assert(+Clause) assert(+Clause, -Ref)

Adds dynamic clause Clause to the Prolog database. Returns database reference in Ref.

The Arguments field lists, for each metavariable name in the template, its argument type,
(e.g. callable), a brief description (sometimes omitted), and an indication (‘[MOD]’) if it does
module name expansion. For example,

Arguments

Clause callable [MOD]
A valid Prolog clause.

Ref db reference

For further information see Section 18.1.3 [mpg-ref-cat], page 987.

986 Quintus Prolog

18.1.2 Mode Annotations

The mode annotations are useful to tell whether an argument is input or output or both.
They also describe formally the instantiation pattern to the call that makes the call to the
built-ins determinate.

The mode annotations in the above example are ‘+’ and ‘-’. Following is a complete de-
scription of the mode annotations you will find in the reference pages:

‘+’ Input argument. This argument will be inspected by the predicate, and affects
the behavior of the predicate, but will not be further instantiated by the pred-
icate. An exception is raised if the argument isn’t of the expected type. Note
that the type class of an input arguments might include var.

‘-’ Determinate output argument. This argument is unified with the output value
of the predicate. An output argument is only tested to be of the same type as
the possible output value, if the type is simple (see Section 18.1.4.1 [mpg-ref-
aty-sim], page 988), and such testing is helpful to the user. Given the input
arguments, the value of a determinate output argument is uniquely defined.

‘*’ Nondeterminate output argument. This argument is unified with the output
value of the predicate. An output argument is only tested to be of the same type
as the possible output value, if the type is simple (see Section 18.1.4.1 [mpg-
ref-aty-sim], page 988), and such testing is helpful to the user. The predicate
might be resatisfiable, and might through backtracking generate more than one
output value for this argument.

‘+-’ An input argument that determinately might be further instantiated by the
predicate. Since it is an input argument, an exception will be raised if it isn’t
in the expected domain.

‘+*’ An input argument that might be further instantiated by the predicate. The
predicate might be resatisfiable, and might through backtracking generate more
than one instantiation pattern for this argument. Since it is an input argument,
an exception will be raised if it isn’t in the expected domain.

If the synopsis of a predicate has more than one mode declaration, the first (the topmost)
that satisfies both modes and types (of a goal instance), is the one to be applied (to that
goal instance).

All built-in predicates of arity zero are determinate (with the exception of repeat/0).

For input arguments, an exception will be raised if the argument isn’t of the specified type.

For output arguments, an exception might be raised if the argument is nonvar, and not of
the specified type. The generated value of the argument will be of the specified type.

Chapter 18: Prolog Reference Pages 987

18.1.3 Predicate Categories

This section describes the categories of predicates and how they are indicated in the refer-
ence pages for predicates of each given category. The names of categories hookable, hook,
extendible, declaration, and meta-logical appear to the right of the title of the reference
page. The annotation development is used for predicates that are not available in runtime
systems.

•
hookable: The behavior of the predicate can be customized/redefined by defining one
or more hooks. The mode and type annotations of a hookable predicate might not be
absolute, since hooks added by the user can change the behavior.

•
hook: The predicate is user defined, and is called by a hookable builtin. A hook must
be defined in module user. For a hook, the mode and type annotations should be
seen as guide-lines to the user who wants to add his own hook; they describe how the
predicate is used by the system.

•
extendible: A dynamic, multifile predicate, to which new clauses can be added by the
user. For such a predicate, the mode and type annotations should be seen as guide-lines
to the user who wants to extend the predicate; they describe how the predicate is used
by the system.

•
declaration: You cannot call these directly but they can appear in files as ‘:- decla-

ration’ and give information to the compiler. The goal template is preceded by ‘:-’
in the Synopsis.

Meta-predicates and operators are recognizable by the implicit conventions described below.

•
Meta-predicates are predicates that need to assume some module. A list of built-in
predicates that do module name expansion is provided in Section 8.13.16 [ref-mod-
mne], page 282. The reference pages of these predicates indicate which arguments are
in a module expansion position by marking them as [MOD] in the Arguments field.
That is, the argument can be preceded by a module prefix (an atom followed by a
colon). For example:

assert(mod:a(1), Ref)

If no module prefix is supplied, it will implicitly be set to the calling module. If the
module prefix is a variable, an instantiation error will be raised. If it is not an atom
a type error will be raised. So in any meta-predicate reference page the following
exceptions are implicit:

988 Quintus Prolog

Exceptions

instantiation_error
A module prefix is written as a variable.

type_error
A module prefix is not an atom.

• Whenever the name of a built-in predicate is defined as operator, the name is presented
in the Synopsis as an operator, for example

:- initialization +Goal (A)
+Term1 @> +Term2 (B)

It is thus always possible to see if a name is an operator or not. The predicate can,
of course, be written using the canonical representation, even when the name is an
operator. Thus (A) and (B) can be written as (C) and (D), respectively:

:- initialization(+Goal) (C)
@>(+Term1, +Term2) (D)

18.1.4 Argument Types

The argument section describes the type/domain of each argument. If it is a ‘+’ argument,
then the built-in always tests if the argument is the right type/domain. In some cases,
types/domains mentioned in the Arguments section need not be the smallest set of all
acceptable arguments.

18.1.4.1 Simple Types

The simple argument types are those for which type tests are provided. They are summa-
rized in Section 18.2.23 [mpg-top-typ], page 1004.

In addition there is stream object, a special type of term described in Section 8.7.7.1 [ref-
iou-sfh-sob], page 226.

If an output argument is given the type var, it means that that argument is not used by
the predicate in the given instantiation pattern.

18.1.4.2 Extended Types

Following is a list of argument types that are defined in terms of the simple argument types.
This is a formal description of the types/domains used in the Arguments sections of the
reference pages for the built-ins. The rules are given in BNF (Backus-Naur form).

term ::= (any Prolog term) | var | nonvar

Chapter 18: Prolog Reference Pages 989

list ::= [] | [term|list]

list of Type ::= [] | [Type|list of Type]

one of [Element|Rest] ::= Element | one of Rest

arity ::= {An integer X in the range 0..255}

char ::= {An integer X in the range 1..255}

chars ::= [] | [char|chars]

pair ::= term-term

simple pred spec ::= atom/arity

pred spec ::= simple pred spec | atom:pred_spec

pred spec tree ::= [] | pred spec | [pred_spec_tree|pred_spec_tree]

pred spec forest ::= [] | pred spec
| [pred_spec_forest|pred_spec_forest]
| pred_spec_forest,pred_spec_forest

gen pred spec ::= atom | atom:gen_pred_spec
| simple pred spec

gen pred spec tree ::= [] | gen pred spec
| [gen_pred_spec_tree|gen_pred_spec_tree]

gen pred spec tree var ::= gen pred spec tree {in which all atoms also can be variables}

extern spec ::= atom
| compound {all arguments being extern arg}

extern arg ::= +interf_arg_type | -interf_arg_type

foreign spec ::= atom
| compound {all arguments being foreign arg}

foreign arg ::= +interf_arg_type | -interf_arg_type | [-interf_arg_
type]

interf arg type ::= integer | float | single | double | atom
| term | string | string(integer) | address | address(atom
)

990 Quintus Prolog

file spec ::= atom | atom(file_spec)

expr ::= {everything that is accepted as second argument to is/2;
see the description of arithmetic expressions in Section 8.8.4 [ref-
ari-aex], page 235.}

18.1.5 Exceptions

The exceptions field of the reference page consists of a list of exception type names, each
followed by a brief description of the situation that causes that type of exception to be
raised. The following example comes from the reference page for assert/[1,2]:

Exceptions

instantiation_error
If Head (in Clause) or M is uninstantiated.

type_error
If Head is not of type callable, or if M is not an atom, or if Body is not a valid
clause body.

For input arguments, an exception will be raised if the argument isn’t of the specified type.

For output arguments, an exception might be raised if the argument is nonvar, and not of
the specified type. The generated value of the argument will be of the specified type.

18.2 Topical List of Prolog Built-ins

Following is a complete list of Quintus Prolog built-in predicates, arranged by topic. A
predicate may be included in more than one list.

18.2.1 Arithmetic

Y is X Y is the value of arithmetic expression X

X =:= Y the results of evaluating terms X and Y as arithmetic expressions are equal.

X =\= Y the results of evaluating terms X and Y as arithmetic expressions are not equal.

X < Y the result of evaluating X as an arithmetic expression is less than the result of
evaluating Y as an arithmetic expression.

X >= Y the result of evaluating X as an arithmetic expression is not less than the result
of evaluating Y as an arithmetic expression.

Chapter 18: Prolog Reference Pages 991

X > Y the result of evaluating X as an arithmetic expression X is greater than the
result of evaluating Y as an arithmetic expression.

X =< Y the result of evaluating X as an arithmetic expression is not greater than the
result of evaluating Y as an arithmetic expression.

18.2.2 Character I/O

at_end_of_file
testing whether end of file is reached for current input stream

at_end_of_file(S)
testing whether end of file is reached for the input stream S

at_end_of_line
testing whether at end of line on current input stream

at_end_of_line(S)
testing whether at end of line on input stream S

get(C) C is the next non-blank character on the current input stream

get(S,C) C is the next non-blank character on input stream S

get0(C) C is the next character on the current input stream

get0(S,C)
C is the next character on input stream S

nl send a newline to the current output stream

nl(S) send a newline to stream S

peek_char(C)
looks ahead for next input character on the current input stream

peek_char(S,C)
looks ahead for next input character on the input stream S

put(C) write character C to the current output stream

put(S,C) write character C to stream S

skip(C) skip input on the current input stream until after character C

skip(S,C)
skip input on stream S until after character C

skip_line
skip the rest input characters of the current line (record) on the current input
stream

skip_line(S)
skip the rest input characters of the current line (record) on the input stream
S

tab(N) send N spaces to the current output stream

992 Quintus Prolog

tab(S,N) send N spaces to stream S

ttyget(C)
the next non-blank character input from the terminal is C

ttyget0(C)
the next character read in from the terminal is C

ttynl display a new line on the terminal

ttyput(C)
the next character sent to the terminal is C

ttyskip(C)
skip over terminal input until after character C

ttytab(N)
send N spaces to the terminal

18.2.3 Control

P,Q prove P and Q

P;Q prove P or Q

M:P call P in module M

P->Q;R if P succeeds, prove Q; if not, prove R

P->Q if P succeeds, prove Q; if not, fail

! cut any choices taken in the current procedure

\+ P goal P is not provable

X ^ P there exists an X such that P is provable (used in setof and bagof)

bagof(X,P,B)
B is the bag of instances of X such that P is provable

call(P) prove (execute) P

fail fail (start backtracking)

false same as fail

findall(T,G,L)
L is the list of all solutions T for the goal G

otherwise
same as true

repeat succeed repeatedly on backtracking

setof(X,P,S)
S is the set of instances of X such that P is provable

true succeed

Chapter 18: Prolog Reference Pages 993

18.2.4 Database

abolish(F)
abolish the predicate(s) specified by F

abolish(F,N)
abolish the predicate named F of arity N

assert(C)
clause C (for dynamic predicate) is added to database

assert(C,R)
clause C is asserted; reference R is returned

asserta(C)
clause C is asserted before existing clauses

asserta(C,R)
clause C is asserted before existing clauses; reference R is returned

assertz(C)
clause C is asserted after existing clauses

assertz(C,R)
clause C is asserted after existing clauses; reference R is returned

clause(P,Q)
there is a clause for a dynamic predicate with head P and body Q

clause(P,Q,R)
there is a clause for a dynamic predicate with head P, body Q, and reference R

current_key(N, K)
N is the name and K is the key of a recorded term

dynamic(P)
declaration that predicates specified by P are dynamic

erase(R) erase the clause or record with reference R

instance(R,T)
T is an instance of the clause or term referenced by R

multifile_assertz(C)
add clause C to the end of a (possibly compiled) multifile procedure

recorda(K,T,R)
make term T the first record under key K; reference R is returned

recorded(K,T,R)
term T is recorded under key K with reference R

recordz(K,T,R)
make term T the last record under key K; reference R is returned

retract(C)
erase the first dynamic clause that matches C

994 Quintus Prolog

retractall(H)
erase every clause whose head matches H

18.2.5 Debugging

add_spypoint(P)
adds a spypoint to a procedure or to a particular call to a procedure

add_advice(G,P,A)
associates advice with a port of Prolog predicate model

check_advice
enables advice checking for all predicates with advice

check_advice(P)
enables advice checking for the specified predicates

current_advice(G,P,A)
find out what advice exists

current_spypoint(L)
find out what spypoints exist

debug switch on debugging

debugging
display debugging status information

get_profile_results(B,N,L,T)
get the results of the last execution profile

leash(M) set the debugger’s leashing mode to M

nocheck_advice
disables all advice-checking

nocheck_advice(P)
disables advice-checking from specified predicates

nodebug switch off debugging

noprofile
switch off profiling

nospy(P) remove spypoints from the procedure(s) specified by P

nospyall remove all spypoints

notrace switch off debugging (same as nodebug/0)

profile switch on profiling

profile(G)
switch on profiling and profile the execution of goal G

remove_advice(G,P,A)
remove advice from a port/predicate

Chapter 18: Prolog Reference Pages 995

remove_spypoint
removes a spypoint

show_profile_results
show the results of the last execution profile by time

show_profile_results(B)
show the results of the last execution profile by B

show_profile_results(B,N)
show the results of the last execution profile by B, listing N predicates

spy(P) set spypoints on the procedure(s) specified by P

trace switch on debugging and start tracing immediately

unknown_predicate_handler(G,M,N)
user-defined handle for unknown predicates.

18.2.6 Executables and QOF-Saving

initialization(G)
G is to be run when program is started

runtime_entry(S)
entry point for a runtime system

save_modules(L,F)
save the modules specifed in L into file F

save_predicates(L,F)
save the predicates specified in L into file F

version display system identification messages

version(A)
add the atom A to the list of introductory messages

volatile(P)
predicates specified by P are not to be included in saves.

save_program(F)
save all Prolog data

18.2.7 Execution State

abort abort execution of the program; return to current break level

break start a new break-level to interpret commands from the user

halt exit from Prolog

on_exception(E,P,H)
specify a handler H for any exception E arising in the execution of the goal P

raise_exception(E)
raise an exception

996 Quintus Prolog

18.2.8 Filename Manipulation

absolute_file_name(R,A)
A is the absolute name of file R

absolute_file_name(R,O,A)
expand relative filename R to absolute file name A using options specified in O

file_search_path(F,D)
user-extendible; directory D is included in file search path F

library_directory(D)
user-extendible; D is a library directory that will be searched

18.2.9 File and Stream Handling

character_count(S,N)
N is the number of characters read/written on stream S

close(F) close file or stream F

current_input(S)
S is the current input stream

current_output(S)
S is the current output stream

current_stream(F,M,S)
S is a stream open on file F in mode M

fileerrors
enable reporting of file errors

flush_output(S)
flush the output buffer for stream S

line_count(S,N)
N is the number of lines read/written on stream S

line_position(S,N)
N is the number of characters read/written on the current line of S

nofileerrors
disable reporting of file errors

open(F,M,S)
file F is opened in mode M returning stream S

open(F,M,O,S)
creates a Prolog stream S by opening the file F in mode M with options O

open_null_stream(S)
new output to stream S goes nowhere

Chapter 18: Prolog Reference Pages 997

prompt(O,N)
queries or changes the prompt string of the current input stream

prompt(S,O,N)
queries or changes the prompt string of the current input stream or an input
stream S

see(F) make file F the current input stream

seeing(N)
the current input stream is named N

seek(S,O,M,N)
seek to an arbitrary byte position on the stream S

seen close the current input stream

set_input(S)
select S as the current input stream

set_output(S)
select S as the current output stream

stream_code(S,C)
Converts between Prolog and C representations of a stream

stream_position(S,P)
P is the current position of stream S

stream_position(S,O,N)
O is the old position of stream S; N is the new position

tell(F) make file F the current output stream

telling(N)
to file N

told close the current output stream

ttyflush transmit all outstanding terminal output

18.2.10 Foreign Interface

assign(A,V)
poke into memory

extern(P)
declares predicate P to be callable from foreign code

foreign(F,P)
user-defined; C function F is attached to predicate P

foreign(F,L,P)
user-defined; function F in language L is attached to P

foreign_file(F,L)
user-defined; file F defines foreign functions in list L

998 Quintus Prolog

load_foreign_files(F,L)
load object files F using libraries L

unix(T) give access to system commands

18.2.11 Grammar Rules

Head --> Body

A possible form for Head is Body

’C’(S1,T,S2)
(in grammar rules) S1 is connected to S2 by the terminal T

expand_term(T,X)
term T expands to term X using term expansion/2 or grammar rule expansion

phrase(P,L)
list L can be parsed as a phrase of type P

phrase(P,L,R)
R is what remains of list L after phrase P has been found

term_expansion(T,X)
hook called by expand_term/2

18.2.12 Help

help prints some help information

help(Topic)
indexed access to the on-line manual

manual access the top level of the on-line manual

manual(X)
access the specified manual section

user_help
user-defined; tells help/1 what to do

18.2.13 Hook Predicates

foreign/[2,3]
Describes the interface between Prolog and the foreign Routine

foreign_file/2
Describes the foreign functions in ObjectFile to interface to.

message_hook/3
Overrides the call to print_message_lines/3 in print_message/2.

Chapter 18: Prolog Reference Pages 999

generate_message_hook/3
A way for the user to override the call to ’QU_messages’:generate_message/3
in print_message/2.

portray/1
A way for the user to over-ride the default behavior of print/1.

query_hook/6
Provides a method of overriding Prolog’s default keyboard based input requests.

runtime_entry/1
This predicate is called upon start-up and exit of stand alone applications.

term_expansion/2
hook called by expand_term/2

unknown_predicate_handler/3
User definable hook to trap calls to unknown predicates

user_help/0
A hook for users to add more information when help/0 is called.

18.2.14 List Processing

T =.. L the functor and arguments of term T comprise the list L

append(A,B,C)
the list C is the concatenation of lists A and B

keysort(L,S)
the list L sorted by key yields S

length(L,N)
the length of list L is N

sort(L,S)
sorting the list L into order yields S

18.2.15 Loading Programs

[F] same as load_files(F)

compile(F)
compile procedures from file (or list of files) F into the database

consult(F)
same as compile(F)

reconsult(F)
same as compile(F)

ensure_loaded(F)
load F if not already loaded

1000 Quintus Prolog

load_files(F)
load the specified Prolog source and/or QOF files F into memory

load_files(F,O)
load files according to options O

meta_predicate(P)
declares predicates P that are dependent on the module from which they are
called

module(M,L)
declaration that module M exports predicates in L

multifile(P)
declares that the clauses for P are in more than one file

no_style_check(A)
switch off style checking of type A

restore(F)
restart system and load file F

style_check(A)
turn on style checking of type A

use_module(F)
import the module-file(s) F, loading them if necessary

use_module(F,I)
import the procedure(s) I from the module-file F

use_module(M,F,I)
import I from module M, loading module-file F if necessary

term_expansion(T,N)
user-defined; compile-time transformation of clauses

18.2.16 Memory

garbage_collect
force an immediate garbage collection

garbage_collect_atoms
garbage collect atom space

gc enable garbage collection

nogc disable garbage collection

statistics
display various execution statistics

statistics(K,V)
the execution statistic with key K has value V

trimcore reduce free stack space to a minimum

Chapter 18: Prolog Reference Pages 1001

18.2.17 Messages

message_hook(M,S,L)
user defined; intercept the printing of a message

’QU_messages’:generate_message(M,SO,S)
determines the mapping from a message term into a sequence of lines of text
to be printed

generate_message_hook(M,S0,S)
user defined; intercept message before it is given to ’QU_messages’:generate_
message/3

print_message(S,M)
print a message M of severity S

print_message_lines(S,P,L)
print the message lines L to stream S with prefix P

’QU_messages’:query_abbreviation(T,P)
specifies one letter abbreviations for responses to queries from the Prolog system

query_hook(Q,A)
user-defined; intercept a system request for user input

18.2.18 Modules

current_module(M)
M is the name of a current module

current_module(M,F)
F is the name of the file in which M’s module declaration appears

meta_predicate(P)
declares predicates P that are dependent on the module from which they are
called

module(M)
makes M the type-in module

module(M,L)
declaration that module M exports predicates in L

save_modules(L,F)
save the modules specifed in L into file F

use_module(F)
import the module-file(s) F, loading them if necessary

use_module(F,I)
import the procedure(s) I from the module-file F

use_module(M,F,I)
import I from module M, loading module-file F if necessary

1002 Quintus Prolog

18.2.19 Program State

current_atom(A)
backtrack through all atoms

current_module(M)
M is the name of a current module

current_module(M,F)
F is the name of the file in which M’s module declaration appears

current_predicate(A,P)
A is the name of a predicate with most general goal P

listing list all dynamic procedures in the type-in module

listing(P)
list the dynamic procedure(s) specified by P

module(M)
make M the type-in module

predicate_property(P,Prop)
Prop is a property of the loaded predicate P

prolog_flag(F,V)
V is the current value of Prolog flag F

prolog_flag(F,O,N)
O is the old value of Prolog flag F; N is the new value

prolog_load_context(K,V)
find out the context of the current load

source_file(F)
F is a source file that has been loaded into the database

source_file(P,F)
P is a predicate defined in the loaded file F

source_file(P,F,N)
Clause number N of predicate P came from file F

18.2.20 Term Comparison

compare(C,X,Y)
C is the result of comparing terms X and Y

X == Y terms X and Y are strictly identical

X \== Y terms X and Y are not strictly identical

X @< Y term X precedes term Y in standard order for terms

X @>= Y term X follows or is identical to term Y in standard order for terms

X @> Y term X follows term Y in standard order for terms

X @=< Y term X precedes or is identical to term Y in standard order for terms

Chapter 18: Prolog Reference Pages 1003

18.2.21 Term Handling

X = Y terms X and Y are unified

arg(N,T,A)
the Nth argument of term T is A

atom_chars(A,L)
A is the atom containing the characters in list L

copy_term(T,C)
C is a copy of T in which all variables have been replaced by new variables

functor(T,F,N)
the principal functor of term T has name F and arity N

ground(T)
term T is a nonvar, and all substructures are nonvar

hash_term(T,H)
H is a hash-value for term T

name(A,L)
the list of characters of atom or number A is L

number_chars(N,L)
N is the numeric representation of list of characters L

numbervars(T,M,N)
number the variables in term T from M to N-1

subsumes_chk(G,S)
true when G(eneral) subsumes S(pecific); S and G are terms.

18.2.22 Term I/O

current_op(P,T,A)
atom A is an operator of type T with precedence P

display(T)
write term T to the user output stream in prefix notation

format(C,A)
write arguments A according to control string C

format(S,C,A)
write arguments A on stream S according to control string C

op(P,T,A)
make atom A an operator of type T with precedence P

portray(T)
hook, which is called when allows user to print(T).

1004 Quintus Prolog

portray_clause(C)
write clause C to the current output stream

print(T) display the term T on the current output stream using portray/1 or write/1

print(S,T)
display the term T on stream S using portray/1 or write/2

read(T) read term T from the current input stream

read(S,T)
read term T from stream S

read_term(O,T)
read term T according to options O

read_term(S,O,T)
read T from stream S according to options O

write(T) write term T on the current output stream

write(S,T)
write term T on stream S

write_canonical(T)
write term T on the current output stream so that it can be read back by
read/[1,2]

write_canonical(S,T)
write term T on stream S so that it can be read back by read/[1,2]

writeq(T)
write term T on the current output stream, quoting atoms where necessary

writeq(S,T)
write term T on stream S, quoting atoms where necessary

write_term(T,O)
writes T to current output with options O

write_term(S,T,O)
writes T to S according to options O

18.2.23 Type Tests

atom(T) term T is an atom

atomic(T)
term T is an atom, a number or a db reference

callable(T)
T is an atom or a compound term

compound(T)
T is a compound term (a skeletal predicate specification; see Section 8.1.7 [ref-
syn-spc], page 169)

Chapter 18: Prolog Reference Pages 1005

db_reference(D)
D is a db reference

float(N) N is a floating-point number

ground(T)
term T is a nonvar, and all substructures are nonvar

integer(T)
term T is an integer

nonvar(T)
term T is one of atom, db reference, number, compound (that is, T is instan-
tiated)

number(N)
N is an integer or a float

simple(T)
T is not a compound term; it is either atomic or a var

var(T) term T is a variable (that is, T is uninstantiated)

18.3 Built-in Predicates

The following reference pages, alphabetically arranged, describe the Quintus Prolog built-in
predicates.

For a functional grouping of these predicates including brief descriptions, see Section 18.2
[mpg-top], page 990.

In many cases the heading of a reference page will contain not only the name and arity of
the predicate, but also the name of a major category to which the predicate belongs. These
categories are defined in Section 18.1.3 [mpg-ref-cat], page 987.

Further information about categories of predicates and arguments, mode annotations, and
the conventions observed in the reference pages is found in Section 18.1 [mpg-ref], page 985.

1006 Quintus Prolog

18.3.1 !/0

Synopsis

!

Cut.

Description

When first encountered as a goal, cut succeeds immediately. If backtracking should later
return to the cut, the parent goal will fail (the parent goal is the one that matched the head
of the clause containing the cut).

See Also

Section 2.5.2.1 [bas-eff-cut-ove], page 33

Chapter 18: Prolog Reference Pages 1007

18.3.2 ;/2 — disjunction

Synopsis

+*P ; +*Q

Disjunction: Succeeds if P succeeds or Q succeeds.

Arguments

P callable [MOD]
Q callable [MOD]

Description

This is normally regarded as part of the syntax of the language, but it is like a built-in
predicate in that you can say call (P ; Q). The character ‘|’ (vertical bar) can be used as
an alternative to ‘;’.

Note that ;/2 has a distinct behaviour if the first argument is a ->/2 term. See ;/2 -
if-then-else.

See Also

Section 2.5.8 [bas-eff-cdi], page 49 and Section 8.2.3 [ref-sem-dis], page 182

1008 Quintus Prolog

18.3.3 ,/2

Synopsis

+*P , +*Q

Conjunction: Succeeds if P succeeds and then Q succeeds.

Arguments

P callable [MOD]
Q callable [MOD]

Description

This is not normally regarded as a built-in predicate, since it is part of the syntax of the
language. However, it is like a built-in predicate in that you can say call((P , Q)) to
execute P and then Q.

See Also

Section 8.2.3 [ref-sem-dis], page 182

Chapter 18: Prolog Reference Pages 1009

18.3.4 ;/2 — if-then-else

Synopsis

+-P -> +*Q ; +*R

If P then Q else R, using first solution of P only.

Arguments

P callable [MOD]
Q callable [MOD]
R callable [MOD]

Description

The character ‘|’ can be used as an alternative to ‘;’, giving the form:

P -> Q | R

The ‘|’ is transformed into a ‘;’ when the goal is read.

First P is executed. If it succeeds, then Q is executed, and if Q fails, the whole conditional
goal fails. If P fails, however, R is executed instead of Q.

The operator precedences of the ‘;’ and ‘->’ are both greater than 1000, so that they
dominate commas.

Backtracking

If P succeeds and Q then fails, backtracking into P does not occur. P may not contain a
cut. ‘->’ acts like a cut except that its range is restricted to within the disjunction: it cuts
away R and any choice points within P. ‘->’ may be thought of as a “local cut”.

See Also

Section 2.5.8 [bas-eff-cdi], page 49 and Section 8.2.3 [ref-sem-dis], page 182

1010 Quintus Prolog

18.3.5 ->/2

Synopsis

+-P -> +*Q

“Local cut”

If P then Q else fail, using first solution of P only.

Arguments

P callable [MOD]
Q callable [MOD]

Description

When occurring other than as the first argument of a disjunction operator (‘|’ or ‘;’), this
is equivalent to:

P -> Q | fail.

(For a definition of P -> Q | R, see Section 8.2.7 [ref-sem-con], page 186.)

‘->’ cuts away any choice points in the execution of P

Note that the operator precedence of ‘->’ is greater than 1000, so it dominates commas.
Thus, in:

f :- p, q -> r, s.
f.

‘->’ cuts away any choices in p or in q, but unlike cut (!) it does not cut away the alternative
choice for f.

Exceptions

context_error

Chapter 18: Prolog Reference Pages 1011

18.3.6 =/2

Synopsis

+-Term1 = +-Term2

unifies Term1 and Term2.

Arguments

Term1 term
Term2 term

Description

This is defined as if by the clause ‘Z = Z.’.

If =/2 is not able to unify Term1 and Term2, it will simply fail.

1012 Quintus Prolog

18.3.7 =../2

Synopsis

+-Term =.. +-List

Unifies List with a list whose head is the atom corresponding to the principal functor of
Term and whose tail is a list of the arguments of Term.

Arguments

Term term
any term

List list and not empty

Description

Pronounced “univ”.

If Term is uninstantiated, then List must be instantiated either to a list of determinate
length whose head is an atom, or to a list of length 1 whose head is a number.

Exceptions

type_error
domain_error

Term is uninstantiated and List is not a proper list. Term is uninstantiated and
the head of List is not atomic.

instantiation_error
Term and List are both uninstantiated

representation_error
Term is uninstantiated and List is longer than 256.

See Also

functor/3, arg/3

Section 8.9.2 [ref-lte-act], page 239

Chapter 18: Prolog Reference Pages 1013

18.3.8 </2, =:=/2, =</2, =\=/2, >/2, >=/2

Synopsis

+Expr1 < +Expr2

Evaluates Expr1 and Expr2 as arithmetic expressions. The goal succeeds if the result of
evaluating Expr1 is strictly less than the result of evaluating Expr2.

+Expr1 =:= +Expr2

Succeeds if the results of evaluating Expr1 and Expr2 are equal.

+Expr1 =< +Expr2

Succeeds if the result of evaluating Expr1 is less than or equal to the result of evaluating
Expr2.

+Expr1 =\= +Expr2

Succeeds if the results of evaluating Expr1 and Expr2 are not equal.

+Expr1 > +Expr2

Succeeds if the result of evaluating Expr1 is strictly greater than the result of evaluating
Expr2.

+Expr1 >= +Expr2

Succeeds if the result of evaluating Expr1 is greater than or equal to the result of evaluating
Expr2.

Arguments

Expr1 expr
Arithmetic expression

Expr2 expr
Arithmetic expression

Description

All of these predicates evaluate Expr1 and Expr2 as arithmetic expressions and compare
the results.

The possible values for Expr are spelled out in detail in Section 8.8.4 [ref-ari-aex], page 235.

1014 Quintus Prolog

Exceptions

instantiation_error
type_error
representation_error
domain_error

Expr1 or Expr2 does not evaluate to a number.

Examples

| ?- 23 + 2.2 < 23 - 2.2.

yes
| ?- X = 31, Y = 25, X + Y < X - Y

no

| ?- 1.0 + 1.0 =:= 2.

yes

| ?- "a" =:= 97.

yes

| ?- 42 =< 42.

yes

| ?- "b" =< "a".

no

| ?- 7 =\= 14/2.

no

| ?- 7 =\= 15/2.

yes

| ?- "g" > "g".

no

Chapter 18: Prolog Reference Pages 1015

| ?- 4*2 > 15/2.

yes

| ?- 42 >= 42.

yes

| ?- "b" >= "a".

yes

Comments

Note that the symbol ‘=<’ is used here rather than ‘<=’, which is used in some other lan-
guages. One way to remember this is that the inequality symbols in Prolog are the ones
that cannot be thought of as looking like arrows. The ‘<’ or ‘>’ always points at the ‘=’.

See Also

Section 8.8 [ref-ari], page 233

1016 Quintus Prolog

18.3.9 \+/1

Synopsis

\+ +P

Fails if the goal P has a solution, and succeeds otherwise.

Arguments

P callable [MOD]

Description

This is not real negation (“P is false”), which is not possible in Prolog, but negation-by-
failure meaning “P is not provable”. P may not contain a cut. The goal \+ P behaves
exactly like

(P -> fail ; true)

Exceptions

type_error
context_error

Tip

Remember that with prefix operators such as this one, it is necessary to be careful about
spaces if the argument starts with a ‘(’. For example:

| ?- \+ (P, Q).

is the \+/1 operator applied to the conjunction of P and Q, but

| ?- \+(P, Q).

would require a predicate \+/2 for its solution. The prefix operator can, however, be written
as a functor of one argument; thus

| ?- \+((P,Q)).

is also correct.

Chapter 18: Prolog Reference Pages 1017

See Also

library(not) — defines a safer form of negation as failure.

1018 Quintus Prolog

18.3.10 ==/2, \==/2

Synopsis

+Term1 == +Term2

Succeeds if the terms currently instantiating Term1 and Term2 are literally identical (in
particular, variables in equivalent positions in the two terms must be identical).

+Term1 \== +Term2

Succeeds if the terms currently instantiating Term1 and Term2 are not literally identical.

Arguments

Term1 term
Term2 term

Description

Query (A) fails because Term1 and Term2 are distinct uninstantiated variables. However,
query (B) succeeds because the first goal unifies the two variables:

| ?- Term1 == Term2. (A)

no

| ?- Term1 = Term2, Term1 == Term2. (B)

yes

Query (C) succeeds because Term1 and Term2 are distinct uninstantiated variables. How-
ever, query (D) fails because the first goal unifies the two variables.

| ?- Term1 \== Term2. (C)

yes

| ?- Term1 = Term2, Term1 \== Term2. (D)

no

Chapter 18: Prolog Reference Pages 1019

See also

compare/3, @</2, @=</2, @>/2, @>=/2 Section 8.9 [ref-lte], page 238

1020 Quintus Prolog

18.3.11 @</2, @=</2, @>/2, @>=/2

Synopsis

+Term1 @< +Term2

Succeeds if term Term1 is before term Term2 in the standard order.

+Term1 @=< +Term2

Succeeds if term Term1 is not after term Term2 in the standard order.

+Term1 @> +Term2

Succeeds if term Term1 is after term Term2 in the standard order.

+Term1 @>= +Term2

Succeeds if term Term1 is not before term Term2 in the standard order.

Arguments

Term1 term
Term2 term

Description

These predicates use a standard total order when comparing terms. The standard total
order is:

variables @< database references @< numbers @< atoms @< compound terms

For further details see Section 8.9.7.2 [ref-lte-cte-sot], page 242.

Chapter 18: Prolog Reference Pages 1021

Examples

| ?- foo(1) @< foo(2).

yes
| ?- chicken @< egg.

yes
| ?- a @< "a".

yes

| ?- liberty @=< pride.

yes
|?- 1 @=< 1.0.

yes

| ?- fie(1,1) @> fie(1).

yes

| ?- 1 @>= 1.0.

no
| ?- 1.0 @>= 1.

yes

See Also

compare/3, ==/2, \==/2 Section 8.9 [ref-lte], page 238

1022 Quintus Prolog

18.3.12 –>/2

Synopsis

+Head-->+Body

A possible form for Head is Body. Used primarily in grammar rules.

Arguments

Head term
Prolog term, or list of terms

Body term
Prolog term, or list of terms
The formal description of grammar heads and grammar bodies is spelled out in
Section 8.1.8.3 [ref-syn-syn-sen], page 172.

Description

Head and Body are translated into lists of Prolog terms by expand_term/2.

Exceptions

context_error

Cannot call -->/2 as a predicate

Examples

See examples in Section 8.16.3 [ref-gru-exa], page 300 and Section 8.16.4 [ref-gru-tra],
page 301.

See Also

expand_term/2, ’C’/3, term_expansion/2, phrase/[2,3] Section 8.16 [ref-gru], page 298

Chapter 18: Prolog Reference Pages 1023

18.3.13 ^/2

Synopsis

+X ^ +*P

Equivalent to “there exists an X such that P is true”, thus X is normally an unbound
variable. The use of the explicit existential quantifier outside setof/3 and bagof/3 is
superfluous.

Arguments

X term

P callable [MOD]

Description

Equivalent to simply calling P

Exceptions

As for call/1:

type_error
context_error
instantiation_error

Examples

Using bagof/3 without and with the existential quantifier:

1024 Quintus Prolog

| ?- bagof(X, foo(X,Y), L).

X = _3342,
Y = 2,
L = [1,1] ;

X = _3342,
Y = 3,
L = [2] ;

no

| ?- bagof(X, Y^foo(X,Y), L).

X = _3342,
Y = _3361,
L = [1,1,2] ;

no

Section 8.15.2.1 [ref-all-cse-equ], page 297

See Also

setof/3, bagof/3

Chapter 18: Prolog Reference Pages 1025

18.3.14 abolish/[1,2]

Synopsis

abolish(+PredSpecTree)

abolish(+Name, +Arity)

Removes procedures from the Prolog database.

Arguments

PredSpecTree pred spec tree [MOD]
A procedure specification in the form Name/Arity, or a list of such procedure
specifications.

Name atom [MOD]
A string representing the name of a predicate.

Arity arity
An integer giving the arity of the predicate.

Description

Removes all procedures specified. After this command is executed the current program
functions as if the named procedures had never existed. That is, in addition to removing all
the clauses for each specified procedure, abolish removes any properties that the procedure
might have had, such as being dynamic or multifile.

You may abolish any of your own procedures, regardless of whether they are dynamic,
static, compiled, interpreted, or foreign. You cannot abolish built-in procedures.

It is important to note that retract/1, retractall/1, and erase/1 can only remove
dynamic predicates. They cannot remove the predicates properties (such as being dynamic
or multifile) from the system. abolish[1,2], on the other hand, can remove both static
and dynamic predicates. It removes the clauses of the predicates and its properties.

The procedures that are abolished do not become invisible to a currently running procedure.
See Section 8.14.7 [ref-mdb-exa], page 292 for an example illustrating this point.

Space occupied by abolished procedures is reclaimed. The space occupied by the procedures
is reclaimed.

Procedures must be defined in the source module before they can be abolished. An attempt
to abolish a procedure that is imported into the source module will cause a permission error.
Using a module prefix, M:, clauses in any module may be abolished.

1026 Quintus Prolog

Abolishing a foreign procedure destroys only the link between that Prolog procedure and
the associated foreign code. The foreign code that was loaded remains in memory. This is
necessary because Prolog cannot tell which subsequently-loaded foreign files may have links
to the foreign code. The Prolog part of the foreign procedure is destroyed and reclaimed.

Specifying an undefined procedure is not an error.

abolish/2 is an obsolete special case of abolish/1 maintained to provide compatibility
with DEC-10 Prolog, C Prolog, and earlier versions of Quintus Prolog.

Exceptions

instantiation_error
if one of the arguments is not ground.

type_error
if a Name is not an atom or an Arity not an integer.

domain_error
if a PredSpec is not a valid procedure specification, or if an Arity is specified
as an integer outside the range 0-255.

permission_error
if a specified procedure is built-in or imported into the source module.

See Also

dynamic/1, erase/1, retract/1, retractall/1.

Section 8.14.3 [ref-mdb-dre], page 288

Chapter 18: Prolog Reference Pages 1027

18.3.15 abort/0

Synopsis

abort

Abandons the current execution and returns to the beginning of the current break level.

Description

Fairly drastic predicate that is normally only used when some error condition has occurred
and there is no way of carrying on, or when debugging.

Often used via the debugging option a or the ^C interrupt option a.

If abort is called from initialization (see Section 9.1.6 [sap-srs-eci], page 349), then QP_
initialize() returns. If user has not defined their own main(), this means that QP_
toplevel() gets called and you get the default top level loop. The same holds true for ^C
followed by the a option.

Please note: The goal specified by save_program/2 is also run as an
initialization when a saved file is restored.

Please note: In the context of a runtime system, QP_toplevel() corresponds
to calling runtime_entry(start).

Tip

Does not close any files that you may have opened. When using see/1 and tell/1, (rather
than open/3, set_input/1, and set_output/1), close files yourself to avoid strange behav-
ior after your program is aborted and restarted.

See Also

halt/[0,1], break/0, QP_toplevel(), QP_initialize(), runtime_entry/1

Section 8.11.1 [ref-iex-int], page 250

1028 Quintus Prolog

18.3.16 absolute_file_name/[2,3]

Synopsis

absolute_file_name(+RelFileSpec, -AbsFileName)

absolute_file_name(+RelFileSpec, +Options, -AbsFileName)

absolute_file_name(+RelFileSpec, +Options, *AbsFileName)

Unifies AbsFileName with the the absolute filename that corresponds to the relative file
specification RelFileSpec.

Arguments

RelFileSpec file spec
A valid file specification.

AbsFileName atom
The first absolute filename derived from RelFileSpec that satisfies the access
modes given by Options.

Options list
A list of zero or more of the following:

ignore_underscores(Bool)
Bool =

true When constructing an absolute filename that matches
the given access modes, two names are tried: First the
absolute filename derived directly from RelFileSpec,
and then the filename obtained by first deleting all un-
derscores from RelFileSpec.

false (default) Suppresses any deletion of underscores.

extensions(Ext)
Has no effect if RelFileSpec contains a file extension. Ext is an atom
or a list of atoms, each atom representing an extension that should
be tried when constructing the absolute filename. The extensions
are tried in the order they appear in the list. Default value is Ext
= [’’], i.e. only the given RelFileSpec is tried, no extension is
added. To specify extensions(’’) or extensions([]) is equal to
not giving any extensions option at all.

file_type(Type)
Has no effect if RelFileSpec contains a file extension. Picks an ade-
quate extension for the operating system currently running, which

Chapter 18: Prolog Reference Pages 1029

means that programs using this option instead of extensions(Ext
) will be more portable between operating systems. Type must be
one of the following atoms:

text implies extensions([’’]).

RelFileSpec is a file without any extension. (Default)

prolog implies extensions([’pl’,’’]).

RelFileSpec is a Prolog source file, maybe with a ‘.pl’
extension.

object implies extensions([’o’,’’])

(substitute the actual object file extension for ‘o’)
RelFileSpec is a foreign language object file, maybe
with an extension.

executable
implies extensions([’so’,’’])

(substitute the actual shared object file extension for
‘so’) RelFileSpec is a foreign executable (shared object
file), maybe with an extension.

qof implies extensions([’qof’,’’]).

RelFileSpec is a Prolog object code file, maybe with a
‘.qof’ extension.

directory
implies extensions([’’]).

RelFileSpec is a directory, not a regular file. Only when
this option is present can absolute_file_name/3 ac-
cess directories without raising an exception.

foreign implies extensions([’o’,’’])

(substitute the actual object file extension for ‘o’) Same
as object. Included for backward compatibility. Might
be removed from future releases.

ignore_version(Bool)
This switch has no effect on systems where files don’t have version
numbers. Bool =

true When looking for a file that obeys the specified ac-
cess modes, the version numbers will be ignored. The

1030 Quintus Prolog

returned absolute filename will not contain any ver-
sion number. To find a filename that includes a
proper version number, use absolute_file_name/3
with the returned file as input, and the option ignore_
version(false).
See description of access option.

false (default) Version numbers are significant.

access(Mode)
Mode must be one of the following:

read AbsFileName must be readable.

write If AbsFileName exists, it must be writable. If it doesn’t
exist, it must be possible to create.

append If AbsFileName exists, it must be writable. If it doesn’t
exist, it must be possible to create.

exist The file represented by AbsFileName must exist.

none (default) The file system is not accessed. The first
absolute filename that is derived from RelFileSpec is
returned. Note that if this option is specified, no exis-
tence exceptions can be raised.

list of access modes
A list of one or more of the above options. If AbsFile
exists, it must obey every specified option in the list.
This makes it possible to combine a read and write, or
write and exist check, into one call to absolute_file_
name/3.

Please note: The following only applies to file systems with version
numbered files. If the user explicitly has specified a version number,
only that version is considered. If no version number is supplied,
the version number of AbsFileName is determined by:

read newest readable version.

write the file exists, the newest version plus one. If the file
doesn’t exist, a system dependent “youngest” version
number.

append If the file exists, the newest version. If the file doesn’t
exist, a system dependent “youngest” version number.

exist newest version.

none A system dependent “youngest” version number. Note
that this can be switched of with the ignore_version
option.

Chapter 18: Prolog Reference Pages 1031

list of modes
newest version.

file_errors(Val)
Val =

error (default) Raise an exception if a file derived from
RelFileSpec has the wrong permissions, that is, can’t
be accessed at all, or doesn’t satisfy the the access
modes specified with the access option.

fail Fail if a file derived from RelFileSpec has the wrong
permissions. Normally an exception is raised, which
might not always be a desirable behavior, since files
that do obey the access options might be found later
on in the search. When this option is given, the search
space is guaranteed to be exhausted. Note that the
effect of this option is the same as having the Prolog
flag fileerrors set to off.

solutions(Val)
i’Val’ =

first (default) As soon as a file derived from RelFileSpec
is found, commit to that file. Makes absolute_file_
name/3 determinate.

all Return each file derived from RelFileSpec that is found.
The files are returned through backtracking. This op-
tion is probably most useful in combination with the
option file_errors(fail).

Description

We can restrict our description to absolute_file_name/3, because absolute_file_name/2
can be defined as:

1032 Quintus Prolog

absolute_file_name(RelFileSpec, AbsFileName) :-
Options = [ignore_underscores(true),

file_type(prolog),
access(exist),
file_errors(fail)],

(absolute_file_name(RelFileSpec,
Options,
AbsFileName)

-> true
; absolute_file_name(RelFileSpec,

[],
AbsFileName)

).

Note that the semantics of absolute_file_name/2 has changed slightly since previous
releases. The difference is that absolute_file_name/2 now always succeeds and returns
an absolute filename, also when the RelFileSpec is a compound term. For instance, if the
relative filename is library(strings), you get an absolute filename, even if the library file
‘strings.pl’ doesn’t exist. In previous releases, this would have raised an exception. If it’s
important that an error is raised when the file doesn’t exist, absolute_file_name/3 with
option access(exist) can be used.

Four phase process: The functionality of absolute_file_name/3 is most easily described
as a four phase process, in which each phase gets an infile from the preceding phase, and
constructs one or more outfiles to be consumed by the succeeding phases. The phases are:

1. Syntactic rewriting
2. Underscore deletion
3. Extension expansion
4. Access checking

Each of the three first phases modifies the infile and produces variants that will be fed into
the succeeding phases. The functionality of all phases but the first are decided with the
option list. The last phase checks if the generated file exists, and if not asks for a new variant
from the preceding phases. If the file exists, but doesn’t obey the access mode option, a
permission exception is raised. If the file obeys the access mode option, absolute_file_
name/3 commits to that solution, unifies AbsFileName with the filename, and succeeds
determinately. For a thorough description, see below.

Note that the relative filename RelFileSpec may also be of the form PathAlias(FileSpec), in
which case the absolute filename of the file FileSpec in one of the directories designated by
PathAlias is returned (see the description of each phase below, and Section 8.6.1 [ref-fdi-fsp],
page 205).

Chapter 18: Prolog Reference Pages 1033

Description of each phase

(Phase 1) This phase translates the relative file specification given by RelFileSpec into the
corresponding absolute filename.

If RelFileSpec is a term with one argument, it is interpreted as PathAlias(FileSpec) and
outfile becomes the file as given by file_search_path/2. If file_search_path/2 has more
than one solution, outfile is unified with the solutions in the order they are generated. If
the succeeding phase fails, and there is no more solutions, an existence exception is raised.

If RelFileSpec = ’’, outfile is unified with the current working directory. If absolute_
file_name/3 is called from a goal in a file being loaded, the directory containing that file is
considered current working directory. If the succeeding phase fails, an existence exception
is raised.

If RelFileSpec is an atom, other than ’’, it’s divided into components. A component are
defined to be those characters:

1. Between the beginning of the filename and the end of the filename if there are no ‘/’s
in the filename.

2. Between the beginning of the filename and the first ‘/’.
3. Between any two successive ‘/’-groups (where a ‘/’-group is defined to be a sequence

of one or more ‘/’s with no non-‘/’ character interspersed.)
4. Between the last ‘/’ and the end of the filename.

To give the absolute filename, the following rules are applied to each component of RelFile-
Spec:

1. The component ‘~user’, if encountered as the first component of RelFileSpec, is re-
placed by the absolute name of the home directory of user. If user doesn’t exist, a
permission exception is raised.

2. The component ‘~’, if encountered as the first component of RelFileSpec, is replaced
by the absolute name of the home directory of the current user.

3. If neither (1) nor (2) applies, then RelFileSpec is prefixed with the current working
directory. If absolute_file_name/3 is called from a goal in a file being loaded, the
directory containing that file is considered current working directory.

4. The component ‘.’ is deleted.
5. The component ‘..’ is deleted together with the directory name syntactically preceding

it. For example, ‘a/b/../c’ is rewritten as ‘a/c’.
6. Two or more consecutive ‘/’s are replaced with one ‘/’.

When these rules have been applied, the absolute filename is unified with outfile. If the
succeeding phase fails, an existence exception is raised.

(Phase 2) See ignore_underscores option.

1034 Quintus Prolog

(Phase 3) See extensions and file_type options.

(Phase 4) See access option.

Exceptions

domain_error
Options contains an undefined option.

instantiation_error
Any of the Options arguments or RelFileSpec is not ground.

type_error
In Options or in RelFileSpec.

existence_error
RelFileSpec is syntactically valid but does not correspond to any file.

permission_error
RelFileSpec names an existing file but the file does not obey the given access
mode.

Comments

If an option is specified more than once the rightmost option takes precedence. This provides
for a convenient way of adding default values by putting these defaults at the front of the
list of options.

Note that the default behavior of absolute_file_name/3, that is when Options = [], does
not mimic the behavior of absolute_file_name/2.

If absolute_file_name/3 succeeds, and the file access option was one of {read, write,
append}, it is guaranteed that the file can be opened with open/[3,4]. If the access option
was exist, the file does exist, but might be both read and write protected.

Note that absolute_file_name/3 signals a permission error if a specified file refers to a
directory (unless the option access(none) is given.)

absolute_file_name/[2,3] is sensitive to the fileerrors flag, which causes the predicate
to fail rather than raising permission errors when reading files with wrong permission. This
has the effect that the search space always is exhausted.

directives in the extensions list. This causes the so specified access mode to be used as
default access mode from there on, and the subsequently generated file names will thus
be tried for this access mode, and not the default set by the access option. This can be
particularly useful when used in combination with the fileerrors flag mentioned above.
}

Chapter 18: Prolog Reference Pages 1035

If RelFileSpec contains a ‘..’ component, the constructed absolute filename might be wrong.
This occurs if the parent directory is not the same as the directory preceding ‘..’ in the
relative file name, which only can happen if a soft link is involved.

Examples

To check whether the file ‘my_text’ exists in the current user directory, with one of the
extensions ‘text’ or ‘txt’, and is both writable and readable:

absolute_file_name(’~/my_text’,
[extensions([’text’,’txt’]),
access([read,write])],
File).

To check if the Prolog file ‘same_functor’ exists in some library, and also check if it exists
under the name ‘samefunctor’:

absolute_file_name(library(same_functor),
[file_type(prolog), access(exist),
ignore_underscores(true)],
File).

See Also

file_search_path/2, library_directory/2 nofileerrors/0, fileerrors/0, prolog_
flag/[2,3]

library(files) library(directory)

1036 Quintus Prolog

18.3.17 add_advice/3 development

Synopsis

add_advice(+Goal,+Port,+Action)

Associate an action with entry to a port of a procedure.

Arguments

Goal callable [MOD]
a term to be unified against a calling goal.

Port one of [call,exit,done,redo,fail]
an atom indicating the port at which to check advice.

Action callable [MOD]
a goal to be called when advice is checked at the given port.

Description

add_advice/3 associates an advice action (a goal to be called) with a port of the stan-
dard Prolog debugger model (see Section 6.1.2 [dbg-bas-pbx], page 113). Variable bindings
made when Goal matches the incoming call carry across to the advice action, so incoming
arguments can be verified or processed by advice checking. Any number of advice actions
can be associated with a given Goal, Port, or Goal-Port combination. Putting advice on a
procedure does not automatically turn on checking of advice, so advice can be built into a
program and checked only when necessary. At each port, advice is checked before interac-
tion with the Prolog debugger, so the advice action can be used to control the debugger. It
is not currently possible to associate advice with Prolog system built-in predicates.

Advice added using a call to add_advice/3 will be checked after all preexisting advice for
that predicate and port.

This predicate is not supported in runtime systems.

Exceptions

instantiation_error
if an argument is not sufficiently instantiated.

type_error
if Goal or Action is not a callable, or a module prefix is not an atom, or Port
is not an atom.

Chapter 18: Prolog Reference Pages 1037

domain_error
if Port is not a valid port.

permission_error
if a specified procedure is built-in.

Tips

Using advice can streamline debugging of deep recursions and other situations where a given
call is made correctly many times but eventually goes amiss. Use of the Prolog debugger’s
spypoints is inconvenient because of the many calls before the error. If, for instance, it is
known that a certain bad datum is present in the particular call producing the error, it is
possible to use advice to set a spypoint only when that datum is seen:

:- add_advice(recurse(X,Y), call,
(bad_data(X), spy recurse/2)).

When advice checking is enabled, this piece of advice will take effect only if the first argu-
ment passed to recurse/2 is bad. When that is so, a spypoint will be placed on recurse/2
and execution will continue at the call port of recurse/2. Since advice is checked before
debugger interaction at the port, the debugger will immediately stop. There is no need to
interact with the debugger for all the calls that have valid data.

Advice can also provide a simple and flexible profiling tool by associating a counter with
various ports of each “interesting” predicate. The advice associated with each port and
predicate might map the name, arity, module and port to a counter value held in a dynamic
table. When advice checking is on and an advised predicate port is reached, the advice action
simply increments the counter. The counter table can then be inspected to determine the
number of times each predicate-port combination was reached.

Advice can also be used to associate “pre-conditions” and “post-conditions” to predicates.
“pre-conditions” can be associated with the “call” port of a predicate and “post-conditions”
can be associated with the “done” or “exit” port of a predicate. Checking for “pre” and
“post” conditions will be done only when checking advice is turned on.

See Also

remove_advice/3, current_advice/3, check_advice/[0,1], nocheck_advice/[0,1]

Section 6.4 [dbg-adv], page 141

1038 Quintus Prolog

18.3.18 add_spypoint/1 development

Synopsis

add_spypoint(+SpySpec)

sets a spypoint on the specified predicate or call.

Arguments

SpySpec compound
a specification of an individual spypoint. Two forms of spyspec are allowed:

predicate(Pred)
A spypoint on any call to Pred. Pred must be a skeletal predicate
specification, and may be module qualified.

call(Caller,Clausenum,Callee,Callnum)
A spypoint on the Callnum call to Callee in the body of the
Clausenum clause of Caller. Callee and Caller must be skeletal
predicate specifications. Callnum and Clausenum must be integers,
and begin counting from 1. Note that Callnum specifies a lexical
position, that is, the number of the occurrence of Callee counting
from the beginning of the body of the clause, and ignoring any
punctuation.

Description

add_spypoint/1 is used to set spypoints on predicates or on specific calls to predicates
while debugging.

add_spypoint/1 does not turn on the debugger. You have to explicitly turn on the debugger
with a call to debug/0 or trace/0.

You can add spypoints to predicates or calls that do not exist. If they later get defined the
spypoints get placed.

Turning off the debugger does not remove spypoints. Use remove_spypoint/1 to remove
these spypoints.

If you are using QUI, the more convenient way to add these spypoints is to use the QUI
based source debugger to select a particular goal or predicate and to use the Spypoints
menu.

This predicate is not supported in runtime systems.

Chapter 18: Prolog Reference Pages 1039

Exceptions

instantiation_error
SpySpec is not sufficiently instantiated.

type_error
SpySpec is not a compound term.

domain_error
SpySpec is not a predicate/1 or call/4 term.

See Also

current_spypoint/1, remove_spypoint/1, spy/1, nospy/1, debugging/0,

Section 6.1.1 [dbg-bas-bas], page 113.

1040 Quintus Prolog

18.3.19 append/3

Synopsis

append(+*List1, +*List2, +*List3)

True when all three arguments are lists, and the members of List3 are the members of List1
followed by the members of List2.

Arguments

List1 term a list

List2 term a list

List3 term a list consisting of List1 followed by List2

Description

Appends lists List1 and List2 to form List3:

| ?- append([a,b], [a,d], X).

X = [a,b,a,d]

| ?- append([a], [a], [a]).

no
| ?- append(2, [a], X).

no

Takes List3 apart:

Chapter 18: Prolog Reference Pages 1041

| ?- append(X, [e], [b,e,e]).

X = [b,e]

| ?- append([b|X], [e,r], [b,o,r,e,r]).

X = [o,r]

| ?- append(X, Y, [h,i]).

X = [],
Y = [h,i] ;

X = [h],
Y = [i] ;

X = [h,i],
Y = [] ;

no

Backtracking

Suppose L is bound to a proper list (see Section 12.2.2 [lib-lis-prl], page 529). That is, it
has the form [T1,. . . ,Tn] for some n. In that instance, the following things apply:

1. append(L, X, Y) has at most one solution, whatever X and Y are, and cannot backtrack
at all.

2. append(X, Y, L) has at most n+1 solutions, whatever X and Y are, and though it can
backtrack over these it cannot run away without finding a solution.

3. append(X, L, Y), however, can backtrack indefinitely if X and Y are variables.

Examples

The following examples are perfectly ordinary uses of append/3:

To enumerate adjacent pairs of elements from a list:

next_to(X, Y, /*in*/ List3) :-
append(_, [X,Y|_], List3).

To check whether Word1 and Word2 are the same except for a single transposition.
(append/5 in library(lists) would be better for this task.)

1042 Quintus Prolog

one_transposition(Word1, Word2) :-
append(Prefix, [X,Y|Suffix], Word1),
append(Prefix, [Y,X|Suffix], Word2).

| ?- one_transposition("fred", X).

X = "rfed" ;

X = "ferd" ;

X = "frde" ;

no

Given a list of words and commas, to backtrack through the phrases delimited by commas:

comma_phrase(List3, Phrase) :-
append(F, [’,’|Rest], List3),
!,
(Phrase = F
; comma_phrase(Rest, Phrase)
).

comma_phrase(List3, List3).

| ?- comma_phrase([this,is,’,’,um,’,’,an,

example], X).

X = [this,is] ;

X = [um] ;

X = [an,example] ;

no

See Also

length/2 Section 12.2 [lib-lis], page 528 library(lists)

Chapter 18: Prolog Reference Pages 1043

18.3.20 arg/3 meta-logical

Synopsis

arg(+ArgNum, +Term, -Arg)

unifies Arg with the ArgNumth argument of term Term.

Arguments

ArgNum integer
positive integer

Term nonvar
compound term

Arg term

Description

The arguments are numbered from 1 upwards.

Exceptions

instantiation_error
if ArgNum or Term is unbound.

type_error
if ArgNum is not an integer.

Example

| ?- arg(2, foo(a,b,c), X).

X = b

See Also

functor/3, =../2

Section 8.9.2 [ref-lte-act], page 239, Section 12.3.3 [lib-tma-arg], page 551

1044 Quintus Prolog

18.3.21 assert/[1,2]

Synopsis

These predicates add a dynamic clause, Clause, to the Prolog database. They optionally
return a database reference in Ref:

assert(+Clause)

assert(+Clause, -Ref)

Undefined whether Clause will precede or follow the clauses already in the database.

asserta(+Clause)

asserta(+Clause, -Ref)

Clause will precede all existing clauses in the database.

assertz(+Clause)

assertz(+Clause, -Ref)

Clause will follow all existing clauses in the database.

Arguments

Clause callable [MOD]
A valid dynamic Prolog clause.

Ref db reference
a database reference, which uniquely identifies the newly asserted Clause.

Description

Clause must be of the form:

Head

or Head :- Body

or M:Clause

where Head is of type callable and Body is a valid clause body. If specified, M must be an
atom.

assert(Head) means assert the unit-clause Head. The exact same effect can be achieved
by assert((Head :- true)).

Chapter 18: Prolog Reference Pages 1045

If Body is uninstantiated it is taken to mean call(Body). For example, (A) is equivalent
to (B):

| ?- assert((p(X) :- X)). (A)
| ?- assert((p(X) :- call(X))). (B)

Ref should be uninstantiated; a range exception is signalled if Ref does not unify with its
return value. This exception is signalled after the assert has been completed.

The procedure for Clause must be dynamic or undefined. If it is undefined, it is set to be
dynamic.

If you want to write a term of the form ‘Head :- Body’ as the argument to assert/1, you
must put it in parentheses, because the operator precedence of the :-/2 functor is greater
than 1000 (see Section 8.1.5.3 [ref-syn-ops-res], page 167). For example, (C) will cause a
syntax error; instead you should type (D):

| ?- assert(foo:-bar). (C)

| ?- assert((foo:-bar)). (D)

When an assert takes place, the new clause is immediately seen by any subsequent call to
the procedure. However, if there is a currently active call of the procedure at the time
the clause is asserted, the new clause is not encountered on backtracking by that call.
See Section 8.14.7 [ref-mdb-exa], page 292 for further explanation of what happens when
currently running code is modified.

Exceptions

instantiation_error
if Head (in Clause) or M is uninstantiated.

type_error
if Head is not of type callable, or if M is not an atom, or if Body is not a valid
clause body.

permission_error
if the procedure corresponding to Head is built-in or has a static definition.

context_error
if a cut appears in the if-part of an if-then-else.

range_error
if Ref does not unify with the returned database reference.

See Also

abolish/[1,2], dynamic/1, erase/1, multifile_assertz/1 retract/1, retractall/1,
clause/[2,3].

1046 Quintus Prolog

Section 8.14.3 [ref-mdb-dre], page 288

Chapter 18: Prolog Reference Pages 1047

18.3.22 assign/2

Synopsis

assign(+LHS, +Expr)

Evaluates Expr as an arithmetic expression, and stores the value in the memory location
and format given by LHS.

Arguments

LHS compound
One of the following terms
• integer_8_at(L_Exp)

• integer_16_at(L_Exp)

• unsigned_8_at(L_Exp)

• unsigned_16_at(L_Exp)

• integer_at(L_Exp)

• address_at(L_Exp)

• single_at(L_Exp)

• double_at(L_Exp)

L Exp expr
a valid arithmetic expression

Expr expr A valid arithmetic expression

Description

Can be used to poke data directly into memory. Evaluates L Exp in LHS and Expr as
arithmetic expressions. The functor of the first argument describes the type of data to be
stored: integer_8_at/1 will store a signed 8 bit integer, single_at/1 will store a single
precision floating point number, etc. For more structured ways of doing this, see the Structs
and Objects packages.

The only proper addresses that should be assigned to are ones that are obtained through
the foreign interface. assign/2 is a very primitive built-in and users should have only very
rare occasions to use it. To directly access and change data structures represented in foreign
languages (like C) users should look at using the Structs and Objects packages.

Both arguments can be unbound at compile time. But it is more efficient if LHS is bound
at compile time. Also note that attempting to overwrite improper locations of memory can

1048 Quintus Prolog

cause “Segmentation faults” or “Bus errors” and overwriting Prolog memory can result in
undesirable behaviour long after the assignment is done.

Exceptions

instantiation_error
LHS or Expr is not ground

type_error
Expr is not a proper arithmetic expression or
L Exp in LHS is not a proper arithmetic expressions or
Expr is of a different type than what is specified by LHS

domain_error
LHS is not one of the above listed terms

Examples

foo.c

static int counter;
int * init_counter()
{

counter = 0;
return &counter;

}

foo.pl

foreign(init_counter, c, init_counter([-address])).

get_counter(Counter, Count) :-
Count is integer_at(Counter).

incr_counter(Counter) :-
assign(integer_at(Counter),
integer_at(Counter)+1).

| ?- init_counter(C), incr_counter(C), get_counter(C, Count1),

incr_counter(C), incr_counter(C), get_counter(C, Count2).

C = 1418304,
Count1 = 1,
Count2 = 3

| ?-

Chapter 18: Prolog Reference Pages 1049

See Also

Section 8.8.4 [ref-ari-aex], page 235 library(structs), library(objects)

1050 Quintus Prolog

18.3.23 at_end_of_file/[0,1]

Synopsis

at_end_of_file

at_end_of_file(+Stream)

Tests whether end of file has been reached for the current input stream or for the input
stream Stream.

Arguments

Stream stream object a valid Prolog input stream

Description

at_end_of_file/[0,1] checks if end of file has been reached for the specified input stream.
An input stream reaches end of file when all characters except the file border code (-1 by
default) of the stream have been read. It remains at end of file after the file border code
has been read.

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

existence_error
Some operating system dependent error occurred in reading.

Comments

at_end_of_file/[0,1] peeks ahead for next input character if there is no character avail-
able on the buffer of the specified input stream.

Coding with at_end_of_file/[0,1] to check for end of file condition is more portable
among different operating systems than checking end of file by the character code (for
example, peek char(-1)).

Chapter 18: Prolog Reference Pages 1051

See Also

at_end_of_line/[0,1].

1052 Quintus Prolog

18.3.24 at_end_of_line/[0,1]

Synopsis

at_end_of_line

at_end_of_line(+Stream)

Test whether end of line (record) has been reached for the current input stream or for the
input stream Stream.

Arguments

Stream stream object
a valid Prolog input stream

Description

at_end_of_line/[0,1] succeeds when end of line (record) is reached for the specified input
stream. An input stream reaches end of line when all the characters except the line border
code of the current line have been read.

at_end_of_line/[0,1] is also true whenever at_end_of_file/[0,1] is true.

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

existence_error
Some operating system dependent error occurred in reading.

Comments

Coding with at_end_of_line/[0,1] to check for end of line is more portable among dif-
ferent operating systems than checking end of line by the input character code.

See Also

at_end_of_file/[0,1], skip_line/[0,1], get0/[1,2], set_input/1

Chapter 18: Prolog Reference Pages 1053

18.3.25 atom/1 meta-logical

Synopsis

atom(+Term)

Term is currently instantiated to an atom.

Arguments

Term term

Examples

| ?- atom(pastor).

yes
| ?- atom(Term).

no
| ?- atom(1).

no
| ?- atom(’Time’).

yes

See Also

atomic/1, number/1, var/1, compound/1, callable/1, nonvar/1 simple/1

Section 8.1.2.4 [ref-syn-trm-ato], page 160

1054 Quintus Prolog

18.3.26 atom_chars/2

Synopsis

atom_chars(+Atom, -Chars)

atom_chars(-Atom, +Chars)

Chars is the list of ASCII character codes comprising the printed representation of Atom.

Arguments

Chars chars
the list of ASCII character codes comprising the printed representation of Atom.

Atom atom
will be instantiated to an atom containing exactly those characters, even if the
characters look like the printed representation of a number.

Description

Initially, either Atom must be instantiated to an atom, or Chars must be instantiated to a
proper list of character codes (containing no variables).

Any atom that can be read or written by Prolog can be constructed or decomposed by
atom_chars/2.

Comment

If you deal with chars values often, you may find it useful to load library(printchars).
Once this is done, a list of character codes will be written by print/1 as double-quoted
text.

Exceptions

instantiation_error
type_error
representation_error

Chapter 18: Prolog Reference Pages 1055

See Also

print/1, library(printchars)

1056 Quintus Prolog

18.3.27 atomic/1 meta-logical

Synopsis

atomic(+Term)

Succeeds if Term is currently instantiated to either an atom number or a db reference.

Arguments

Term term

Example

| ?- atomic(9).

yes
| ?- atomic(a).

yes
| ?- atomic("a").

no
| ?- assert(foo(1), Ref), atomic(Ref).

Ref = ’$ref’(1195912,1)

See Also

atom/1, number/1, var/1, compound/1, callable/1, nonvar/1 simple/1

Chapter 18: Prolog Reference Pages 1057

18.3.28 bagof/3

Synopsis

bagof(+Template, +*Generator, *Set)

Like setof/3 except that the list (or alternative lists) returned will not be ordered, and
may contain duplicates. This relaxation saves time and space in execution.

Arguments

Template term
Generator callable [MOD]

a goal to be proved as if by call/1.

Set list of term
non-empty set

Examples

See findall/3 for examples that illustrate the differences among findall/3, setof/3, and
bagof/3.

Exceptions

As for call/1, and additionally:

resource_error
Template contains too many free variables.

See Also

findall/3, setof/3, ^/2

Section 8.15 [ref-all], page 295

1058 Quintus Prolog

18.3.29 break/0 development

Synopsis

break

causes the current execution to be interrupted; enters next break level.

Description

The first time break/0 is called, it displays the message

% Beginning break level 1

| ?-

The system is then ready to accept input as though it were at top level. If another call
to break/0 is encountered, it moves up to level 2, and so on. The break level is displayed
in the editor mode line when you are running under the editor interface; otherwise it is
displayed on a separate line before each top-level prompt, as follows:

[1]
| ?-

To close a break level and resume the execution that was suspended, type the end-of-file
character applicable on your system (default ^D). break/0 then succeeds, and execution
of the interrupted program is resumed. Alternatively, the suspended execution can be
abandoned by interrupting with a ^C and using the q option.

Changes can be made to a running program while in a break level. Any change made to a
procedure will take effect the next time that procedure is called. See Section 8.4.3 [ref-lod-
rpx], page 191, for details of what happens if a procedure that is currently being executed
is redefined. When a break level is entered, the debugger is turned off (although leashing
and spypoints are retained). When a break level is exited, the debugging state is restored
to what it was before the break level was entered.

Often used via the debugging option b.

This predicate is not supported in runtime systems.

See Also

abort/0, halt/[0,1], QP_toplevel()

Chapter 18: Prolog Reference Pages 1059

18.3.30 C/3

Synopsis

’C’(+-List1, +-Terminal, +-List2)

In a grammar rule: Terminal connectsList1 and List2. It is defined by the clause ’C’([T|S],
T, S).

Arguments

List1 term

List2 term

Terminal term

Description

Analyzes List1 into head and tail, and creates the tail, List2.

’C’/3 is not normally of direct use to the user. If its arguments are not of the expected
form, it simply fails.

Examples

| ?- ’C’([the, slithy, toves, did, grob], Head, Tail).

Head = the,
Tail = [slithy,toves,did,grob] ;

no

See examples in Section 8.16.4 [ref-gru-tra], page 301.

See Also

Section 8.16 [ref-gru], page 298

1060 Quintus Prolog

18.3.31 call/1

Synopsis

call(+*P)

Proves(executes) P.

Arguments

P callable [MOD]

Description

If P is instantiated to an atom or compound term, then the goal call(P) is executed exactly
as if that term appeared textually in its place, except that any cut (‘!’) occurring in P only
cuts alternatives in the execution of P.

Exceptions

instantiation_error
P is not instantiated enough.

type_error
A module prefix is not an atom, or a goal is not a callable.

context_error
A cut occurred in the if-part of an if-then-else.

existence_error
An undefined predicate was called.

Chapter 18: Prolog Reference Pages 1061

18.3.32 callable/1 meta-logical

Synopsis

callable(+Term)

Term is currently instantiated to a term that call/1 would take as an argument and not
give a type error (an atom or a compound term).

Arguments

Term term

Examples

| ?- callable(a).

yes
| ?- callable(a(1,2,3)).

yes
| ?- callable([1,2,3]).

yes
| ?- callable(1.1).

no

See Also

atom/1, atomic/1, number/1, var/1, compound/1, nonvar/1, simple/1

1062 Quintus Prolog

18.3.33 character_count/2

Synopsis

character_count(+Stream, -Count)

Obtains the total number of characters either input from or output to the open stream
Stream and unifies it with Count.

Arguments

Stream stream object
a valid open Prolog stream

Count integer
the resulting character count of the stream

Description

A freshly opened stream has a character count of 0. When a character is input from or
output to a non-tty Prolog stream, the character count of the Prolog stream is increased by
one. Character count for a tty stream reflects the total character input from or output to
the tty since the tty is opened to any stream. See Section 8.7.8.1 [ref-iou-sos-spt], page 230,
for details on the use of this predicate on a stream that is directed to the user’s terminal.

A nl/[0,1] operation also increases the character count of a stream by one unless the line
border code (end of line option in open/4) is less than 0.

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226).

See Also

line_count/2, line_position/2, stream_position/[2,3]. Section 8.7 [ref-iou], page 214

Chapter 18: Prolog Reference Pages 1063

18.3.34 check_advice/[0,1] development

Synopsis

check_advice

check_advice(+PredSpecs)

Enable advice checking.

Arguments

PredSpecs gen pred spec tree [MOD]
A list of predicate specifications.

Description

check_advice/1 is used to enable advice checking on all predicates specified in PredSpecs.
check_advice/0 enables advice checking on all predicates for which advice has been added.
When advice checking is enabled for a predicate, and execution of that predicate reaches
an advised port, the term carrying the current instantiation of the Prolog call is unified
against the goal term of the advice. If the two unify, the action associated with the goal
and port is executed then failed over. If there are multiple pieces of advice associated with
the goal and port, they are sequentially called and failed over.

This predicate is not supported in runtime systems.

Exceptions

instantiation_error
if the argument is not ground.

type_error
if a Name is not an atom or an Arity not an integer.

domain_error
if a PredSpec is not a valid procedure specification, or if an Arity is specified
as an integer outside the range 0-255.

permission_error
if a specified procedure is built-in.

1064 Quintus Prolog

Tips

check_advice/0 behaves as though implemented by

check_advice :-
current_advice(Goal, Port, Action),
functor(Goal, Name, Arity),
check_advice(Name/Arity),
fail.

check_advice.

See Also

add_advice/3, remove_advice/3, current_advice/3, nocheck_advice/[0,1]

Section 6.4 [dbg-adv], page 141

Chapter 18: Prolog Reference Pages 1065

18.3.35 clause/[2,3]

Synopsis

clause(+*Head, *Body)

clause(-Head, -Body, +Ref)

clause(+*Head, *Body, *Ref)

Searches the database for a clause whose head matches Head and whose body matches
Body.

Arguments

Head callable [MOD]
a term whose functor names a dynamic procedure.

Body callable
compound term or true

Ref db reference
a database reference

Description

In the case of unit-clauses, Body is unified with true.

If a procedure consists entirely of unit-clauses then there is no point in calling clause/2 on
it. It is simpler and faster to call the procedure.

In clause/3, either Head or Ref must be instantiated. If Ref is instantiated, (Head :- Body

) is unified with the clause identified by Ref. (If this clause is a unit-clause, Body is unified
with true.)

If the predicate did not previously exist, then it is created as a dynamic predicate and
clause/2 fails. If Ref is not instantiated, clause/3 behaves exactly like clause/2 except
that the database reference is returned.

By default, clauses are accessed with respect to the source module.

1066 Quintus Prolog

Backtracking

Can be used to backtrack through all the clauses matching a given Head and Body. It fails
when there are no (or no further) matching clauses in the database.

Exceptions

instantiation_error
Neither Head nor Ref is instantiated.

type_error
Head is not of type callable
Ref is not a syntactically valid database reference.

permission_error
Procedure is static (not dynamic).

existence_error
Ref is a well-formed database reference but does not correspond to an existing
clause or record.

Comments

If clause/[2,3] is called on an undefined procedure it fails, but before failing it makes the
procedure dynamic. This can be useful if you wish to prevent unknown procedure catching
from happening on a call to that procedure.

It is not a limitation that Head is required to be instantiated in clause(Head, Body),
because if you want to backtrack through all clauses for all dynamic procedures this can be
achieved by:

| ?- predicate_property(P,(dynamic)), clause(P,B).

If there are clauses with a given name and arity in several different modules, or if the module
for some clauses is not known, the clauses can be accessed by first finding the module(s) by
means of current_predicate/2. For example, if the procedure is f/1:

| ?- current_predicate(_,M:f(_)), clause(M:f(X),B).

clause/3 will only access clauses that are defined in, or imported into, the source module,
except that the source module can be overridden by explicitly naming the appropriate
module. For example:

Chapter 18: Prolog Reference Pages 1067

| ?- assert(foo:bar,R).

R = ’$ref’(771292,1)

| ?- clause(H,B,’$ref’(771292,1)).

no
| ?- clause(foo:H,B,’$ref’(771292,1)).

H = bar,
B = true

| ?-

Accessing a clause using clause/2 uses first argument indexing when possible, in just the
same way that calling a procedure uses first argument indexing. See Section 2.5.3 [bas-eff-
ind], page 36.

See Also

instance/2, assert/[1,2], dynamic/1, retract/1

Section 8.14.3 [ref-mdb-dre], page 288

1068 Quintus Prolog

18.3.36 close/1

Synopsis

close(+Stream)

closes the stream corresponding to Stream.

Arguments

Stream stream object
stream or file specification

Description

If Stream is a stream object, then if the corresponding stream is open, it will be closed;
otherwise, close/1 succeeds immediately, taking no action.

If Stream is a file specification, the corresponding stream will be closed, provided that the
file was opened by see/1 or tell/1.

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

permission_error
File not opened by see/1 or tell/1.

domain_error
Stream is neither a filename nor a stream.

Examples

In this example, ‘foo’ will be closed:

see(foo),
...
close(foo)

However, in this example, a permission error will be raised and ‘foo’ will not be closed:

Chapter 18: Prolog Reference Pages 1069

open(foo, read, S),
...
close(foo)

Here, close(S) should have been used.

See Also

see/1, tell/1, open/[3,4], write_canonical/[1,2]

1070 Quintus Prolog

18.3.37 compare/3

Synopsis

compare(-Order, +Term1, +Term2)

succeeds if the result of comparing terms Term1 and Term2 is Order

Arguments

Order one of [<,=,>]

‘=’ if Term1 is identical to Term2,

‘<’ if Term1 is before Term2 in the standard order,

‘>’ if Term1 is after Term2 in the standard order.

Term1 term
Term2 term

Description

The standard total order is as follows. For further details see Section 8.9.7.2 [ref-lte-cte-sot],
page 242.

variables @< database references @< numbers @< atoms @< compound terms

The goal (A) is equivalent to (B):

| ?- compare(=, Term1, Term2). (A)

|?- (Term1 == Term2). (B)

The following query succeeds, binding R to <, because 1 comes before 2 in the standard
order.

| ?- compare(R, 1, 2).

R = <

If Order is supplied, and is not one of <, >, or =, compare/3 simply fails.

Chapter 18: Prolog Reference Pages 1071

See Also

@</2, @=</2, @>/2, @>=/2, QP_compare() Section 8.9 [ref-lte], page 238

1072 Quintus Prolog

18.3.38 compile/1

Synopsis

compile(+Files)

Compiles the specified Prolog source file(s) into memory.

Arguments

Files file spec or list of file spec [MOD]
a file specification or a list of file specifications; a ‘.pl’ extensions may be
omitted in file specifications.

Description

Reads Prolog clauses from the specified file or files and adds them to the Prolog database,
after first deleting any previous versions of the predicates they define. Clauses for a single
predicate must all be in the same file unless that predicate is declared to be multifile.

If there are any directives in the file being loaded, that is, any terms with principal functor
:-/1 or ?-/1, then these are executed as they are encountered.

When compile/1 is called from an embedded command in a file being compiled by qpc,
the specified files are compiled from source into QOF.

If desired, clauses and directives can be transformed as they are loaded. This is done by
providing a definition for term_expansion/2 (see load_files/[1,2]).

When compile/1 is called in a runtime system, all predicates are loaded as dynamic pred-
icates. The reason for this is that the compiler is not available in runtime systems.

This predicate is defined as if by:

compile(Files) :-
load(Files, [load_type(compile)]).

For further details on loading files, see Section 8.4 [ref-lod], page 189.

Exceptions

Same as for load_files/[1,2]

Chapter 18: Prolog Reference Pages 1073

See Also

multifile/1, dynamic/1, no_style_check/1,
style_check/1, nofileerrors/0, fileerrors/0, source_file/1, term_expansion/2,
prolog_load_context/2, load_files/[1,2], ensure_loaded/1, use_module/[1,2,3],
volatile/1, initialization/1.

1074 Quintus Prolog

18.3.39 compound/1 meta-logical

Synopsis

compound(+Term)

Term is currently instantiated to a compound term.

Arguments

Term term

Examples

| ?- compound(9).

no
| ?- compound(a(1,2,3)).

yes
| ?- compound("a").

yes
| ?- compound([1,2]).

yes

See Also

atom/1, atomic/1, number/1, var/1, callable/1, nonvar/1, simple/1

Chapter 18: Prolog Reference Pages 1075

18.3.40 consult/1

Synopsis

consult(+Files)

Same as compile/1

Arguments

Files file spec or list of file spec [MOD]

See Also

compile/1, load_files/[1,2].

1076 Quintus Prolog

18.3.41 copy_term/2 meta-logical

Synopsis

copy_term(+Term, -Copy)

Makes a copy of +Term in which all variables have been replaced by new variables that
occur nowhere outside the newly created term.

Arguments

Term term
Copy term

Description

• This is precisely the effect that would have been obtained from the definition below,
although the system implementation of copy_term/2 is more efficient.

copy_term(Term, Copy) :-
recorda(copy, copy(Term), DBref),
instance(DBref, copy(Temp)),
erase(DBref),
Copy = Temp.

• When you call clause/[2,3] or instance/2, you get a new copy of the term stored
in the database, in precisely the same sense that copy_term/2 gives you a new copy.

• Used in writing interpreters for logic-based languages.

Example

• A naive way to attempt to find out whether one term is a copy of another:
identical_but_for_variables(X, Y) :-

\+ \+ (
numbervars(X, 0, N),
numbervars(Y, 0, N),
X = Y

).

This solution is sometimes sufficient, but will not work if the two terms have any
variables in common.

• If you want the test to succeed even when the two terms do have some variables in
common, you need to copy one of them; for example,

Chapter 18: Prolog Reference Pages 1077

identical_but_for_variables(X, Y) :-
\+ \+ (

copy_term(X, Z),
numbervars(Z, 0, N),
numbervars(Y, 0, N),
Z = Y

).

See Also

atomic/1, float/1, integer/1, nonvar/1, number/1, var/1, simple/1, compound/1,
callable/1, ground/1, simple/1, db_reference/1.

1078 Quintus Prolog

18.3.42 current_advice/3 development

Synopsis

current_advice(*Goal, *Port, *Action)

Provides a means for checking what advice is present.

Arguments

Goal callable [MOD]
any term.

Port one of [call,exit,done,redo,fail]
Action callable [MOD]

any term.

Description

Unifies Goal with the goal term, Port with the port, and Action with the action term of
currently existing user-defined advice. None of the three arguments need to be instantiated.

This predicate is not supported in runtime systems.

Tips

To backtrack through all the advice that exists for a predicate mypred/2, you can use the
goal

| ?- current_advice(mypred(_,_), Port, Action).

If you are only interested in the advice for mypred/2 on the call port, use

| ?- current_advice(mypred(_,_), call, Action).

To determine what predicates you told to call format/2, use

| ?- current_advice(Goal, Port, format(_,_)).

See Also

add_advice/3, remove_advice/3, check_advice/[0,1], nocheck_advice/[0,1]

Chapter 18: Prolog Reference Pages 1079

18.3.43 current_atom/1 meta-logical

Synopsis

current_atom(+Atom)

current_atom(*Atom)

Atom is a currently existing atom.

Arguments

Atom atom

Backtracking

If Atom is uninstantiated, current_atom/1 can be used to enumerate all known atoms.
The order in which atoms are bound to Atom on backtracking corresponds to the times of
their creation.

Comments

Note that the predicate atom/1 is recommended for determining whether a term is an atom,
as current_atom/1 will succeed if Atom is uninstantiated as well.

See Also

atom/1

1080 Quintus Prolog

18.3.44 current_input/1

Synopsis

current_input(-Stream)

unifies Stream with the current input stream.

Arguments

Stream stream object

See Also

open/[3,4], see/1, seeing/1

Section 8.7.7.5 [ref-iou-sfh-cis], page 228

Chapter 18: Prolog Reference Pages 1081

18.3.45 current_key/2

Synopsis

current_key(*KeyName, *KeyTerm)

Succeeds when KeyName is the name of KeyTerm, and KeyTerm is a recorded key.

Arguments

KeyName atomic
either of:
• KeyTerm, if KeyTerm is an atom or an integer; or
• the principal functor of KeyTerm, if KeyTerm is a compound term.

KeyTerm nonvar
is an integer, atom, or compound term, which is the key for a currently recorded
term.

Description

If KeyName is not an atom, an integer, or an unbound variable, current_key/2 fails. If
KeyTerm is not a current key, current_key/2 simply fails.

See Also

recorda/3, recorded/3, recordz/3,

1082 Quintus Prolog

18.3.46 current_module/[1,2]

Synopsis

current_module(+ModuleName)

current_module(*ModuleName)

Queries whether a module is “current” or backtracks through all of the current modules.

current_module(+ModuleName, -AbsFile)

current_module(-ModuleName, +AbsFile)

current_module(*ModuleName, *AbsFile)

Associates modules with their module-files.

Arguments

ModuleName atom
AbsFile atom

absolute filename

Description

A loaded module becomes “current” as soon as some predicate is defined in it, and a module
can never lose the property of being current.

It is possible for a current module to have no associated file, in which case current_
module/1 will succeed on it but current_module/2 will fail. This arises for the special mod-
ule user and for dynamically-created modules (see Section 8.13.9 [ref-mod-dmo], page 276).

If its arguments are not correct, or if Module has no associated file, current_module/2
simply fails.

Backtracking

current_module/1 backtracks through all of the current modules. The following command
will print out all current modules:

| ?- current_module(Module), writeq(Module), nl, fail.

current_module/2 backtracks through all of the current modules and their associated files.

Chapter 18: Prolog Reference Pages 1083

Exceptions

type_error

See Also

module/1, module/2

1084 Quintus Prolog

18.3.47 current_output/1

Synopsis

current_output(-Stream)

Unifies Stream with the current output stream.

Arguments

Stream stream object

See Also

open/[3,4], tell/1, telling/1

Chapter 18: Prolog Reference Pages 1085

18.3.48 current_op/3

Synopsis

current_op(+Precedence, +Type, +Name)

current_op(*Precedence, *Type, *Name)

Succeeds when the atom Name is currently an operator of type Type and precedence Prece-
dence.

Arguments

Precedence integer
if instantiated, must be an integer in the range 1 to 1200.

Type one of [xfx, xfy, yfx, fx, xf, yf]
if instantiated.

Name atom
atom or a list of atoms if instantiated.

Description

None of the arguments need be instantiated at the time of the call; that is, this predicate can
be used to find the precedence or type of an operator or to backtrack through all operators.

To add or remove an operator, use op/3.

Exceptions

type_error
Name not an atom or Type not an atom or Precedence not an integer

domain_error
Precedence not between 1-1200, or Type not one of listed atoms

See Also

op/3

Section 8.1.5 [ref-syn-ops], page 165.

1086 Quintus Prolog

18.3.49 current_predicate/2

Synopsis

current_predicate(-Name, +Term)

current_predicate(*Name, *Term)

Unifies Name with the name of a user-defined predicate, and Term with the most general
term corresponding to that predicate.

Arguments

Name atom
Term callable [MOD]

Description

If you have loaded the predicates foo/1 and foo/3 into Prolog, current_predicate/2
would return the following:

| ?- current_predicate(foo, T).

T = foo(_116) ;

T = foo(_116,_117,_118) ;

no

Backtracking

• The following goal can be used to backtrack through every predicate in your program.

| ?- current_predicate(Name, Module:Term).

• If a module is specified, current_predicate/2 only succeeds for those predicates that
are defined in the module. It fails for those predicates that are imported into a module.

| ?- current_predicate(_, m:P).

will backtrack through all predicates P that are defined in module m. To backtrack
through all predicates imported by a module use predicate_property/2 (see Sec-
tion 8.10.1 [ref-lps-ove], page 245).

Chapter 18: Prolog Reference Pages 1087

Tip

To find out whether a predicate is built-in, use predicate_property/2.

% Is there a callable predicate named gc?

| ?- current_predicate(gc, Term).

no
| ?- predicate_property(gc, Prop)

Prop = built_in

See Also

predicate_property/2

1088 Quintus Prolog

18.3.50 current_spypoint/1 development

Synopsis

current_spypoint(*Spyspec)

Determines if there is currently a spypoint on a particular predicate or call, or enumerates
all current spypoints.

Arguments

Spyspec compound
can be any Prolog term. Prolog will try to unify it to terms of the form:

predicate(Pred)
A spypoint on any call to Pred. Pred will be a skeletal predicate
specification, and may be module qualified.

call(Caller,Clausenum,Callee,Callnum)
A spypoint on the Callnum call to Callee in the body of the
Clausenum clause of Caller. Callee and Callnum will be skeletal
predicate specifications Section 6.1.4.2 [dbg-bas-tra-spy], page 117.
Callnum and Clausenum will be integers, and begin counting from
1. Note that Callnum specifies a lexical position, that is, the num-
ber of the occurrence of Callee counting from the beginning of the
body of the clause, and ignoring any punctuation.

Description

This predicate is not supported in runtime systems.

Backtracking

Can generate all current spypoints on backtracking.

See Also

add_spypoint/1, remove_spypoint/1, spy/1, nospy/1, debugging/0

Section 6.1.1 [dbg-bas-bas], page 113.

Chapter 18: Prolog Reference Pages 1089

18.3.51 current_stream/3

Synopsis

current_stream(-AbsFile, -Mode, +Stream)

current_stream(*AbsFile, *Mode, *Stream)

Stream is a stream, which is currently open on file AbsFile in mode Mode.

Arguments

AbsFile atom
absolute filename.

Mode one of [read, write, append]
Stream stream object

a term, which will be unifed with an open stream.

Description

• None of the arguments need be initially instantiated.
• Ignores the three special streams for the standard input, output, and error channels.

Backtracking

Can be used to backtrack through all open streams.

See Also

open/[3,4], see/1, tell/1

Section 8.7.7.7 [ref-iou-sfh-bos], page 229

1090 Quintus Prolog

18.3.52 db_reference/1 meta-logical

Synopsis

db_reference(+Term)

Term is a db reference.

Arguments

Term term

See Also

recorda/3, assert/2, atom/1, atomic/1, number/1, var/1, compound/1, callable/1,
nonvar/1, simple/1

Chapter 18: Prolog Reference Pages 1091

18.3.53 debug/0 development

Synopsis

debug

Turns on the debugger in debug mode.

Description

debug/0 turns the debugger on and sets it to debug mode. Turning the debugger on in debug
mode means that it will stop at the next spypoint encountered in the current execution.

The effect of this predicate can also be achieved by typing the letter d after a ^c interrupt
(see Section 8.11.1 [ref-iex-int], page 250).

If you are runnning Prolog with QUI then debug/0 will cause the debugger window to be
popped open.

This predicate is not supported in runtime systems.

See Also

spy/1,add_spypoint/1,trace/0, nodebug/0

1092 Quintus Prolog

18.3.54 debugging/0 development

Synopsis

debugging

Prints out current debugging state

Description

debugging/0 displays information on the terminal about the current debugging state. It
shows

• The top-level state of the debugger, which is one of

debug The debugger is on but will not show anything or stop for user interaction
until a spypoint is reached.

trace The debugger is on and will show everything. As soon as you type a goal,
you will start seeing a debugging trace. After printing each trace message,
the debugger may or may not stop for user interaction: this depends on
the type of leashing in force (see below).

zip The debugger is on but will not show anything or stop for user interaction
until a spypoint is reached. The debugger does not even keep any infor-
mation of the execution of the goal till the spypoint is reached and hence
you will not be able to see the ancestors of the goal when you reach the
spypoint.

off The debugger is off.

The top-level state can be controlled by the predicates debug/0, nodebug/0, trace/0,
notrace/0 and prolog_flag/3.

• The type of leashing in force. When the debugger prints a message saying that it is
passing through a particular port (one of Call, Exit, Head, Done, Redo, or Fail) of
a particular procedure, it stops for user interaction only if that port is leashed. The
predicate leash/1 can be used to select which of the seven ports you want to be leashed.

• All the current spypoints. Spypoints are controlled by the predicates spy/1, nospy/1,
add_spypoint/1, remove_spypoint/1 and nospyall/0.

This predicate is not supported in runtime systems.

Chapter 18: Prolog Reference Pages 1093

18.3.55 discontiguous/1 declaration

Synopsis

:- discontiguous +PredSpec

Declares the clauses of the predicates defined by PredSpecs to be discontiguous in the source
file (suppresses compile-time warnings).

Arguments

PredSpec gen pred spec tree
a skeletal predicate specification

Exceptions

type_error
context_error

“declaration appeared in query”

See Also

Section 8.14.2 [ref-mdb-dsp], page 287.

1094 Quintus Prolog

18.3.56 display/1

Synopsis

display(+Term)

Displays Term on the standard output stream .

Arguments

Term term

Description

Ignores operator declarations and shows all compound terms in standard prefix form.

Tips

display/1 is a good way of finding out how Prolog parses a term with several operators.
display(Term) is equivalent to

write_term(Term, [quoted(false),ignore_ops(true)])

Output is not terminated by a full-stop; therefore, if you want the term to be acceptable as
input to read/[1,2], you must send the terminating full-stop to the output stream yourself.
display/1 does not put quotes around atoms and functors.

Example

| ?- display(a+b).
+(a,b)
yes

| ?- read(X), display(X), nl.

|: a + b * c.

+(a,*(b,c))

X = a+b*c

| ?-

Chapter 18: Prolog Reference Pages 1095

See Also

write/[1,2], write_term/[2,3]

1096 Quintus Prolog

18.3.57 dynamic/1 declaration

Synopsis

:-dynamic +PredSpecs

Declares the predicates in PredSpecs to be dynamic.

Arguments

PredSpecs pred spec forest
A single predicate specification of the form Name/Arity, or a sequence of pred-
icate specifications separated by commas. Name must be an atom and Arity
an integer in the range 0..255. [MOD]

Description

Exceptions

type_error
context_error

If the declaration contradicts previous declaration or clauses for the same pred-
icate in the file; or
cannot call dynamic/1 as a goal.

permission_error
Cannot redefine built-in predicate, dynamic/1.

Comments

To declare a grammar rule gram/n dynamic, the arity of PredSpec must be n+2.

See Also

Section 8.14.2 [ref-mdb-dsp], page 287.

Chapter 18: Prolog Reference Pages 1097

18.3.58 ensure_loaded/1

Synopsis

ensure_loaded(+Files)

Load the specified Prolog source and/or QOF file(s) into memory, if not already loaded and
up to date.

Arguments

Files file spec or list of file spec [MOD]
a file specification or a list of file specifications; a ‘.pl’ or ‘.qof’ extension may
be omitted in a file specification.

Description

Loads each of the specified files except for files that have previously been loaded and that
have not been changed since they were last loaded.

In the case of non-module-files, a file is not considered to have been previously loaded if it
was loaded into a different module. For restrictions on non-module QOF-files, and how they
can be loaded, see load_files/[1,2]. In this case the file is loaded again and a warning
message is printed to let you know that two copies of the file have been loaded (into two
different modules). If you want two copies of the file, you can avoid the warning message by
changing the ensure_loaded/1 command to a compile/1 command. If you do not want
multiple copies of the file, make the file a module-file.

When ensure_loaded/1 is called from an embedded command in a file being compiled by
qpc, each specified file is compiled from source into QOF unless there is already a QOF file
that is more recent than the source.

When ensure_loaded/1 is called in a runtime system, all predicates will be loaded as
dynamic predicates and therefore this code will run slower. The reason for this is that the
compiler is not available in runtime systems.

This predicate is defined as:

ensure_loaded(Files) :-
load_files(Files, [if(changed),

load_type(latest)]).

For further details on loading files, see Section 8.4 [ref-lod], page 189.

1098 Quintus Prolog

Exceptions

instantiation_error
M or Files is not ground.

type_error
In M or in Files.

existence_error
A specified file does not exist. If the fileerrors flag is off, the predicate fails
instead of raising this exception.

permission_error
A specified file is protected. If the fileerrors flag is off, the predicate fails
instead of raising this exception.

See Also

compile/1, load_files/[1,2].

Chapter 18: Prolog Reference Pages 1099

18.3.59 erase/1

Synopsis

erase(+Ref)

Erases from the database the dynamic clause or recorded term referenced by Ref.

Arguments

Ref db reference

Description

Erases from the database the dynamic clause or recorded term referenced by Ref. (Recorded
terms are described in Section 8.14.8 [ref-mdb-idb], page 294.)

Ref must be a database reference to an existing clause or recorded term.

erase/1 is not sensitive to the source module; that is, it can erase a clause even if that
clause is neither defined in nor imported into the source module.

Exceptions

instantiation_error
If Ref is not instantiated.

type_error
If Ref is not a database reference.

existence_error
if Ref is not a database reference to an existing clause or recorded term.

See Also

abolish/[1,2], assert/2, dynamic/1, retract/1, retractall/1.

1100 Quintus Prolog

18.3.60 expand_term/2 hookable

Synopsis

expand_term(+Term1, -Term2)

Transforms grammar rules into Prolog clauses before they are compiled. Normally called
by the compiler, but can be called directly. The transform can be customized by defining
the hook term_expansion/2.

Arguments

Term1 term
Term2 term

Description

Usually called by the built-in Load Predicates and not directly by user programs.

Normally used to translate grammar rules, written with -->/2, into ordinary Prolog clauses,
written with :-/2. If Term1 is a grammar rule, then Term2 is the corresponding clause.
Otherwise Term2 is simply Term1 unchanged.

If Term1 is not of the proper form, or if Term2 does not unify with its clausal form, expand_
term/2 simply fails.

Calls term_expansion/2.

Exceptions

Prints messages for exceptions raised by term_expansion/2.

Examples

See examples in Section 8.16.4 [ref-gru-tra], page 301.

See Also

term_expansion/2, phrase/[2,3], ’C’/3, -->/2 Section 8.16 [ref-gru], page 298

Chapter 18: Prolog Reference Pages 1101

18.3.61 extern/1 declaration

Synopsis

:-extern(+ExternSpec)

Declares a Prolog predicate to be callable from functions written in other languages.

Arguments

ExternSpec extern spec [MOD]
a term of the form Name(Argspec, Argspec, . . .)

Name the name of the Prolog predicate

Argspec an argument specification for each argument of the predicate. Each
should be one of the following where T is a foreign type name.

+integer +float +single +double
-integer -float -single -double

+atom +term +string
-atom -term -string

+string +address(T)
-string -address(T)

Description

extern/1 is used to make Prolog predicates callable from functions written in other lan-
guages. extern/1 must appear as a compile-time declaration; furthermore, it may not
appear in files loaded into runtime systems. The user has to declare as callable each Prolog
predicate that is to be called from foreign functions. Any Prolog predicate can be declared
to be callable from foreign functions, including system built-ins and predicates that do not
currently have definitions. Predicates must be declared callable before they can actually be
called from a function written in a foreign language.

Arguments are passed to the foreign interface as specified in ExternSpec:

‘+’ indicates that an argument is to be passed to Prolog from a foreign function.

‘-’ indicates that an argument is to be passed from Prolog to the foreign function.

Unlike the interface enabling Prolog to call functions written in other languages, when
foreign functions call Prolog there are no return values or corresponding designators in
ExternSpec.

1102 Quintus Prolog

When a Prolog predicate is declared to be callable, an interface predicate is created in
the current module. The arity of the interface predicate is the same as that of the Prolog
predicate. The name of the interface predicate is that of the Prolog predicate with an
underscore prepended. The interface predicate is made available to the user as a hook to
the “callability” of the Prolog predicate; for instance, the callability of the predicate can
be saved by putting the interface predicate in a QOF file via save_predicates/2, then
reloaded like any other predicate. The interface predicate can also be abolished like any
other predicate; this also has the effect of making the previously callable Prolog predicate
no longer available to foreign functions. A call to any interface predicate simply fails.

For more details about passing arguments from the foreign interface, see the chapter on the
foreign language interface.

Exceptions

instantiation_error
ExternSpec is uninstantiated
Some Argspec in ExternSpec is uninstantiated or is a term that is insufficiently
instantiated

type_error
ExternSpec is instantiated but is not a callable term
Some Argspec in ExternSpec is not a callable term

domain_error
Some Argspec in ExternSpec is not one of the forms listed above

Examples

It can be quite useful to make the system built-in call/1 available to foreign functions.
Combined with term manipulation in C, doing so provides an evaluator for arbitrary Prolog
queries. This can be done by loading a Prolog file containing the declaration

:- extern(call(+term)).

Prolog’s call/1 is then available to C via a function like

call_prolog(term)
QP_term_ref term;
{

QP_pred_ref call;
call = QP_predicate("call",1,"user");
QP_query(call, term);

}

Chapter 18: Prolog Reference Pages 1103

For the sake of brevity, this example does not check return values for failure or errors. Doing
so is generally recommended. Of course, as is the case in Prolog, it is faster to call a Prolog
predicate directly.

1104 Quintus Prolog

18.3.62 fail/0

Synopsis

fail

Always fails.

Chapter 18: Prolog Reference Pages 1105

18.3.63 false/0

Synopsis

false

Same as fail/0.

1106 Quintus Prolog

18.3.64 file_search_path/2 extendable

Synopsis

:- multifile file_search_path/2.

file_search_path(*PathAlias, *DirSpec)

Defines a symbolic name for a directory or a path. Used by predicates taking file spec as
input argument.

Arguments

PathAlias atom
A string that represents the path given by DirSpec.

DirSpec file spec
Either a string giving the path to a file or directory, or PathAlias(DirSpec),
where PathAlias is defined by another file_search_path/2 rule.

Description

file_search_path/2 is a dynamic, multifile predicate. It resides in module user.

The file_search_path mechanism provides an extensible way of specifying a sequence of
directories to search to locate a file. For instance, if a filename is given as a structure term,
library(basics). The principle functor of the term, library, is taken to be another
file_search_path/2 definition of the form

file_search_path(library, LibPath)

and file basics is assumed to be relative to the path given by LibPath. LibPath may
also be another structure term, in which case another file_search_path/2 fact gives its
definition. The search continues until the path is resolved to an atom.

There may also be several definitions for the same PathAlias. Certain predicates, such as
load_files/[1,2] and absolute_file_name/[2,3], search all these definitions until the
path resolves to an existing file.

There are several system defined search paths, such as quintus, runtime, library, system,
helpsys. These are initialized at system startup, and used by some of the system predicates,
but they may be redefined by the user. Furthermore, the user may create extra file_
search_paths to define certain paths, and these may be used exactly as the predefined
system paths. See Section 8.6 [ref-fdi], page 205 for more detail.

Chapter 18: Prolog Reference Pages 1107

Examples

| ?- assert(file_search_path(home, ’/usr/joe_bob’)).

yes
| ?- assert(file_search_path(review, home(’movie/review’))).

yes
| ?- compile(review(blob)).

% compiling /usr/joe_bob/movie/review/blob.pl

See Also

absolute_file_name/[2,3], assert/[1,2], dynamic/1, library_directory/1,
listing/1, load_files/[1,2],

Section 8.6 [ref-fdi], page 205.

1108 Quintus Prolog

18.3.65 fileerrors/0

Synopsis

fileerrors

Cancels the effect of nofileerrors/0.

Description

Sets the fileerrors flag to its default state, on, in which an exception is raised by see/1,
tell/1, and open/3 if the specified file cannot be opened.

The fileerrors flag is only disabled by an explicit call to nofileerrors/0, or via prolog_
flag/[2,3], which can also be used to obtain the current value of the fileerrors flag.
See Section 8.10.1 [ref-lps-ove], page 245, for more information on the fileerrors flag.

See Also

nofileerrors/0, prolog_flag/[2,3]

Chapter 18: Prolog Reference Pages 1109

18.3.66 findall/3

Synopsis

findall(+Template, +*Generator, -List)

Collects in List all the instances of Template for which the goal Generator succeeds. A
special case of bagof/3, where all free variables in the generator are taken to be existentially
quantified.

Arguments

Template term
Generator callable [MOD]

a goal to be proved as if by call/1.

List list of terms

Description

A special case of bagof/3, where all free variables in the generator are taken to be existen-
tially quantified, as if by means of the ‘^’ operator.

Because findall/3 avoids the relatively expensive variable analysis done by bagof/3, using
findall/3 where appropriate rather than bagof/3 can be considerably more efficient.

Examples

To illustrate the differences among findall/3, setof/3, and bagof/3:

1110 Quintus Prolog

| ?- [user].

| foo(1,2).

| foo(1,2).

| foo(2,3).

|
% user compiled in module user, 0.100 sec 352 bytes

yes
| ?- bagof(X, foo(X,Y), L).

X = _3342,
Y = 2,
L = [1,1] ;

X = _3342,
Y = 3,
L = [2] ;

no

| ?- bagof(X, Y^foo(X,Y), L).

X = _3342,
Y = _3361,
L = [1,1,2] ;

no

| ?- findall(X, foo(X,Y), L).

X = _3342,
Y = _3384,
L = [1,1,2] ;

no

| ?- setof(X, foo(X,Y), L).

X = _3342,
Y = 2,
L = [1] ;

X = _3342,
Y = 3,
L = [2] ;

no

Chapter 18: Prolog Reference Pages 1111

Exceptions

As for call/1.

See Also

setof/3, bagof/3, ^/2

Section 8.15 [ref-all], page 295

1112 Quintus Prolog

18.3.67 float/1 meta-logical

Synopsis

float(+Term)

Term is currently instantiated to a float.

Arguments

Term term

Example

| ?- float(Term1).

no
| ?- float(5.2).

yes

See Also

atom/1, atomic/1, number/1, var/1, compound/1, callable/1, nonvar/1, simple/1

Chapter 18: Prolog Reference Pages 1113

18.3.68 flush_output/1

Synopsis

flush_output(+Stream)

Forces the buffered output of the stream Stream to be sent to the associated device.

Arguments

Stream stream object
a valid Prolog stream

Description

Sends the current buffered output of an output stream Stream to the actual output device,
which is usually a disk or a tty device. flush_output/1 fails if Stream does not permit
flushing or the bottom layer flushing function of Stream is not properly defined.

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

permission_error
An error occurred in flushing out the buffered output.

Comments

If the host operating system, such as UNIX, buffers an output file stream, the output may
be written to the disk some time after flush_output/1 succeeds.

See Also

nl/[0,1], QP_flush(), QU_flush_output(), ttyflush/0

1114 Quintus Prolog

18.3.69 foreign/[2,3] hook

Synopsis

:- discontiguous foreign/2, foreign/3.

foreign(*Routine, *ForeignSpec)

foreign(*Routine, *Language, *ForeignSpec)

Describes the interface between Prolog and the foreign Routine. The user has to define a
foreign/3 or the fact for every foreign function that is to be called from Prolog. Used by
load_foreign_files/2 and load_foreign_executable/2.

Arguments

Routine atom
An atom that names a foreign code Routine

Language atom
An atom that names the Language in which Routine is written. It must be one
of c, pascal or fortran.

ForeignSpec foreign spec
A term of the form PredName(Argspec, Argspec, . . .) where:

PredName the name of the Prolog predicate

Argspec an argument specification (for each argument of the predicate) One
of the following:

+integer +float +single +double
-integer -float -single -double
[-integer] [-float] [-single] [-double]

+atom +term +string
-atom -term -string
[-atom] [-term] [-string]

+string(N) +address(T)
-string(N) -address(T)
[-string(N)] [-address(T)]

where N is a positive integer and T is a foreign type name.

Chapter 18: Prolog Reference Pages 1115

Description

foreign/2 is a special case of foreign/3 where Language is C. foreign/2 is for backward
compatibility.

The user has to define a foreign/3 fact for every foreign function that is to be called from
Prolog. Note that Routine does not have to be the same as PredicateName. Arguments are
passed to the foreign function as specified in ForeignSpecs

+type specifies that an argument is to be passed to the foreign function.

-type specifies that an argument is to be received from the foreign function.

[-type] argument is used to obtain the return value of a foreign function call. At most
one “return value” argument can be specified.

For more details about the passing arguments through the foreign interface, see Sec-
tion 10.4.2.1 [fli-ffp-ppc-api], page 415.

The foreign/3 facts are used only in the context of a load_foreign_files/2 command
and can be removed once the foreign files are loaded.

If you have foreign/3 facts in different files, Prolog will warn you that foreign/3 has
been previously defined in another file. This is generally not a problem if you are using the
module system.

load_foreign_files/2 will only look for foreign/3 facts defined in its source module.

Exceptions

Errors in the specification of foreign/3 will only be detected at load_foreign_files/2
time. Otherwise defining a foreign/3 fact is just like defining any other Prolog fact.

Tips

A good practice in loading several foreign files is to insert the call to load_foreign_files/2
into the file that defines foreign/3 as an embedded command. For example,

foreign(f11, c, f11(+integer)).
foreign(f12, c, f12(+atom, -atom)).
foreign_file(’f1’, [f11, f12]).
:- load_foreign_files(’f1’, []),

abolish([foreign/3,foreign_file/2]).

1116 Quintus Prolog

Examples

solve() is a C function that takes three integer coeffecients of a quadratic equation and
returns the two solutions. We assume that the solutions are not imaginary numbers.

a.pl

foreign(solve, c, solve(+integer, +integer, +integer,
-double, -double)).

foreign_file(’a’, [solve]).
:- load_foreign_files([’a’], [’-lm’]),

abolish([foreign/3, foreign_file/2]).

a.c

void solve(a, b, c, f1, f2)
long int a, b, c;
double *f1;
double *f2;
{

*f1 = (-b + sqrt(b*b - 4*a*c)) / 2 * a;
*f2 = (-b - sqrt(b*b - 4*a*c)) / 2 * a;

}

See Also

load_foreign_files/2, foreign_file/2, extern/1 Section 10.3 [fli-p2f], page 375

Chapter 18: Prolog Reference Pages 1117

18.3.70 foreign_file/2 hook

Synopsis

:- discontiguous foreign_file/2.

foreign_file(+ObjectFile, +ForeignFunctions)

Describes the foreign functions in ObjectFile to interface to. The user has to define a
foreign_file/2 fact for every object file that is to be loaded into Prolog.

Arguments

ObjectFile file spec
The foreign object file

ForeignFunctions list of atom
A list of foreign function symbols that will be obtained from ObjectFile.

Description

The user has to define a foreign_file/2 fact for every object file that is to be loaded into
Prolog. The ForeignFunctions gives the list of foreign symbols that are to be found in the
given object file. When a foreign file is loaded using load_foreign_files/2, Prolog looks
for a foreign_file/2 fact for that object file and finds the address of each symbol listed
in the foreign_file/2 fact. Prolog also expects a foreign/3 definition for each symbol
in the second argument of the foreign_file/2 fact.

For more details about the foreign interface, see Section 10.3.2.2 [fli-p2f-uso-ffi], page 380.

The foreign_file/2 facts are used only in the context of a load_foreign_files/2 com-
mand and can be removed once the foreign files are loaded.

If you have foreign_file/2 facts in different files, Prolog will warn you that foreign_
file/2 has been previously defined in another file.

load_foreign_files/2 will only look for foreign_file/2 facts defined in its source mod-
ule.

Exceptions

Errors in the specification of foreign_file/2 will only be detected when load_foreign_
files/2 is called. Otherwise defining a foreign_file/2 fact is just like defining any other
Prolog fact.

1118 Quintus Prolog

Examples

See example under foreign/[2,3].

Tips

See Tip under foreign/[2,3]

See Also

load_foreign_files/2, foreign/[2,3]

Chapter 18: Prolog Reference Pages 1119

18.3.71 format/[2,3]

Synopsis

format(+Control, +Arguments)

format(+Stream, +Control, +Arguments)

Interprets the Arguments according to the Control string and prints the result on the current
or specified output stream.

Arguments

Stream stream object
Control list of char or atom

either an atom or a string, which can contain control sequences of the form
‘~<n><c>’

<c> a format control option

<n>

is its optional argument.
<n> must be a non-negative integer.

Any characters that are not part of a control sequence are written to the current
output stream.

Arguments term
list of arguments, which will be interpreted and possibly printed by format
control options. If there is only one argument then this argument need not be
enclosed in a list.

Description

Please note: In the case where there is only one argument and that argument is a list, then
that argument must be enclosed in a list.

If <n> can be specified, then it can be the character ‘*’. In this case <n> will be taken as
the next argument from Arguments.

The following control options cause formatted printing of the next element from Arguments
to the current output stream. The argument must be of the type specified, or format/1
will raise a consistency error.

1120 Quintus Prolog

~<n>a argument is an atom, which is printed without quoting. The maximum number
of characters printed is <n>. If <n> is omitted the entire atom is printed.

| ?- format(’~a’, foo).

foo

~<n>c argument is a numeric ASCII code (0 =< code =< 127), which is printed <n>
times. If <n> is omitted, it defaults to 1.

| ?- format(’~2c’, 97).

aa

~<n>e argument is a floating-point number, which is printed in exponential notation
with precision <n>. The form of output is (in left-to-right order):
• an optional ‘-’,
• a digit,
• a ‘.’ if <n> is greater than 0,
• <n> digits,
• an ‘e’,
• a ‘+’ or a ‘-’, and
• two or more digits.

If <n> is omitted, it defaults to 6.
| ?- format(’~3e’, 1.33333).

1.333e+00

See Section 8.8.1 [ref-ari-ove], page 233 for detailed information on precision.
Notes:

1. ‘~<n>e’ coerces integers to floats
2. If n is greater than 60, only 60 digits will be printed.

~<n>E same as ~<n>e, except ‘E’ is used for exponentiation instead of ‘e’.
| ?- format(’~3E’, 1.33333).

1.333E+00

~<n>f argument is a floating-point number, which is printed in non-exponential for-
mat, with <n> digits to the right of the decimal point. If <n> is omitted, it
defaults to 6. If <n> is equal to 0, no decimal point is printed.

| ?- format(’~3f’, 1.33333).

1.333

Notes:

1. ‘~<n>f’ coerces integers to floats
2. If n is greater than 60, only 60 digits will be printed.

See the section on floating-point arithmetic for detailed information on preci-
sion.

~<n>g argument is a floating-point number, which is printed in either ~<n>e or ~<n>f
form, whichever gives the best precision in minimal space, with the exception
that no trailing zeroes are printed unless one is necessary immediately after the

Chapter 18: Prolog Reference Pages 1121

decimal point to make the resultant number syntactically valid. At most <n>
significant digits are printed. If <n> is omitted, it defaults to 6.

| ?- format(’~g’, 1000000000.0).

1e+09

| ?- format(’~20g’, 1000000000.0).

1000000000

See the section on floating-point arithmetic for detailed information on preci-
sion.

~<n>G same as ~<n>g, except ‘E’ is used for exponentiation instead of ‘e’.
| ?- format(’~G’, 1000000.0).

1E+06

~<n>d argument is an integer, which is printed as a signed decimal number, shifted
right <n> decimal places. If <n> is omitted, it defaults to 0. If <n> is 0, the
decimal point is not printed.

| ?- format(’~d’, 29).

29

| ?- format(’~1d’, 29).

2.9

~<n>D same as ~<n>d, except that commas are inserted to separate groups of three
digits to the left of the decimal point.

| ?- format(’~1D’, 29876).

2,987.6

~<n>r argument is an integer, which is printed in radix <n> (where 2 =< n =< 36)
using the digits 0-9 and the letters a-z. If <n> is omitted, it defaults to 8.

| ?- format(’~2r’, 13).

1101

| ?- format(’~r’, 13).

15

| ?- format(’~16r’, 13).

d

~<n>R same as ~<n>r, except it uses the digits 0-9 and the letters A-Z instead of a-z.
| ?- format(’~16R’, 13).

D

~<n>s argument is a string (list of numeric ASCII codes), from which at most the first
<n> codes are printed as ASCII characters. If <n> is zero or if <n> is omitted,
it defaults to the length of the string. If the string is shorter than <n> then all
the ASCII codes that make up the string are printed.

1122 Quintus Prolog

| ?- format(’~s’, ["string"]).
string

| ?- format(’~3s’, ["string"]).
str

| ?- format(’~a’, "string").
! Consistency error: a and
[115,116,114,105,110,103] are inconsistent

! the argument for the format control
option "a" must be of type "atom".

! goal: format(’~a’,
[115,116,114,105,110,103])

The following control options can take an argument of any type:

~i argument is ignored.
| ?- format(’~i’, 10).

~k argument is passed to write_canonical/[1,2].
| ?- format(’~k’, ’A’+’B’).
+(’A’,’B’)

~p argument is passed to print/[1,2].
| ?- asserta((portray(X+Y) :-

write(X), write(’ plus ’),

write(Y))).

| ?- format(’~p’, ’A’+’B’).
A plus B

~q argument is passed to writeq/[1,2].
| ?- format(’~q’, ’A’+’B’).
’A’+’B’

~w argument is passed to write/[1,2].
| ?- format(’~w’, ’A’+’B’).
A+B

The following control options do not have a corresponding argument:

~~ prints one ‘~’.
| ?- format(’~~’, []).

~

~<n>n prints <n> newline characters. If <n> is omitted, it defaults to 1.
| ?- format(’begin~nend’, []).

begin
end

Chapter 18: Prolog Reference Pages 1123

~N prints nothing if at the beginning of a line, otherwise prints one newline char-
acter.

| ?- format(’~Nbegin~N~Nend’, []).

begin
end

The following control options manipulate column boundaries (tab positions). These column
boundaries only apply to the line currently being written. A column boundary is initially
assumed to be in line position 0.

~<n>| sets a column boundary at line position <n> and moves the cursor to that
line position. If <n> is omitted, a column boundary is set at the current line
position. See extended example below (also see Section 8.7.6.4 [ref-iou-cou-fou],
page 223).

~<n>+ sets a column boundary at <n> positions past the previous column boundary
and moves the cursor to that line position. If <n> is omitted, it defaults to 8.
See extended example below.

~<n>t When fewer characters are written between two column boundaries than the
width of the column, the space remaining in the column is divided equally
amongst all the ‘~t’’s, if any, in the column, and each ~t fills its allotted space
with characters of ASCII code <n>. If <n> is omitted, it defaults to ASCII 32
(space). <n> can also be of the form ‘<c>, where <c> is the fill character. See
extended example below.

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

consistency_error
wrong number of arguments

domain_error
wrong format option type

Examples

1. The following is an extended example of the use of format/[2,3] and the character
escaping facility.

1124 Quintus Prolog

| ?- prolog_flag(character_escapes, _, on).

yes
| ?- compile(user).

| toc(Rel) :-

format(’Table of Contents ~t ~a~72|~*n’, [i,3]),

format(’~tTable of Contents~t~72|~*n’, 2),

format("1. Documentation supplement for ~s~1f \c

~‘.t ~d~72|~*n", ["Quintus Prolog Release ",Rel,2,2]),
format("~t~*+~w Definition of the term \"loaded\" \c

~‘.t ~d~72|~n", [3,1-1,2]),

format("~t~*+~w Finding all solutions ~‘.t ~d~72|~n", [3,1-2,3]),

format("~t~*+~w Searching for a file in a library \c

~‘.t ~d~72|~n", [3,1-3,4]),

format("~t~*+~w New Built-in Predicates ~‘.t ~d~72|~n", [3,1-
4,5]),

format("~t~*+~w write_canonical (?Term) ~‘.t ~d~72|~n", [7,1-4-
1,5]),

format("~*+.~n~*+.~n~*+.~n", [20,20,20]),

format("~t~*+~w File Specifications ~‘.t ~d~72|~n", [3,1-7,17]),

format("~t~*+~w multifile(+PredSpec) ~‘.t ~d~72|~n", [7,1-7-
1,18]).
| ^D
% user compiled, 20.783 sec 4888 bytes

yes
| ?- toc(1.5).

Table of Contents

1. Documentation supplement for Quintus Prolog Re-
lease 1.5 2

1-1 Defini-
tion of the term "loaded" 2

1-2 Finding all solu-
tions ... 3

1-3 Searching for a file in a li-
brary 4

1-4 New Built-in Predi-
cates 5

1-4-
1 write_canonical (?Term) 5

.

.

.
1-7 File Specifica-

tions .. 17
1-7-1 multi-

file(+PredSpec) 18

yes

Chapter 18: Prolog Reference Pages 1125

2. Misc. examples:

| ?- X=12, format(’X =:= ~2d’, X). % These three
| ?- X=12, format("X=:= ~2d", X). % have the
| ?- X=12, format(’X =:= ~*d’, [2,X]). % same results

| ?- format(’~s’, ["string"]). % These two have
| ?- format(’string’, []). % the same results

| ?- X=12, Y= 123, format(’X = ~d, Y = ~d’, [X,Y]).

See Also

write_canonical/[1,2], print/[1,2], write/[1,2] Section 8.7 [ref-iou], page 214

1126 Quintus Prolog

18.3.72 functor/3 meta-logical

Synopsis

functor(+Term, -Name, -Arity)

functor(-Term, +Name, +Arity)

Succeeds if the principal functor of term Term has name Name and arity Arity.

Arguments

Term term
Name atom
Arity arity

Description

There are two ways of using this predicate:

1. If Term is initially instantiated, then
• if Term is a compound term, Name and Arity are unified with the name and arity

of its principal functor.
• if Term is an atom or number, Name is unified with Term, and Arity is unified

with 0.
2. If Term is initially uninstantiated, Name and Arity must both be instantiated, and

• if Arity is an integer in the range 1..255, then Name must be an atom, and Term
becomes instantiated to the most general term having the specified Name and
Arity; that is, a term with distinct variables for all of its arguments.

• if Arity is 0, then Name must be an atom or a number, and it is unified with Term.

Examples

| ?- functor(foo(a,b), N, A).

N = foo,
A = 2

| ?- functor(X, foo, 2).

X = foo(_1,_2)

Chapter 18: Prolog Reference Pages 1127

Please note: _1 and _2 are anonymous variables. The term foo(_1,_2) is the “most
general” term that has name foo and arity 2.

| ?- functor(X, 2, 0).

X = 2

Exceptions

instantiation_error
Term and either Name or Arity are uninstantiated.

type_error
Name is not atomic when Arity is 0, or Arity is not an integer.

representation_error
Term is uninstantiated and Arity is an integer > 255.

See Also

arg/3, name/2, =../2

Section 8.9.2 [ref-lte-act], page 239

1128 Quintus Prolog

18.3.73 garbage_collect/0

Synopsis

garbage_collect

Explicitly invokes the garbage collector.

Description

This predicate invokes the garbage collector to reclaim data structures in the heap that are
no longer accessible to the computation.

No expansion of the heap is done, even if gc_margin kilobytes cannot be reclaimed (see
Section 8.10.4.1 [ref-lps-flg-cha], page 246). This means that calls to this predicate are
effective only when the heap contains a significant amount of garbage.

The cut may be used in conjunction with garbage_collect/0 to allow code that works in
cycles and builds up large data structures to run for more cycles without running out of
memory. The cut removes any alternatives that may be pending, thus potentially freeing
up garbage that could not otherwise be collected.

Example

In the code fragment:

cycle(X) :- big_goal(X, X1), cycle(X1).

if cycle/1 is to run for a long time, and if big_goal/2 generates a lot of garbage, then
rewrite the code like this:

cycle(X) :- big_goal(X, X1), !, garbage_collect, cycle(X1).

Tip

Use of the ‘!, garbage_collect’ idiom is only desirable when you notice that your code
does frequent garbage collections. It will allow the garbage collector to collect garbage more
effectively, and the cycle will run without demanding increasing amounts of memory.

Chapter 18: Prolog Reference Pages 1129

See Also

gc/0, prolog_flag(gc_margin,_,_), nogc/0, statistics/2

1130 Quintus Prolog

18.3.74 garbage_collect_atoms/0

Synopsis

garbage_collect_atoms

Invokes the atom garbage collector.

Description

This predicate invokes the atom garbage collector to discard atoms that are no longer
accessible to the computation, reclaiming their space.

Tips

A program can use the atoms keyword to statistics/2 to determine if a call to garbage_
collect_atoms/0 would be appropriate.

See Also

garbage_collect/0, statistics/2

Chapter 18: Prolog Reference Pages 1131

18.3.75 gc/0

Synopsis

gc

Enables the garbage collector.

Description

As if defined by:

gc :- prolog_flag(gc, _, on).

The garbage collection is enabled by default.

gc needs to be called only if the user has disabled te garbage collector by calling nogc or
prolog_flag(gc,_,off).

1132 Quintus Prolog

18.3.76 ’QU messages’:generate message/3 extendable

Synopsis

:- multifile ’QU_messages’:generate_message/3.

generate_message(+MessageTerm, -S0, -S)

For a given MessageTerm, generates a list composed of Control-Arg pairs and the atom nl.
This can be translated into a nested list of Control-Arg pairs, which can be used as input
to print_message_lines/3.

Arguments

MessageTerm term
May be any term.

S0 list of pair
the resulting list of Control-Arg pairs.

S list of pair
the remaining list.

Description

Clauses for generate_message/3 underly all messages from Prolog. They may be examined
and altered. They are found in messages(language(’QU_messages’)), which by default
is qplib(’embed/english/QU_messages.pl’).

The purpose of this predicate is to allow you to totally redefine the content of Prolog’s
messages. In particular, it is possible to translate all the messages from English into some
other language.

This predicate should not be modified if all you want to do is modify or add a few messages:
user:generate_message_hook/3 is provided for that purpose.

The Prolog system uses the built-in predicate print_message/2 to print all its messages.
When print_message/2 is called, it calls

user:generate_message_hook(Message,L,[])

to generate the message. If that fails,

’QU_messages’:generate_message(Message,L,[])

is called instead.

Chapter 18: Prolog Reference Pages 1133

If generate_message/3 succeeds, L is assumed to have been bound to a list whose elements
are either Control-Args pairs or the atom nl. Each Control-Arg pair should be such that
the call

format(user_error, Control, Args)

is valid. The atom nl is used for breaking the message into lines. Using the format
specification ‘~n’ (new-line) is discouraged, since the routine that actually prints the message
(see user:message_hook/3 and print_message_lines/3) may need to have control over
newlines.

’QU_messages’:generate_message/3 is not included by default in runtime systems, since
end-users of application programs should probably not be seeing any messages from the
Prolog system. If a runtime system does require the messages facility its source code should
include a goal such as:

:- ensure_loaded(library(
language(’QU_messages’))).

If there is a call to print_message/2 when ’QU_messages’:generate_message/3 is unde-
fined, or if generate_message/3 fails for some reason, the message term itself is printed.
Here is an example of what happens when generate_message/3 fails.

| ?- print_message(error,unexpected_error(37)).

! unexpected_error(37)

generate_message/3 failed because the message term was not recognized. In the following
example print_message/2 is being called by the default exception handler.

| ?- write(A,B).

! Instantiation error in argument 1 of write/2
! goal: write(_2107,_2108)

| ?- abolish(’QU_messages’:generate_message/3).

...
| ?- write(A,B).

! instantiation_error(write(_2187,_2188),1)

Note that a call to ’QU_messages’:generate_message/3 simply fails if the predicate is
undefined; an existence_error is never signalled.

Examples

The following example shows how the output of generate_message/3 is translated and
passed to print_message_lines/3.

1134 Quintus Prolog

gen_message_and_print_lines(Msg, Stream, Prefix) :-
generate_message(Msg, L, []),
lines(L, Lines, []),
print_message_lines(Stream, Prefix, Lines)

lines([]) --> [].
lines([H|T]) --> line(H), [nl], lines(T).

line([]) --> [].
line([Control-Args|T]) --> [Control-Args], line(T).

Errors

When print_message/2 calls ’QU_messages’:generate_message/3 it handles any excep-
tions that arise by printing out an error message. It then writes out the original message.

See Also

print_message/2, message_hook/3, format/[2,3], print_message_lines/3,
user:generate_message_hook/3, QU_messages’:query_abbreviation/2

Section 8.20 [ref-msg], page 325

Chapter 18: Prolog Reference Pages 1135

18.3.77 generate message hook/3 hook

Synopsis

:- multifile generate_message_hook/3.

generate_message_hook(+MessageTerm, -S0, -S)

A way for the user to override the call to ’QU_messages’:generate_message/3 in print_
message/2.

Arguments

MessageTerm term
May be any term.

S0 list of pair
the resulting list of Control-Args pairs.

S list of pair
the remaining list.

Description

For a given MessageTerm, generates the list of Control-Args pairs required for print_
message_lines/3 to format the message for display.

This is the same as ’QU_messages’:generate_message/3 except that it is a hook. It is
intended to be used when you want to override particular messages from the Prolog system,
or when you want to add some messages. If you are using your own exception classes (see
raise_exception) it may be useful to provide generate message hook clauses for those
exceptions so that the print_message/2 (and thus the default exception handler that calls
print_message/2) can print them out nicely.

The Prolog system uses the built-in predicate print_message/2 to print all its messages.
When print_message/2 is called, it calls

user:generate_message_hook(Message,L,[])

to generate the message. If that fails,

’QU_messages’:generate_message(Message,L,[])

is called instead.

1136 Quintus Prolog

If generate_message_hook/3 succeeds, L is assumed to have been bound to a list whose
elements are either Control-Args pairs or the atom nl. Each Control-Args pair should be
such that the call

format(user_error, Control, Args)

is valid. The atom nl is used for breaking the message into lines. Using the format
specification ‘~n’ (new-line) is discouraged, since the routine that actually prints the message
(see user:message_hook/3 and print_message_lines/3) may need to have control over
newlines.

It is recommended that you declare this predicate multifile when you define clauses for it
so that different packages that define clauses for it can be used together.

Examples

• When a package is put in a module, it can still supply clauses like this:
:- multifile user:generate_message_hook/3.
user:generate_message_hook(hello_world) -->

[’hello world’-[],nl].

Note that the terminating nl is required.

Tips

See also:

’QU_messages’:generate_message/3, print_message/2, message_hook/3,
format/[2,3], print_message_lines/3

Chapter 18: Prolog Reference Pages 1137

18.3.78 get/[1,2]

Synopsis

get(-Char)

get(+Stream, -Char)

unifies Char with the ASCII code of the next non-layout character from Stream or the
current input stream.

Arguments

Char char integer; legal ASCII code

Stream stream object
valid Prolog input stream

Description

Layout characters are all outside the inclusive range 33..126; this includes space, tab, line-
feed, delete, and all control characters.

If there are no more non-layout characters in the stream, Char is unified with -1.

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

existence_error
Trying to read beyond end of Stream

Comment

If the stream is tty, trying to read beyond the end of the stream results in resetting the
input stream and trying to read the next character. By using the eof_action option of
open/[3,4], it is possible to specify that it should not be an error to run off the end of a
stream.

1138 Quintus Prolog

See Also

get0/[1,2], ttyget/1, prompt/[2,3], open/[3,4]

Chapter 18: Prolog Reference Pages 1139

18.3.79 get0/[1,2]

Synopsis

get0(-Char)

get0(+Stream, -Char)

Same as get/[1,2] except that Char includes layout characters.

Arguments

Char char

Stream stream object

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

existence_error
Trying to read beyond end of Stream

See Also

get/[1,2], ttyget0/1, prompt/[2,3]

1140 Quintus Prolog

18.3.80 get_profile_results/4 development

Synopsis

get_profile_results(+By, +Num,-Results,-Total)

Returns the results of the last profiled execution.

Arguments

By atom must be one of the atoms:
1. by_time

2. by_choice_points

3. by_calls

4. by_redos

Num integer
specifies the maximum length of the Results list

Results list of term
the results list

Total integer

Description

Returns profiling information accumulated from the last call to profile/1. The By argu-
ment specifies the display mode, which determines how the list is sorted and what the Total
argument returns. The Num argument determines the maximum length of the Results list.
This list is always sorted in descending order so that the top Num predicates are included
in the list.

Results is a list of terms of the form proc(Name,Ncalls,Nchpts,Nredos,Time,Callers
) where Name,Ncalls,Nchpts,Nredos,Time give
call, choice point, redo counts and the execution time spent in milliseconds, and Callers
is a list of calledby(Time,Calls,Name,ClauseNo,CallNo) terms, where Time in this case
is the percentage of time attributed to this caller, Calls is the number of calls made from
this caller and Name, ClauseNo, CallNo locate precisely the actual caller.

If the display mode is by_time then Total is the total execution time in milliseconds. If
the display mode is by_calls, by_choice_points or by_redos then Total returns the total
number of calls, choice points or redos respectively.

This predicate is not supported in runtime systems.

Chapter 18: Prolog Reference Pages 1141

Example

| ?- get_profile_results(by_time,3,List,Total).

List = [proc(user:setof/3,227,0,0,1980,
[calledby(61,152,user:satisfy/1,6,1),
calledby(20,27,user:satisfy/1,7,1),
calledby(18,48,user:seto/3,1,1)]),

proc(user:satisfy/1,35738,36782,14112,260,
[calledby(69,13857,user:satisfy/1,1,2),
calledby(15,12137,user:satisfy/1,2,1)]),

proc(user:write/1,2814,0,0,240,
[calledby(33,481,user:reply/1,3,1),
calledby(25,608,user:replies/1,3,1),
calledby(16,562,user:out/1,2,1),
calledby(8,203,user:reply/1,2,5),
calledby(8,34,user:replies/1,2,3)])],

Total = 6040

[profile]

See Also

profile/[0,1,2,3], show_profile_results/[0,1,2]

1142 Quintus Prolog

18.3.81 ground/1 meta-logical

Synopsis

ground(+Term)

Term is currently instantiated to a term that is completely bound (has no uninstantiated
variables in it).

Arguments

Term term

Examples

| ?- ground(9).

yes
| ?- ground(major(tom)).

yes
| ?- ground(a(1,Term,3)).

no
| ?- ground("a").

yes
| ?- ground([1,foo(Term)]).

no

See Also

atom/1, atomic/1, number/1, var/1, compound/1, callable/1, nonvar/1, simple/1

Chapter 18: Prolog Reference Pages 1143

18.3.82 halt/[0,1]

Synopsis

halt

halt(+ExitCode)

Causes an exit from Prolog.

Arguments

ExitCode integer
an exit status code

Description

causes an exit from Prolog

halt/0 exits with a “success” exit status (0).

halt/1 exits with the exit status given by its ExitCode argument.

Exceptions

instantiation_error
type_error

N is not an integer.

See Also

abort/0, break/0

Section 8.11.1 [ref-iex-int], page 250

1144 Quintus Prolog

18.3.83 hash_term/2

Synopsis

hash_term(+Term, -HashValue)

Provides an efficient way to calculate an integer hash value for the ground term Term.

Arguments

Term term
HashValue term

is an integer or variable

Description

If the first argument passed to hash_term/2 is ground, an integer hash value corresponding
to that term is calculated and returned in the second argument. If the first argument is not
ground, a new variable is returned in the second argument.

For example:

| ?- hash_term(foo(name,2,module), H).

H = 1391

| ?- hash_term(foo(X), H).

X = _4734,
H = _4755

| ?-

Tips

hash_term/2 is provided primarily as a tool for the construction of sophisticated Prolog
clause access schemes. Its intended use is to generate hash values for ground terms that will
be used with first argument clause indexing, yielding compact and efficient multi-argument
or deep argument indexing.

hash_term/2 is most easily used when a known pattern of access to a predicate is desired
and both arguments of the call and arguments of the predicate are known to be ground.

Chapter 18: Prolog Reference Pages 1145

In the following simple but typical example, hash_term/2 calls are used together with
Prolog’s database manipulation predicates (assert/1 and clause/2) to calculate and add
an additional argument to the clauses actually stored in the Prolog database:

add_pred_info(Name, Arity, Module, Info) :-
hash_term([Name,Arity,Module], Hash),
assert(info(Hash,Name,Arity,Module,Info)).

get_pred_info(Name, Arity, Module, Info) :-
hash_term([Name,Arity,Module], Hash),
clause(info(Hash,Name,Arity,Module,Info), _).

This example assumes that the name, arity and module to be stored in the Prolog database
are ground when add_pred_info/4 is called, and that they are also ground when get_
pred_info/4 is called. The predicate that is actually asserted, info/5, has an additional
argument calculated by hash_term/2; info/5 would not normally be called directly. A
predicate using hash_term/2 to delete the stored information would also be straightforward.

If the first argument passed to hash_term/2 is not ground, hash_term/2 returns a variable.
Thus, if add_pred_info/4 is called with the name, arity or module not ground, the info/5
information will be asserted with a variable as its first argument, so it will not be indexed. If
get_pred_info/4 is called with the name, arity or module not ground, info/5 will simply
be searched sequentially. Prolog’s normal semantics will be retained, although access will
be considerably less efficient.

It is possible to use hash_term/2 in more complex indexing schemes as well by checking
instantiation when adding, accessing, and deleting clauses; however, it is up to the user
to ensure appropriate instantiation patterns in calls. The tradeoff between run-time argu-
ment checking and reduced indexing effectiveness depends on the degree of discrimination
otherwise afforded by normal first argument indexing. The efficiency gained by fast multi-
argument indexing can often more than make up for such additional run-time costs.

It is also possible to use such indexing techniques on compiled predicates using term ex-
pansion. Note that calculated hash values are not dependent on transitory information like
atom numbers or internal pointers. Hash values are consistent across saving and restoring
or multiple invocations of an application.

Calculation of hash values is very fast, and indices constructed using the techniques sketched
above are also very compact, as the only additional cost is for storing the additional (hash
value) argument. When a solution to a complex indexing problem can be constructed using
hash_term/2 it will probably be preferable to solutions using other techniques.

1146 Quintus Prolog

18.3.84 help/[0,1] hookable,development

Synopsis

help

Gives basic information, such as how to start using the help system and how to exit from
Prolog.

help(+Topic)

Displays help available on Topic.

Arguments

Topic atom

Description

help(Topic) is the basic help command. It attempts to accept any argument you give it as
a topic for which help may exist in the manual. The argument is converted into a character
string, and all the index entries that start with that string are combined into a menu, which
gives you a choice of entry points into the manual hierarchy.

It is not necessary to type the whole of the word that is the topic you want information
about. However, the fewer characters you type, the larger the menu is likely to be, because
more index entries will contain with that character sequence.

A hook is provided so that users can add to or replace this information: help/0 first calls
user_help/0, and if that succeeds help/0 does nothing else. Only if the call to user_
help/0 fails is the standard information displayed.

With the emacs interface see Section 4.2 [ema-emi], page 88

With QUI see Section 3.2 [qui-mai], page 55

This predicate is not supported in runtime systems.

See Also

user_help/0, manual/[0,1]

Chapter 18: Prolog Reference Pages 1147

18.3.85 initialization/1 declaration

Synopsis

:- initialization Goal

Declares that Goal is to be run when the file in which the declaration appears is loaded into
a running system, or when a stand-alone program or runtime system that contains the file
is started up.

Arguments

Goal callable [MOD]
A valid goal.

Description

Defined as built-in prefix operator, so a simplified syntax can be used when using
initialization/1 as a directive. See examples.

Callable at any point during compilation of a file. That is, it can be used as a directive, or
as part of a goal called at compile-time. The initialization goal will be run as soon as the
loading of the file is completed. That is at the end of the load, and notably after all other
directives appearing in the file have been run.

qpc and save_program/[1,2] save initialization goals in the QOF file, so that they will
run when the qof file is loaded.

Goal is associated with the file loaded, and with a module, if applicable. When a file, or
module, is going to be reloaded, all goals earlier installed by that file or in that module, are
removed. This is done before the actual load, thus allowing a new initialization Goal to be
specified, without creating duplicates.

Exceptions

instantiation_error
The argument Goal is not instantiated

Examples

To understand the examples fully, read the reference page on volatile/1 first.

1148 Quintus Prolog

A common case is when the Prolog process at start up should connect itself to an external
database. It should also make the connection when the file with the code for the connection
is loaded for the first time.

:- volatile db_connection/1.
:- initialization my_init.

my_init :-
(clause(db_connection(_), _) ->

true
; set_up_connection(Connection),

assert(db_connection(Connection))
).

In the above example, set_up_connection/1 is user defined. We do not declare db_
connection/1 as dynamic in the file, since such a declaration would implicitly delete all
clauses of the predicate when the file is reloaded.

It might not always be desirable to have the connection set up the first time the file is
loaded, but only when a system is started up (for instance during the debugging of a
database application.) This can be achieved with the following code (note that we use the
property that a dynamic declaration reinitiliazes/resets the declared predicate):

:- dynamic connect/0.
:- volatile db_connection/1.
:- initialization my_init.

my_init :-
(connect ->

set_up_connection(Connection),
assert(db_connection(Connection))

; assert(connect)
).

See Also

volatile/1, load_files/1, compile/1

See Section 8.5 [ref-sls], page 192

Chapter 18: Prolog Reference Pages 1149

18.3.86 instance/2

Synopsis

instance(+Ref, -Term)

Unifies Term with the most general instance of the dynamic clause or recorded term indi-
cated by the database reference Ref.

Arguments

Ref db reference
Term term

Description

Ref must be instantiated to a database reference to an existing clause or recorded term.
instance/2 is not sensitive to the source module and can be used to access any clause,
regardless of its module.

Exceptions

instantiation_error
if Ref is not instantiated

type_error
if Ref is not a syntactically valid database reference

existence_error
if Ref is a syntactically valid database reference but does not refer to an existing
clause or recorded term.

Comments

instance/2 ignores the module of a clause. Because of this, accessing a clause with via
instance/2 is different from accessing it via clause/3 with a given Ref.

If the reference is to a unit-clause C, then Term is unified with ‘C :- true’.

1150 Quintus Prolog

Examples

| ?- assert(foo:bar,R).

R = ’$ref’(771292,1)

| ?- instance(’$ref’(771292,1),T).

T = (bar:-true)

| ?- clause(H,B,’$ref’(771292,1)).

no
| ?- clause(foo:H,B,’$ref’(771292,1)).

H = bar,
B = true

| ?-

See Also

clause/3, asserta/2, assertz/2

Section 8.14.1 [ref-mdb-bas], page 286

Chapter 18: Prolog Reference Pages 1151

18.3.87 integer/1 meta-logical

Synopsis

integer(+Term)

Term is an integer.

Arguments

Term term

Examples

| ?- integer(5).

yes
| ?- integer(5.0).

no

See Also

atom/1, atomic/1, number/1, var/1, compound/1, callable/1, nonvar/1, simple/1

1152 Quintus Prolog

18.3.88 is/2

Synopsis

-Term is +Expression

Evaluates Expression as an arithmetic expression (see Section 8.8.4 [ref-ari-aex], page 235),
and unifies the resulting number with Term.

Arguments

Expression expr
an expression made up of:

functors representing arithmetic operations
numbers

variables bound to numbers or arithmetic expressions
Term number

a number

Description

The possible values for Expression are spelled out in detail in Section 8.8.4 [ref-ari-aex],
page 235.

Character codes like ‘"a"’ are arithmetic expressions.

Exceptions

instantiation_error
type_error

Expression is not an arithmetic expression

domain_error
Attempting to divide by zero.

representation_error
overflow during arithmetic evaluation

Chapter 18: Prolog Reference Pages 1153

Examples

| ?- X is 2 * 3 + 4.

X = 10

| ?- Y = 32.1, X is Y * Y.

Y = 3.21E+01,
X = 1.03041E+03

| ?- Arity is 3 * 8, X is 4 + Arity + (3 * Arity * Arity).

Arity = 24,
X = 1756

| ?- X is 6/0.

! Domain error in argument 2 of is/2
! non-zero number expected, but 6/0 found
! goal: _3211 is 6/0

| ?- X is 16’ 7fffffff + 3.

! Syntax error
! between lines 64 and 65
! X is 0
! <<here>>
! 7 fffffff+3

| ?- X is "a".

X = 97

| ?- X is 4 * 5, Y is X * 4.

X = 20,
Y = 80

See example under assign/2 to see use of is/2 to peek at random memory addresses.

Comments

If a variable in an arithmetic expression is bound to another arithmetic expression (as
opposed to a number) at runtime then the cost of evaluating that expression is much greater.
It is approximately equal to the cost of call/1 of an arithmetic goal.

1154 Quintus Prolog

See Also

assign/2, </2, =:=/2, =</2, =\=/2, >/2, >=/2 Section 8.8 [ref-ari], page 233

Chapter 18: Prolog Reference Pages 1155

18.3.89 keysort/2

Synopsis

keysort(+List1, -List2)

Sorts the elements of the list List1 into ascending standard order (see Section 8.9.7.2 [ref-
lte-cte-sot], page 242 with respect to the key of the pair structure.

Arguments

List1 list of pair
List2 list of pair

Description

The list List1 must consist of terms of the form Key-Value. Multiple occurrences of any
term are not removed.

(The time taken to do this is at worst order (N log N) where N is the length of the list.)

Note that the elements of List1 are sorted only according to the value of Key, not according
to the value of Value.

keysort is stable in the sense that the relative position of elements with the same key
maintained.

Examples

| ?- keysort([3-a,1-b,2-c,1-a,1-b], X).

X = [1-b,1-a,1-b,2-c,3-a]

|?- keysort([2-1, 1-2], [1-2, 2-1]).

yes

Exceptions

instantiation_error
If List1 is not properly instantiated

type_error
If List1 is not a list of key-value pair.

1156 Quintus Prolog

See Also

library(samsort)

Chapter 18: Prolog Reference Pages 1157

18.3.90 leash/1 development

Synopsis

leash(+Mode)

Starts leashing on the ports given by Mode.

Arguments

Mode one of [all] or one of [call,exit,redo,fail,done,head,exception]
either the atom all, or a list of the ports to be leashed.

Description

• The leashing mode only applies to procedures that do not have spypoints on them, and
it determines which ports of such procedures are leashed. By default, all seven ports
are leashed. On arrival at a leashed port, the debugger will stop to allow you to look
at the execution state and decide what to do next. At unleashed ports, the goal is
displayed but program execution does not stop to allow user interaction.

• If you are using QUI, a more convenient way to set leashing is by using the
“Leashing. . . ” item in the “Options” menu. This brings up a dialog, which allows
you to choose which ports to leash.

• In DEC-10 Prolog, a different form of argument was used for leash/1. This form, in
which the argument is an integer from 0 to 127, is also supported by Quintus Prolog,
but is not recommended, since the new form is clearer.

• This predicate is not supported in runtime systems.

Examples

| ?- leash([]).

turns off all leashing; now when you creep you will get an exhaustive trace but no oppor-
tunity to interact with the debugger. You can get back to the debugger to interact with it
by pressing ^c t. The command

| ?- leash([call,redo]).

leashes on the Call and Redo ports. When creeping, the debugger will now stop at every
Call and Redo port to allow you to interact.

1158 Quintus Prolog

Exceptions

instantiation_error
Mode is not ground

domain_error
Mode is not a valid leash specification

See Also

Section 6.1.1 [dbg-bas-bas], page 113

Chapter 18: Prolog Reference Pages 1159

18.3.91 length/2

Synopsis

length(-List, +Integer)

length(*List, *Integer)

Integer is the length of List. If List is instantiated to a proper list, the predicate is deter-
minate, also when Integer is var.

Arguments

List list a list

Integer integer
non-negative integer

Description

If List is a list of indefinite length (that is, either a variable or of the form [...|X]) and if
Integer is bound to an integer, then List is made to be a list of length Integer with unique
variables used to “pad” the list. If List cannot be made into a list of length Integer, the
call fails.

| ?- List = [a,b|X], length(List, 4).

List = [a,b,_3473,_3475],
X = [_3473,_3475] ;

| ?-

If Integer is unbound, then it is unified with all possible lengths for the list List.

If List is bound, and is not a list, length/2 simply fails.

Backtracking

If both List and Integer are variables, the system will backtrack, generating lists of increasing
length whose elements are anonymous variables.

1160 Quintus Prolog

Exceptions

type_error
Integer integer

Examples

| ?- length([1,2], 2).

yes
| ?- length([1,2], 0).

no
| ?- length([1,2], X).

X = 2 ;

no

Chapter 18: Prolog Reference Pages 1161

18.3.92 library directory/1 extendable

Synopsis

:- multifile library_directory/1. library_directory(*DirSpec)

Defines a library directory. Used by predicates taking file spec as input argument.

Arguments

DirSpec file spec
Either an atom giving the path to a file, or PathAlias(DirSpec), where PathAlias
is defined by a file_search_path rule (see the reference page for file_search_
path/2).

Description

The dynamic, multifile library_directory/1 facts reside in module user. They define
directories to search when a file specification library(File) is expanded to the full path.

There are a set of predefined library_directory/1 facts, but users may also define their
own libraries simply by asserting the appropriate library_directory/1 facts into module
user. To locate a library file, the library_directory/1 facts are tried one by one in the
same sequence they appear in the Prolog database.

The file_search_path mechanism is an extension of the library_directory scheme. See
file_search_path/2 and Section 8.6 [ref-fdi], page 205.

Examples

| ?- assert(library_directory(’/usr/joe_bob/prolog/libs’)).

yes
| ?- ensure_loaded(library(flying)).

% loading file /usr/joe_bob/prolog/libs/flying.qof
...

See Also

absolute_file_name/[2,3], assert/[1,2], dynamic/1, file_search_path/2,
listing/1, load_files/[1,2]

1162 Quintus Prolog

Section 8.6 [ref-fdi], page 205.

Chapter 18: Prolog Reference Pages 1163

18.3.93 line_count/2

Synopsis

line_count(+Stream, -N)

Unifies N with the total number of lines either read or written on the open stream Stream.

Arguments

Stream stream object
N integer

Description

A freshly opened stream has a line count of 1. See Section 8.7.8.1 [ref-iou-sos-spt], page 230,
for details on the use of this predicate on a stream that is directed to the user’s terminal.

Exception

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226)

See Also

character_count/2, line_position/2, stream_position/3 Section 8.7 [ref-iou], page 214

1164 Quintus Prolog

18.3.94 line_position/2

Synopsis

line_position(+Stream, -N)

Unifies N with the total number of characters either read or written on the current line of
Stream.

Arguments

Stream stream object
specifies an open stream

N integer current line position

Description

A fresh line has a line position of 0. See Section 8.7.8.1 [ref-iou-sos-spt], page 230, for details
on the use of this predicate on a stream that is directed to the user’s terminal.

Exception

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226)

See Also

character_count/2, line_count/2, stream_position/3 Section 8.7 [ref-iou], page 214

Chapter 18: Prolog Reference Pages 1165

18.3.95 listing/[0,1]

Synopsis

listing

listing(+PredSpecs)

Prints the clauses of all the dynamic procedures currently in the Prolog database, or of
PredSpecs, to the current output stream, using portray_clause/1.

Arguments

PredSpecs gen pred spec tree var [MOD]
a predicate specification, or a list of predicate specifications or atoms

Description

If Predicate is an atom, then listing/1 lists the dynamic procedures for all predicates of
that name, as for listing/0

If PredSpecs is a predicate specification of the form Name/Arity, only the clauses for the
specified predicate are listed.

PredSpecs can be a list of predicate specifications and/or atoms; for example,

| ?- listing([concatenate/3, reverse, go/0]).

Examples

You could list the entire program to a file using the command

| ?- tell(file), listing, told.

Note that listing/[0,1] does not work on compiled procedures.

listing/1 is dependent on the source module. As a special case,

| ?- listing(mod:_).

will list all the dynamic predicates in module mod. However, listing/0 is not dependent
on the source module; it refers instead to the type-in module.

1166 Quintus Prolog

Variables may be included in predicate specifications given to listing/1. For example, you
can list clauses for f in any current module with:

| ?- listing(_:f).

Comments

Under the Emacs interface, there is a facility for finding the source code definition for a
specified compiled or dynamic procedure and reading it into an edit buffer. This is likely
to be more helpful than listing/1 in most cases. See Section 4.2.2 [ema-emi-key], page 89
for more information.

Chapter 18: Prolog Reference Pages 1167

18.3.96 load_files/[1,2]

Synopsis

load_files(+Files)

load_files(+Files, +Options)

[+File|+Files]

[]

Load the specified Prolog source and/or QOF files into memory. Subsumes all other load
predicates.

Arguments

Files file spec or list of file spec [MOD]
a file specification or a list of file specifications; a ‘.pl’ or ‘.qof’ extension may
be omitted in a file specification.

Options list
a list of zero or more options of the form:

if(X)

X=true (default) always load

X=changed
load file if it is not already loaded or if it has been
changed since it was last loaded

when(X)

X=run_time
(default) The file does not define any predicates that
will be called during compilation of other files.

X=compile_time
the file only defines predicates that wil be called dur-
ing compilation of other files; it does not define any
predicates that will be called when the application is
running.

X=both the file defines some predicates that will be needed dur-
ing compilation and some that will be needed during
execution.

1168 Quintus Prolog

load_type(X)

X=compile
compile Prolog source code

X=qof load QOF code

X=latest (default) load QOF or compile source, whichever is
newer. The latest option is effective only if Files are
sepcified without extensions.

must_be_module(X)

X=true the files are required to be module-files

X=false (default) the files need not be module-files

imports(X)

X=all (default) if the file is a module-file, all exported predi-
cates are imported

X=List list of predicates to be imported

Note that if the option imports is present, the option
must_be_module(true) is enforced.

all_dynamic(X)

X=true load all predicates as dynamic

X=false (default) load predicates as static unless they are de-
clared dynamic

Note that the all_dynamic option has no effect when
a QOF file is loaded. Thus it is not normally useful
to use all_dynamic(true) in conjunction with load_
type(latest), since the file will be loaded in dynamic
mode only if the source file is more recent than the
QOF file.

silent(X)

X=true loading information is printed as silent messages (see
Section 8.20 [ref-msg], page 325 for details).

X=false (default) loading information is printed as informa-
tional message.

Description

load_files/2 is the most general predicate for loading Prolog files. Special cases of it are
provided by the following predicates:

Chapter 18: Prolog Reference Pages 1169

load_files(Files) :-
load_files(Files, []).

[].
[File|Files] :-

load_files([File|Files]).
compile(Files) :-

load_files(Files, [load_type(compile)]).
consult(Files) :- /*consult equivalent to

compile now*/
compile(Files).

ensure_loaded(Files) :-
load_files(Files, [if(changed)]).

use_module(Files) :-
load_files(Files, [if(changed),

must_be_module(true)]).
use_module(File, Imports) :-

load_files(File, [if(changed),
must_be_module(true),
imports(Imports)]).

load_files/[1,2] reads Prolog clauses, in source or in compiled (QOF) form, and adds
them to the Prolog database, after first deleting any previous versions of the predicates they
define. Clauses for a single predicate must all be in the same file unless that predicate is
declared to be multifile.

If the file contains directives, that is, terms with principal functor :-/1 or ?-/1, then these
are executed as they are encountered.

Clauses and directives can be transformed as they are read from source files (not from QOF),
by providing a definition for term_expansion/2. This is true in both the development
system and QPC, but in order for this to work properly in QPC, your definition of term_
expansion/2 (and everything it calls) must be loaded into QPC. This is accomplished with
the when option to load_files/2, or the ‘-i’ option to QPC.

A non-module source file can be loaded into any module by load_files/[2,3], but the
module of the predicates in a QOF-file is fixed at the time it is created (by QPC, save_
predicates/2 or save_program/[1,2]). It is thus not possible to qof save a predicate
from say module foo, and reloaded it into module bar, or QPC the non-module-file ‘f1.pl’
into ‘f1.qof’, and then load ‘f1.qof’ into module mod (QPC assumes module user when
non-module files are compiled separately). To avoid mistakes, load_files/[1,2] loads the
corresponding source file, if such exists, whenever a non-module-file is loaded into module
other than user. If no corresponding source file exists, the QOF file is loaded; care should
be taken in this case.

Initialization goals specified with initialization/1 are executed after the load.

When load_files/[1,2] is called from an embedded command in a file being compiled
by QPC, the load_type and if options are ignored. The specfied files are compiled from

1170 Quintus Prolog

source to QOF, if the source is newer than the corresponding QOF file. If the option
when(compile_time) is given, the file is instead compiled into QPC memory, and no QOF
is generated (see above).

When load_files/[1,2] is called in a runtime system, the all_dynamic option will be
automatically set to true because the compiler is not available in runtime systems. This
means that the loaded code will run slower.

Exceptions

instantiation_error
M, Files, or Options is not ground.

type_error
In M, in Files, or in Options.

domain_error
Illegal option in Options.

existence_error
A specified file does not exist. If the fileerrors flag is off, the predicate fails
instead of raising this exception.

permission_error
A specified file is protected. If the fileerrors flag is off, the predicate fails
instead of raising this exception.

See Also

compile/1, consult/1, dynamic/1, ensure_loaded/1, fileerrors/0, multifile/1, no_
style_check/1, nofileerrors/0, prolog_load_context/2, source_file/[1,2], style_
check/1, term_expansion/2, use_module/[1,2,3], initialization/1, volatile/1.

Section 8.4 [ref-lod], page 189

Chapter 18: Prolog Reference Pages 1171

18.3.97 load_foreign_executable/1 hookable

Synopsis

load_foreign_executable(+Executable)

Load the foreign executable (shared object file) Executable into Prolog. Relies on the hook
predicates foreign_file/2 and foreign/[2,3].

Arguments

Executable file spec [MOD]
The shared object file to be loaded.

Description

load_foreign_executable/1 takes a shared object file and loads it into Prolog. If the file
contains dependencies on other shared objects/libraries, then these are loaded automatically.
For details on how these are loaded see Section 10.3.12 [fli-p2f-lfe], page 401.

The extension can be omitted from the filename given in the Executable argument.

Uses the foreign/3 and foreign_file/2 facts defined by the user to make the connection
between a Prolog procedure and the foreign function. When loading the shared object file,
it looks for a foreign_file/2 fact for that file and for each symbol in the foreign_file/2
fact it looks for a foreign/3 fact that gives the name of the Prolog procedure associated
with the foreign symbol and the argument specification.

Looks for foreign/3 and foreign_file/2 facts defined in its source module only.

Before calling this predicate, generate the shared object file from object files (and libraries);
see Section 10.3.2 [fli-p2f-uso], page 376.

Exceptions

Errors in the specification of foreign/3 will all be reported when load_foreign_
executable/1 is called.

Examples

See example under foreign/[2,3]

1172 Quintus Prolog

See Also

foreign_file/2, foreign/[2,3], load_foreign_files/2

Section 10.3 [fli-p2f], page 375

Chapter 18: Prolog Reference Pages 1173

18.3.98 load_foreign_files/2 hookable

Synopsis

load_foreign_files(+ObjectFiles, +Libraries)

Loads foreign object files into Prolog. Relies on the hook predicates foreign_file/2 and
foreign/[2,3].

Arguments

ObjectFiles list of file spec [MOD]
A list of foreign object files to be loaded.

Libraries list of atom
A list of shared libraries that need to be searched while loading ObjectFiles.

Description

load_foreign_files/2 takes a list of object files and a list of shared libraries, links them
and then loads the result into Prolog. The linking is done using the system linker. For
details on the call to the linker, see Section 10.3.13 [fli-p2f-lff], page 401.

The extension can be omitted from the filenames given in the ObjectFiles argument.

Uses the foreign/3 and foreign_file/2 facts defined by the user to make the connection
between a Prolog procedure and the foreign function. When loading each object file, it looks
for a foreign_file/2 fact for the object file and for each symbol in the foreign_file/2
fact it looks for a foreign/3 fact that gives the name of the Prolog procedure associated
with the foreign symbol and the argument specification.

Looks for foreign/3 and foreign_file/2 facts defined in its source module only.

Looks at the environment variable TMPDIR for the directory to store all the temporary files
created during the linking and loading process. The default directory is ‘/tmp’.

Before calling this predicate, generate the object files for the foreign functions using the
foreign language compiler. The object files should contain position independent code; see
Section 10.3.2 [fli-p2f-uso], page 376.

Exceptions

Errors in the specification of foreign/3 will all be reported when load_foreign_files/2
is called.

1174 Quintus Prolog

Examples

See example under foreign/[2,3]

See Also

foreign_file/2, foreign/[2,3], load_foreign_executable/1

Section 10.3 [fli-p2f], page 375

Chapter 18: Prolog Reference Pages 1175

18.3.99 manual/[0,1] development

Synopsis

manual

Displays a menu of the top layer of the manual hierarchy.

manual(+Term)

Goes directly to the point in the manual represented by Term.

Arguments

Term term
Either a reference of form word-. . . -word (e.g. int-dir), or a topic.

Description

The menu brought up by manual/0 gives you a choice among the major parts of the manual
(see values of part above). Whichever you select, you will then be shown a menu of chapter
titles. When you select a chapter you will see a menu of the section titles of that chapter,
and so on.

manual/1 can also be used as a synonym for help/1. If the argument to manual/1 is not a
reference (above), then help/1 is called with that argument, so that the following behave
alike:

| ?- manual(Topic).

| ?- help(Topic).

This predicate is not supported in runtime systems.

Examples

To view the text in Section 1.3 [int-dir], page 11 type:

| ?- manual(int-dir).

To look up character escaping, type:

| ?- manual(’character escaping’).

1176 Quintus Prolog

This brings up a menu, which contains reference terms enclosed in curly braces. Simply
copy the one you want at the prompt.

See Also

help/1

Section 8.17 [ref-olh], page 304

Chapter 18: Prolog Reference Pages 1177

18.3.100 message_hook/3 hook

Synopsis

:- multifile message_hook/3.

message_hook(+MessageTerm, +Severity, +Lines)

Overrides the call to print_message_lines/3 in print_message/2. A way for the user
to intercept the Message of type Severity, whose translations is Lines, before it is actually
printed.

Arguments

MessageTerm term
any term

Severity one of [informational,warning,error,help,silent]
Lines list of pair

is of the form [Line1, Line2, ...], where each Linei is of the form [Control_
1-Args_1,Control_2-Args_2, ...].

Description

After a message is parsed, but before the message is written, print_message/2 calls

user:message_hook(+MsgTerm,+Severity,+Lines)

If the call to user:message_hook/3 succeeds, print_message succeeds without further
processing. Otherwise the built-in message display is used. It is often useful to have a
message hook that performs some action and then fails, allowing other message hooks to
run, and eventually allowing the message to be printed as usual. See Section 8.20.3.3 [ref-
msg-umf-ipm], page 331 for an example.

Exceptions

An exception raised by this predicate causes an error message to be printed and then the
original message is printed using the default message text and formatting. Since the user
defines message_hook/3, they can write code that might raise exceptions.

1178 Quintus Prolog

Examples

The following is the default, built-in message portrayal predicate:

message_hook(MessageTerm,Severity,Lines):-
(Severity == silent ->

true
/* Don’t translate or print silent messages */

; severity_prefix(Severity,Prefix,Stream) ->
print_message_lines(Stream,Prefix,Lines)

; raise_exception(domain_error(
print_message(Severity,MessageTerm),1,
one_of([help,error,warning,

informational,silent]),
Severity)).

severity_prefix(silent, ’’, user_error).
severity_prefix(help, ’’, user_error).
severity_prefix(error, ’! ’, user_error).
severity_prefix(warning, ’* ’, user_error).
severity_prefix(informational,’% ’, user_error).

The reasoning behind the assignment of streams is that all unsolicited output should go to
user_error.

Tips

See Also

print_message/2, generate_message/3, print_message_lines/3

Section 8.20 [ref-msg], page 325

Chapter 18: Prolog Reference Pages 1179

18.3.101 meta_predicate/1 declaration

Synopsis

:- meta_predicate +MetaSpec

Provides for module name expansion of arguments in calls to the predicate given by
MetaSpec. All meta_predicate/1 declarations must be at the beginning of a module.

Arguments

MetaSpec callable
Goal template or list of goal templates, of the form:

functor(Arg1, Arg2,...)

Each Argn is one of:

‘:’ requires module name expansion

integer >=0
same as ‘:’

‘+’, ‘-’, ‘?’, ‘*’
ignored

Description

All meta_predicate declarations must be at the beginning of a module, immediately after
the module declaration, because the meta_predicate declarations need to be known at the
time other modules are loaded if those modules use the meta-predicates.

The reason for allowing a non-negative integer as an alternative to ‘:’ is that this may be
used in the future to supply additional information to the cross-referencer (library(xref))
and to the Prolog compiler. An integer n is intended to mean that that that argument is a
term, which will be supplied n additional arguments.

Represents DEC-10 Prolog-style “mode” declaration. Provides for module name expansion
of arguments in MetaSpec.

Exceptions

context_error
Declaration appears in query.

1180 Quintus Prolog

Caveat

When a meta_predicate declaration is added, removed or changed, the file containing it,
as well as all the modules that import the predicate given by MetaSpec, must be reloaded.

Examples

Consider a sort routine, mysort/3, to which the name of the comparison predicate is passed
as an argument:

mysort(+CompareProc, +InputList, -OutputList)

If CompareProc is module sensitive, an appropriate meta_predicate declaration for
mysort/3 is:

:- meta_predicate mysort(:, +, -).

This means that whenever a goal mysort(A, B, C) appears in a clause, it will be transformed
at load time into mysort(M:A, B, C), where M is the source module. The transformation
will happen unless

1. A is of the form MetaSpec.
2. A is a variable and the same variable appears in the head of the clause in a module-

name-expansion position.

Many examples in library, e.g. library(samsort).

See Also

module/2

Section 8.13.17 [ref-mod-met], page 284

Chapter 18: Prolog Reference Pages 1181

18.3.102 mode/1 declaration

Synopsis

:- mode (+Mode)

Currently a dummy declaration.

Arguments

Mode term [MOD]

Description

So that DEC-10 Prolog programs can be read in

1182 Quintus Prolog

18.3.103 module/1

Synopsis

module(+ModuleName)

Changes the type-in module (see Section 8.13.8 [ref-mod-tyi], page 276) to ModuleName.
Thus subsequent top-level goals use ModuleName as their source module.

Arguments

ModuleName atom
the name of a module

Description

If ModuleName is not a current module, a warning message is printed, but the type-in
module is changed nonetheless.

ModuleName does not become a current module until predicates are loaded into it.

Calling module/1 from a command embedded in a file that is being loaded does not affect
the loading of clauses from that file. It only affects subsequent goals that are typed at top
level.

Exceptions

instantiation_error

See also

module/2, current_module/[1,2]

Chapter 18: Prolog Reference Pages 1183

18.3.104 module/2 declaration

Synopsis

:- module(+ModuleName, +PublicPred).

Declares the file in which the declaration appears to be a module-file named ModuleName,
with public predicates PublicPred. Must appear as the first term in the file.

Arguments

ModuleName atom
an atom

PublicPred list of simple pred spec
List of predicate specifications of the form Name/Arity.

Description

The definition of a module is not limited to a single file, because a module-file may contain
commands to load other files. If ‘myfile’, a module-file for ModuleName, contains an
embedded command to load ‘yourfile’ and if ‘yourfile’ is not itself a module-file, then
all the predicates in ‘yourfile’ are loaded into module ModuleName.

If the export list is not properly specified, there will be a warning or error message at
compile time.

Exceptions

At compile time:

context_error
Declaration appears other than as the first term in a file being loaded.

instantiation_error
ModuleName not instantiated.

type_error
PredSpecList is not a list of simple pred spec

See Also

module/1 Section 8.13 [ref-mod], page 271

1184 Quintus Prolog

18.3.105 multifile/1 declaration

Synopsis

:- multifile +PredSpecs

Allows the clauses for the specified predicates to be in more than one file.

Arguments

PredSpecs pred spec forest [MOD]
A single predicate specification of the form Name/Arity, or a sequence of pred-
icate specifications separated by commas. Name must be an atom and Arity
an integer in the range 0..255.

Description

A built-in prefix operator, so that declarations can be written as e.g.

:- multifile a/1, b/3.

By default, all clauses for a predicate are expected to come from just one file. This assists
with reloading and debugging of code. Declaring a predicate multifile means that its
clauses can be spread across several different files. This is independent of whether or not
the predicate is declared dynamic.

Should precede all the clauses for the specified predicates in the file.

There should be a multifile declaration for a predicate P in every file that contains
clauses for P. This restriction is not currently enforced in the Development System: for
compatibility with earlier releases it suffices to have a multifile declaration in the first file
loaded that contains clauses for P. However, a warning is noted if the multifile declaration
is omitted in subsequent files. The multifile declarations must be included in every file
when qpc is being used to compile files separately.

If a multifile predicate is dynamic, there should be a dynamic declaration in every file
containing clauses for the predicate. Again, this is not enforced in the Development Sys-
tem, for backwards compatibility, but warnings are printed if the dynamic declarations are
omitted. The dynamic declarations may not be omitted when qpc is being used to compile
files separately.

When a file containing clauses for a multifile predicate (P) is reloaded, the clauses for P
that previously came from that file are removed. Then the new clauses for P (which may be
the same as the old ones) are added to the end of the definition of the multifile predicate.

Chapter 18: Prolog Reference Pages 1185

An exception to this is when the file concerned is the pseudo-file user, meaning that clauses
are being entered from the terminal; in this case the clauses are always added to the end of
the predicate without removing any previously defined clauses.

If a multifile declaration is found for a predicate that has already been defined in another
file (without a multifile declaration), then this is considered to be a redefinition of that
predicate. Normally this will result in a multiple-definition style-check warning (see style_
check/1).

The predicate source_file/2 can be used to find all the files containing clauses for a
multifile predicate.

multifile predicates can be extended at run-time using multifile_assertz/1.

multifile/1 cannot be called as a built-in predicate. It can only be used as a declaration
to the compiler in a Prolog source file.

Exceptions

instantiation_error
PredSpecs not ground.

type_error
Either name or arity in PredSpec has the wrong type

domain_error
Arity not in the range 0..255.

context_error
If the declaration contradicts previous declaration or clauses for the same pred-
icate in the file.

See Also

multifile_assertz/1, source_file/[1,2], compile/1, load_files/[1,2], dynamic/1.

1186 Quintus Prolog

18.3.106 multifile_assertz/1

Synopsis

multifile_assertz(+Clause)

Adds a compiled clause to the database. The clause will be added at the end of all existing
clauses in the database.

Arguments

Clause [MOD]
callable A valid Prolog clause.

Description

If a predicate is multifile (compiled, interpreted-static or dynamic) multifile_assertz/1
can be used to add a clause, Clause, to the end of the predicate. In a runtime system
(see Section 9.1 [sap-srs], page 337), it is an error to multifile_assertz a compiled clause
because the compiler is not available.

If predicate is undefined at the time of the multifile_assertz, it is set to be compiled (in
the Development System) or dynamic (in a Runtime System). In either case the predicate
is also set to be multifile.

[Note that in runtime systems compile(File) actually loads the file as all_dynamic.]

Except for the case of a multifile dynamic predicate, the effect of multifile_assertz if
used on a predicate that is currently running will not be well-defined. The new clause may
or may not be seen on backtracking. If you want the proper semantics, use assertz instead.

Exceptions

Same as assert/1.

See Also

abolish/[1,2], assertz/1, dynamic/1, multifile/1, Section 9.1 [sap-srs], page 337

Section 9.2 [sap-rge], page 355

Chapter 18: Prolog Reference Pages 1187

18.3.107 name/2

Synopsis

name(+Constant, -Chars)

name(-Constant, +Chars)

Chars is the list consisting of the ASCII character codes comprising the printed represen-
tation of Constant.

Arguments

Constant atomic
Chars chars

Description

Initially, either Constant must be instantiated to a number or an atom, or Chars must be
instantiated to a proper list of character codes (containing no variables).

If Constant is initially instantiated to an atom or number, Chars will be unified with the
list of character codes that make up its printed representation.

If Constant is uninstantiated and Chars is initially instantiated to a list of characters that
corresponds to the correct syntax of a number (either integer or float), Constant will be
bound to that number; otherwise Constant will be instantiated to an atom containing
exactly those characters.

Examples

| ?- name(foo, L).

L = [102,111,111]

| ?- name(’Foo’, L).

L = [70,111,111]

| ?- name(431, L).

L = [52,51,49]

1188 Quintus Prolog

| ?- name(X, [102,111,111]).

X = foo

| ?- name(X, [52,51,49]).

X = 431

| ?- name(X, "15.0e+12").

X = 1.5e+13

There are atoms that can be read and written by Prolog, and that can be converted to
chars by name/2, but that it can not construct. One example of this is the atom 0:

| ?- X = ’0’, atom(X), name(X, L).

X = ’0’,
L = [48]

| ?- name(X, [48]), atom(X).

no

| ?- name(X, [48]), integer(X).

X = 0

This anomaly is present in DEC-10 Prolog and C-Prolog. name/2 is retained for com-
patibility with them. New programs should mainly use atom_chars/2 (see Section 8.9.4
[ref-lte-c2t], page 240) or number_chars/2 (see Section 8.9.4 [ref-lte-c2t], page 240) as ap-
propriate.

Exceptions

instantiation_error
If Constant and Chars are both uninstantiated

type_error
If Constant is not a constant

domain_error
Chars is not a list of ASCII codes

See Also

Section 8.9.4 [ref-lte-c2t], page 240

Chapter 18: Prolog Reference Pages 1189

18.3.108 nl/[0,1]

Synopsis

nl

nl(+Stream)

Terminates the current output record on the current output stream or on Stream. See
Section 10.5.3.3 [fli-ios-sst-fmt], page 438.

Arguments

Stream stream object
a valid Prolog stream

Description

Wraps the current output record (line) and writes out the record. How the record is wrapped
up depends on the format of the output stream.

• For a default text stream nl/[0,1] will output a 〈LFD〉 (ASCII code 10). Windows
translates this to the sequence 〈RET〉〈LFD〉 (ASCII codes 13, 10).

• For a binary stream, the record is simply written out.

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

existence_error
Some operating system dependent error occurred in writing.

permission_error
There is an error in the bottom layer of write function of the stream.

Comments

How the wrapped record is written depends upon the bottom layer write function associated
with the output stream. The default tty stream displays the wrapped output record to the
terminal immediately for each nl/[0,1] operation, while the default text stream under
UNIX and Windows does not send the wrapped record (line) to the disk unless the buffer
for the output stream is full.

1190 Quintus Prolog

See Also

put/[1,2] flush_output/1.

Chapter 18: Prolog Reference Pages 1191

18.3.109 no_style_check/1

Synopsis

no_style_check(+Type)

Turns off the specified Type of compile-time style checking.

Arguments

Type is one of the following atoms:

all Turn off all style checking.

single_var
Turn off checking for clauses containing a single instance of a named
variable, where variables that start with a ‘_’ are not considered
named.

discontiguous
Turn off checking for procedures whose clauses are not all adjacent
to one another in the file.

multiple Turn off checking for multiple definitions of the same procedure in
different files.

Description

The normal use of this predicate is as an embedded command in a file that has not been writ-
ten to follow the recommended style conventions (see Section 2.2.5 [bas-lod-sty], page 24).
For example, you could put

:- no_style_check(discontiguous).

at the beginning of a file and

:- style_check(discontiguous).

at the end of the file.

Exceptions

instantiation_error
Type is not bound.

1192 Quintus Prolog

type_error
Type is not an atom.

domain_error
Type is not a valid type of style checking.

See Also

style_check/1.

Chapter 18: Prolog Reference Pages 1193

18.3.110 nocheck_advice/[0,1] development

Synopsis

nocheck_advice

nocheck_advice(+PredSpecs)

Disable advice checking on all predicates given by PredSpecs.

Arguments

PredSpecs gen pred spec tree [MOD]
A list of predicate specifications.

Description

nocheck_advice/1 is used to disable advice checking on all predicates specified in Pred-
Specs. nocheck_advice/0 disables advice checking on all predicates for which advice check-
ing is currently enabled. When advice checking is disabled for a predicate, and execution
of that predicate reaches an advised port, execution will proceed as though the port wasn’t
advised.

This predicate is not supported in runtime systems.

Exceptions

instantiation_error
if the argument is not ground.

type_error
if a Name is not an atom or an Arity not an integer.

domain_error
if a PredSpec is not a valid procedure specification, or if an Arity is specified
as an integer outside the range 0-255.

permission_error
if a specified procedure is built-in.

Tips

nocheck_advice/0 behaves as though implemented by

1194 Quintus Prolog

nocheck_advice :-
current_advice(Goal, Port, Action),
functor(Goal, Name, Arity),
nocheck_advice(Name/Arity),
fail.

nocheck_advice.

See Also

add_advice/3, remove_advice/3, current_advice/3, check_advice/[0,1]

Chapter 18: Prolog Reference Pages 1195

18.3.111 nodebug/0 development

Synopsis

nodebug

Turns the debugger off. Equivalent to notrace/0.

Description

Does not remove any spypoints. Spypoints will remain where they were set, although they
will have no effect while the debugger is off. When the debugger is turned on again, the
spypoints will again take effect.

To remove all spypoints, use nospyall/0

This predicate is not supported in runtime systems.

1196 Quintus Prolog

18.3.112 nofileerrors/0

Synopsis

nofileerrors

Disables the fileerrors flag

Description

The built-in predicates that open files simply fail, instead of raising an exception if the
specified file cannot be opened.

The fileerrors flag is only enabled by an explicit call to fileerrors/0, or via prolog_
flag/[2,3], which can also be used to obtain the current value of the fileerrors flag.
See Section 8.10.1 [ref-lps-ove], page 245, for more information on the fileerrors flag.

Tips

nofileerrors is a drastic predicate, since it affects the use of all predicates that open files.
You might be unintentionally changing the behaviour of calls to open/3 from other parts of
the system (written by other people or from libraries). A better way to detect and ignore
file errors is to wrap specific calls to open/3 with on_exception/3 and ignore the types of
errors you want to ignore.

See Also

fileerrors/0, prolog_flag/[2,3]

Chapter 18: Prolog Reference Pages 1197

18.3.113 nogc/0

Synopsis

nogc

Disables the garbage collector.

Description

As if defined by:

nogc :- prolog_flag(gc, _, off).

See Also

prolog_flag/[2,3]

Section 8.12.3 [ref-mgc-egc], page 261

1198 Quintus Prolog

18.3.114 nonvar/1 meta-logical

Synopsis

nonvar(+Term)

Term is currently instantiated. This is the opposite of var/1.

Arguments

Term term

Example

| ?- nonvar([X,Y]).

X = _288
Y = _303
| ?- nonvar(X).

no

See Also

atom/1, atomic/1, number/1, var/1, compound/1, callable/1, simple/1

Chapter 18: Prolog Reference Pages 1199

18.3.115 noprofile/0 development

Synopsis

noprofile

Turns off the profiler.

Description

Turns off the profiler and removes data structures containing profiling information associ-
ated with any predicates that have been profiled.

This predicate is not supported in runtime systems.

See Also

profile/[0,1,2,3]

1200 Quintus Prolog

18.3.116 nospy/1 development

Synopsis

nospy(+PredSpecs)

Removes spypoints on all the predicates represented by PredSpecs.

Arguments

PredSpecs gen pred spec tree
Single predicate specification of form Name or Name/Arity, or a list of such.

Description

To remove all spypoints, use nospyall/0

If nospy/1 is given any invalid argument it prints a warning.

Note that since nospy is a built-in operator, the parentheses, which usually surround the
arguments to a predicate are not necessary (although they can be used if desired).

| ?- nospy test/1.

% spypoint removed from test/1

yes
| ?-

This predicate is not supported in runtime systems.

See Also

spy/1, nospyall/0, debug/0, add_spypoint/1, remove_spypoint/1

Chapter 18: Prolog Reference Pages 1201

18.3.117 nospyall/0 development

Synopsis

nospyall

Removes all spypoints.

Description

The only way to remove all spypoints at once, since turning off debugging with nodebug/0
does not remove spypoints; they remain in place and are reactivated if the debugger is
turned back on using trace/0 or debug/0.

This predicate is not supported in runtime systems.

See Also

nospy/1

1202 Quintus Prolog

18.3.118 notrace/0 development

Synopsis

notrace

Turns the debugger off. Equivalent to nodebug/0

Description

This predicate is not supported in runtime systems.

Chapter 18: Prolog Reference Pages 1203

18.3.119 number/1 meta-logical

Synopsis

number(+Term)

Term is currently instantiated to either an integer or a float.

Arguments

Term term

Examples

| ?- number(5.2).

yes
| ?- number(5).

yes

See Also

atom/1, atomic/1, var/1, compound/1, callable/1, nonvar/1, simple/1

1204 Quintus Prolog

18.3.120 number_chars/2

Synopsis

number_chars(+Number, -Chars)

number_chars(-Number, +Chars)

Chars is the list consisting of the ASCII character codes comprising the printed represen-
tation of Number.

Arguments

Number number
Chars chars

Description

Chars is the list of ASCII character codes comprising the printed representation of Number.

Initially, either Number must be instantiated to a number, or Chars must be instantiated
to a proper list of character codes (containing no variables).

If Number is initially instantiated to a number, Chars will be unified with the list of character
codes that make up its printed representation.

If Number is uninstantiated and Chars is initially instantiated to a list of characters that
corresponds to the correct syntax of a number (either integer or float), Number will be
bound to that number; otherwise number_chars/2 will simply fail.

Exceptions

instantiation_error
Number and Chars are both uninstantiated

domain_error
Chars is not a list of ASCII codes

type_error
Number is not a number or Chars is not a list

representation_error
Chars is a list corresponding to a number that can’t be represented

Chapter 18: Prolog Reference Pages 1205

Examples

| ?- number_chars(foo, L).

no

| ?- number_chars(431, L).

L = [52,51,49]

| ?- number_chars(X, [102,111,111]).

no

| ?- number_chars(X, [52,51,49]).

X = 431

| ?- number_chars(X, "15.0e+12").

X = 1.5e+13

See Also

atom_chars/2

1206 Quintus Prolog

18.3.121 numbervars/3 meta-logical

Synopsis

numbervars(+-Term, +FirstVar, -LastVar)

instantiates each of the variables in Term to a term of the form ’$VAR’(N).

Arguments

Term term
FirstVar integer
LastVar integer

Description

FirstVar is used as the value of N for the first variable in Term (starting from the left).
The second distinct variable in Term is given a value of N satisfying “N is FirstVar+1”; the
third distinct variable gets the value FirstVar+2, and so on. The last variable in Term has
the value LastVar-1.

Notice that in the example below, display/1 is used rather than write/1. This is because
write/1 treats terms of the form ’$VAR’(N) specially; it writes ‘A’ if N=0, ‘B’ if N=1,
. . . ‘Z’ if N=25, ‘A1’ if N=26, etc. That is why, if you type the goal in the example below,
the variable bindings will also be printed out as follows:

Term = foo(W,W,X),
A = W,
B = X

Exceptions

instantiation_error
Number and Chars are both instantiated

type_error
Number is not a number or Char is not a list

Example

| ?- Term = foo(A, A, B), numbervars(Term, 22, _),

display(Term).

foo($VAR(22),$VAR(22),$VAR(23))

Chapter 18: Prolog Reference Pages 1207

See Also

write_term/1, write_canonical/1

1208 Quintus Prolog

18.3.122 on_exception/3

Synopsis

on_exception(-Exception, +*ProtectedGoal, +*Handler)

Specify an exception handler for ProtectedGoal, and call ProtectedGoal.

Arguments

Exception term
Any term.

ProtectedGoal callable [MOD]
A goal.

Handler callable [MOD]
A goal.

Description

ProtectedGoal is executed. This will behave just as if ProtectedGoal had been written with-
out the on_exception/3 wrapper. If ProtectedGoal is determinate, then on_exception/3
will also be determinate. ProtectedGoal can also be nondeterminate. As a general rule,
code is easier to read when ProtectedGoal is a simple goal, however a conjunction of goals
(Goal1,. . .GoalN) or any other form that call/1 accepts is allowed.

If an exception is raised while ProtectedGoal is running, Prolog will abandon ProtectedGoal
entirely. Any bindings made by ProtectedGoal will be undone, just as if it had failed. Side
effects, such as data-base changes and input/output, are not undone, just as they are not
undone when a goal fails. After undoing the bindings, Prolog then tries to unify an object
called an exception term with the Exception argument. If this unification succeeds, Handler
will be executed as if you had written

Exception=the actual exception term,
Handler

If this unification fails, Prolog will keep looking for a handler. It will always find a handler
at the top level, which prints out a message corresponding to the exception.

In applications lacking a top level (C calling Prolog, where QP_toplevel() has not been
called) exceptions are indicated by the return status QP_ERROR. For more details refer to
Section 10.4 [fli-ffp], page 413.

Chapter 18: Prolog Reference Pages 1209

Exceptions

Same as call/1.

Tip

More efficient code is generated when ProtectedGoal is a simple goal. In other cases, such
as where ProtectedGoal is a conjunction of goals (Goal1,. . .GoalN), the compiler treats
this as if it were call((Goal1,..., GoalN)). This potential inefficiency does not apply to
Handler.

Examples

Fail on exception:

:-meta_predicate fail_on_exception/1.
fail_on_exception(C):-

on_exception(E,C,print_exception_then_fail(C,E)).

print_exception_then_fail(C,E):-
format(’Exception occured while calling ~q:~n’,

[C]),
print_message(warning,E),
fail.

See Also

raise_exception/1, print_message/2.

Section 8.19.3 [ref-ere-hex], page 312.

1210 Quintus Prolog

18.3.123 op/3

Synopsis

op(+Precedence, +Type, +Name)

declares Name to be an operator of the stated Type and Precedence.

Arguments

Precedence integer
integer in the range 1-1200

Type one of [xfx,xfy,yfx,fx,fy,xf,yf]
Name atom

atom or a list of atoms.

Description

Operators are a notational convenience to read and write Prolog terms. You can define new
operators using op/3.

The Precedence of an operator is used to disambiguate the way terms are parsed. The
general rule is that the operator with the highest precedence is the principal functor.

The Type of an operator decides the position of an operator and its associativity. In the
atom that represents the type the character ‘f’ represents the position of the operator. For
example, a type ‘fx’ says that the operator is a prefix operator. The character ‘y’ indicates
that the operator is associative in that direction. For example, an operator of type ‘xfy’ is
a right-associative, infix operator.

To cancel the operator properties of Name (if any) set Precedence to 0.

For more details, see Section 8.1.5 [ref-syn-ops], page 165

Exceptions

instantiation_error
Precedence, Type or Name is a variable

type_error
Precedence is not an integer or Type is not an integer or Name is not an atom

domain_error
Precedence is not in the range 1-1200

Chapter 18: Prolog Reference Pages 1211

See Also

current_op/3

Section 8.1.5 [ref-syn-ops], page 165

1212 Quintus Prolog

18.3.124 open/[3,4]

Synopsis

open(+FileSpec, +Mode, -Stream)

open(+FileSpec, +Mode, +Options, -Stream)

Creates a Prolog stream by opening the file FileSpec in mode Mode with options Options.

Arguments

FileSpec file spec
a file specification (see Section 8.6 [ref-fdi], page 205).

Mode one of [read,write,append]
an atom specifying the open mode of the target file. One of:

read open FileSpec for input.

write open FileSpec for output. A new file is created if FileSpec does
not exist. If the file already exists, then it is set to empty and its
previous contents are lost.

append opens FileSpec for output. If FileSpec already exists, adds output
to the end of it. If not, a new file is created.

Options list
a list of zero or more of the following.

text Specifies that the file stream is a text stream. This sets the line bor-
der code to 〈LFD〉, the file border code to -1, and turns on trimming.
This is the default.

binary Specifies that the file stream is a binary stream. This sets the
line border code to none, the file border code to -1, the format to
variable, and turns off trimming.

record(Size)
Size is an integer value to specify the maximum record (line) size
in the file. This also sets the internal buffer size to be used for
input/output options on the stream to Size. If Size is 0, the opened
stream operates in non-buffered mode. The value of Size should be
greater than or equal to 0.

Under UNIX, the default is 256 for tty streams and 8192 for other
stream.

Chapter 18: Prolog Reference Pages 1213

end_of_line(EolCode)
EolCode is an integer value to specify the line (record) border code
for the stream. EolCode is

-1 Indicates there is no line border code.

Charcode ASCII code for EOL character. Default = 〈LFD〉 (ASCII
code for 〈LFD〉).

If an output predicate writes out the character whose code is the
line border code of the stream, the Prolog system terminates the
output record according to the format of the stream.

end_of_file(EofCode)
EofCode is an integer value to specify the file border code for an
input stream.

-2 Indicates there is no file border code for the stream.
Reading at the end of file is same as reading past end
of file.

The file border code is the value to be returned to an input predicate
when an input stream reaches the end of file. The default file border
code is -1.

eof_action(Action)
Specifies what to do for reading past end of file. This option has
no effect on an output stream. Action is one of the following.

error It’s an error to read past end of file. This is the default
for text binary streams.

eof_code Return file border code as set in end_of_file option
for reading past end of file.

reset Reset the stream and make an attempt to read for input
past end of file. This is the default for tty stream.

overflow(OvAction)
Specifies what to do when output overflows the current record size.
This option has no effect on an input stream. OvAction is one of
the following.

error It’s an error.

truncate Discard the overflow characters.

flush Write out the overflow partial record (line). No char-
acters are discarded. This is the default under UNIX
and Windows.

seek(SeekOption)
Request seeking method that will be performed on the file. SeekOp-
tion is defined as follows:

1214 Quintus Prolog

error It’s an error to issue a seeking command on the stream.
This is the default for a tty stream.

previous The seeking request will be made only to a previous
input/output position. stream_position/3 is the only
predicate that can be used to seek on the stream. This
is the default for both text and binary streams.

byte Seeking to an arbitrary byte position on the stream.
This option also permits seek(previous). Both
stream_position/3 and seek/4 work on the stream.

record Seeking to the beginning of an arbitrary record in the
file stream. This option is not available under UNIX
or Windows.

flush(FlushType)
Request flushing method for an output stream. This option has no
effect on an input stream. It can be one of the following.

error It’s an error to try to flush an output stream.

flush Write out all the characters buffered. This is the de-
fault under UNIX and Windows.

trim Turns on the trimming on the file stream. Trimming means that
trailing blanks are deleted in input records. The default is no trim-
ming. See format below.

system(SysAttrs)
This option is provided to allow extensions.

SysAttrs

must be an atom and is passed to the QU_open() func-
tion, which can be redefined by the user. The default
version of QU_open() will report an error, causing a
permission_error to be raised, if system(SysAttrs) is
specified.

format(Format)
Specifies
the file format (see Section 10.5.3.3 [fli-ios-sst-fmt], page 438). For
Prolog running under UNIX and Windows, the default format is
format(delimited(lf)) for text stream, format(variable) for
binary stream, and format(delimited(tty)) for tty file. Users
will not normally need to use the format(Format) options directly.
Format is one of:

variable Each record in the file has its own length. There are
no delimiter characters between records. The Prolog
system removes the trailing blank characters for each
input record it reads if the trim option is set.

Chapter 18: Prolog Reference Pages 1215

delimited(lf)
For an application program’s point of view, a single
〈LFD〉 (ASCII code 10) terminates each record in the
file. Under Windows, however, what’s actually stored
in the file is the sequence 〈RET〉〈LFD〉.

delimited(tty)
FileSpec is a terminal device, a pseudo-terminal de-
vice, or a terminal emulator. The Prolog input/output
system treats this format like QP_DELIM_LF as far as
record termination is concerned.

If one of these delimiters is specified, the Prolog system removes the
delimiter characters at the end of record for input. The line border
code (specified by end_of_line option) is returned instead as the
character code at the end of the record. Prolog system also puts
delimiter characters at the end of record when a record is written
out.

When no format has been specified, the format is decided as follows: if there
is no line border code and trimming is off, then format(variable) is used;
otherwise format(delimited(lf)) is used.

Stream stream object the resulting opened Prolog stream.

Description

open/3 is equivalent to open/4 with Options=[].

open/4 is designed to work on various file systems under different operating systems.

Stream is used as an argument to Prolog input and output predicates.

Stream can also be converted to the corresponding foreign representation through stream_
code/2 and used in foreign code to perform input/output operations.

Exceptions

domain_error
Mode is not one of read, write or append. Options has an undefined option
or an element in Options is out of the domain of the option.

instantiation_error
FileSpec or Mode is not instantiated. Options argument is not ground.
type_error

1216 Quintus Prolog

FileSpec or Mode is not an atom type. Options is not a list type or an element
in Options is not a correct type for open options.

existence_error
The specified FileSpec does not exist.

permission_error
Can not open FileSpec with specified Mode and Options.

resource_error
There are too many files opened.

Comments

If an option is specified more than once the rightmost option takes precedence.

Prolog streams are in general classified as tty streams, text streams, or binary streams. A
Prolog stream is a tty stream if the format of the stream is set to format(delimited(tty)),
or if no format is specified and FileSpec refers to a terminal (decided by the function
isatty(3)). Prolog provides a special service to print prompts for a tty input stream. A
text stream corresponds to a text file. The Prolog system removes the control characters of
the text stream. A binary stream is a stream of bytes; the Prolog system returns the actual
characters stored in the file. Specifying binary or text along with trim and end_of_line
options will result in a hybrid of binary and text streams.

Defaults are provided for Options in QU_stream_param() function. This description is
based on those input/output defaults.

Format is seldom set by the user. It is only useful in case the user has redefined QU_open().

Examples

1. Opening a stream that behaves like a C standard I/O stream without maintaining
correct line count and line position.

open(FileSpec, Mode, [binary, seek(byte),
eof_action(eof_code)], Stream).

2. Opening a non-buffered stream
open(FileSpec, Mode, [record(0)], Stream).

3. On UNIX systems, if FileSpec is ‘/dev/tty’, it means that the file is the default tty
for the Prolog system. Terminal is used interactively.

See Also

open_null_stream/1, close/1, QP_prepare_stream/[3,4] QP_fopen(), QP_fdopen(),
QU_open()

Chapter 18: Prolog Reference Pages 1217

Section 10.2.3.3 [fli-emb-how-iou], page 374

1218 Quintus Prolog

18.3.125 open_null_stream/1

Synopsis

open_null_stream(-Stream)

opens an output stream that is not connected to any file and unifies its stream object with
Stream.

Arguments

Stream stream object

Description

Characters or terms that are sent to this stream are thrown away. This predicate is useful
because various pieces of local state are kept for null streams: the predicates character_
count/2, line_count/2, and line_position/2 can be used on these streams (see Sec-
tion 8.7.8 [ref-iou-sos], page 230).

If Stream is fully instantiated at the time of the call to open_null_stream/1, the call simply
fails.

See Also

character_count/2, line_count/2, line_position/2

Chapter 18: Prolog Reference Pages 1219

18.3.126 otherwise/0

Synopsis

otherwise

Always succeeds (same as true/0).

Description

otherwise/0 is useful for laying out conditionals (see Section 8.2.7 [ref-sem-con], page 186)
in a readable way.

Examples

(test1 ->
goal1

| test2 ->
goal2

| otherwise ->
goal3

)

1220 Quintus Prolog

18.3.127 peek_char/[1,2]

Synopsis

peek_char(-Char)

peek_char(+Stream, -Char)

looks ahead for next input character on the current input stream or on the input stream
Stream.

Arguments

Stream stream object
a valid Prolog stream.

Char char the resulting next input character available on the stream.

Description

peek_char/[1,2] looks ahead of the next input character of the specified input stream and
unifies the character with Char. The peeked character is still available for subsequent input
on the stream.

Example

<<NEEDS EXAMPLE>>

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

existence_error
This is an attempt to read past end of file, or some operating system dependent
error occurred in reading.

Comments

It is safe to call peek_char/[1,2] several times without actually inputting any character.
For example:

Chapter 18: Prolog Reference Pages 1221

| ?- peek_char(X), peek_char(X), get0(X).

|: a

X = 97

See Also

get0/[1,2], get/[1,2], open/[3,4]

Section 8.7 [ref-iou], page 214

1222 Quintus Prolog

18.3.128 phrase/[2,3]

Synopsis

phrase(+*PhraseType, +*List)

phrase(+*PhraseType, +*List, *Rest)

Used in conjunction with a grammar to parse or generate strings.

Arguments

PhraseType callable
non-variable, name of a phrase type. [MOD]

List list a list of symbols — tokens or character codes.

Rest list a tail of List; what remains of List after PhraseType has been found.

Description

Runs through the grammar rules checking whether there is a path by which PhraseType
can be rewritten as List.

If List is bound, this goal corresponds to using the grammar for parsing. If List is unbound,
this goal corresponds to using the grammar for generation.

phrase/2 succeeds when the list List is a phrase of type PhraseType (according to the
current grammar rules), where PhraseType is either a non-terminal or, more generally, a
grammar rule body. This predicate is a convenient way to start execution of grammar rules.

phrase/3 succeeds when the portion of List between the start of List and the start of Rest is
a phrase of type PhraseType (according to the current grammar rules), where PhraseType
is either a non-terminal or, more generally, a grammar rule body.

phrase/3 allows variables to occur as non-terminals in grammar rule bodies, just as call/1
allows variables to occur as goals in clause bodies.

Exceptions

instantiation_error
PhraseType is not bound.

type_error
PhraseType is not callable.

Chapter 18: Prolog Reference Pages 1223

Examples

See example in Section 8.16.3 [ref-gru-exa], page 300.

See also

-->/2, ’C’/3, expand_term/2, term_expansion/2 Section 8.16 [ref-gru], page 298

1224 Quintus Prolog

18.3.129 portray/1 hook

Synopsis

:- multifile portray/1.

portray(+Term)

A way for the user to over-ride the default behavior of print/1.

Arguments

Term term

Description

Note that print/1 always calls portray in module user. Therefore, to be visible to
print/1, portray must either be defined in or imported into module user. See the reference
page for print/1 for information on what happens if portray/1 fails.

If you would like lists of character codes printed by print/1 using double-quote notation,
you should include library(printchars) (see Section 12.13 [lib-abs], page 641) as part of
your version of portray/1.

If portray/1 is defined, it is called from:

1. print/1 (default is write/1)
2. to print the variable bindings after a question has succeeded (default is writeq/1. see

‘QU_messages’ for full details)
3. to print a goal during debugging (default is writeq/1. See ‘QU_messages’ for full

details)

Tips

See Also

print/1 Section 8.7.4.5 [ref-iou-tou-por], page 219

Chapter 18: Prolog Reference Pages 1225

18.3.130 portray_clause/1

Synopsis

portray_clause(+Clause)

Writes Clause to the current output stream. Used by listing/[0,1].

Arguments

Clause term

Description

The operation used by listing/0 and listing/1. Clause is written to the current out-
put stream in exactly the format in which listing/1 would have written it, including a
terminating full-stop.

If you want to print a clause, this is almost certainly the command you want. By design,
none of the other term output commands puts a full-stop after the written term. If you are
writing a file of facts to be loaded by the Load Predicates, use portray_clause/1, which
attempts to ensure that the clauses it writes out can be read in again as clauses.

The output format used by portray_clause/1 and listing/1 has been carefully designed
to be clear. We recommend that you use a similar style. In particular, never put a semicolon
(disjunction symbol) at the end of a line in Prolog.

Exceptions

Always succeeds without error.

Example

| ?- portray_clause((X:- a -> b ; c)).

A :-
(a ->

b
; c
).

X = _3185

1226 Quintus Prolog

| ?- portray_clause((X:- a -> (b -> c ; d ; e); f)).

A :-
(a ->

(b ->
c

; d
; e
)

; f
).

X = _3295

| ?- portray_clause((a:-b)).

a :-
b.

yes

| ?- portray_clause((a:-b,c)).

a :-
b,
c.

yes

| ?- portray_clause((a:-(b,!,c))).

a :-
b,
!,
c.

yes

See Also

listing/[0,1], read/[1,2]

Section 8.7.4.6 [ref-iou-tou-pcl], page 220

Chapter 18: Prolog Reference Pages 1227

18.3.131 predicate_property/2

Synopsis

predicate_property(*Callable, *PredProperty)

Unifies PredProperty with a predicate property of an existing predicate, and Callable with
the most general term that corresponds to that predicate.

Arguments

Callable callable [MOD]
the skeletal specification (see Section 8.1.7 [ref-syn-spc], page 169) of a loaded
predicate

PredProperty term
the various properties associated with Callable. Each loaded predicate will have
one or more of the properties:

Property Comments

compiled can have the multifile property

interpreted

can have either the dynamic or multifile property or both

built_in

multifile
dynamic

exported on the public predicate list of its source module

imported_from(Module)
imported into the source module from Module)

foreign

meta_predicate(Term)
Term was specified in a meta predicate declaration. Thus Term
consists of the principal functor name followed by mode declarations
for its arguments. For example:

mysort(:, +, -)

See Section 8.13.17 [ref-mod-met], page 284 for further information.

volatile not to be saved in QOF files

locked not visible in the debugger due to use of ‘-h’ option to qpc

1228 Quintus Prolog

has_advice
advice has been added for the predicate

checking_advice
advice checking is enabled for the predicate

Description

• If Callable is instantiated then predicate_property/2 successively unifies PredProp-
erty with the various properties associated with Callable.

• If PredProperty is bound to a valid predicate property, then predicate_property/2
successively unifies Callable with the skeletal specifications of all loaded predicates
having PredProperty.

• If Callable is not a loaded predicate or PredProperty is not a valid predicate property,
the call fails.

• If both arguments are unbound, then predicate_property/2 can be used to backtrack
through all currently defined predicates and their corresponding properties.

Examples

• Predicates acquire properties when they are defined:
| ?- [user].

| :- dynamic p/1.

| p(a).

| end_of_file.

% user compiled 0.117 sec 296 bytes

yes
| ?- predicate_property(p(_), Property).

Property = (dynamic) ;

Property = interpreted ;

no

• To backtrack through all the predicates P imported into module m from any module:
| ?- predicate_property(m:P, imported_from(_)).

• To backtrack through all the predicates P imported into module m1 from module m2:
| ?- predicate_property(m1:P, imported_from(m2)).

• To backtrack through all the predicates P exported by module m:
| ?- predicate_property(m:P, exported).

• A variable can also be used in place of a module atom to find the names of modules
having a predicate and property association:

Chapter 18: Prolog Reference Pages 1229

| ?- predicate_property(M:f, imported_from(m1)).

will return all modules M that import f/0 from m1.

Please note: All dynamic predicates are currently interpreted.

See Also

fileerrors/0, nofileerrors/0, gc/0, compile/1, module/[1,2], foreign/[2,3], meta_
predicate/1, volatile/1, add_advice/3, check_advice/[0,1], current_predicate/2

Section 8.13.14.2 [ref-mod-ilm-vis], page 281

1230 Quintus Prolog

18.3.132 print/1 hookable

Synopsis

print(+Term)

print(+Stream, +Term)

Writes Term to the current output stream, or Stream. Can be redefined with the hook
portray/1.

Arguments

Stream stream object
Term term

Description

By default, the effect of this predicate is the same as that of write/1, but you can change
its effect by providing clauses for the predicate portray/1.

If Term is a variable, then it is printed using write(Term).

Otherwise the user-definable procedure portray(Term) is called. If this succeeds, then it
is assumed that Term has been printed and print/1 exits (succeeds). Note that print/1
always calls portray/1 in module user. Therefore, to be visible to print/1, portray/1
must either be defined in or imported into module user.

If the call to portray/1 fails, and if Term is a compound term, then write/1 is used to
write the principal functor of Term and print/1 is called recursively on its arguments. If
Term is atomic, it is written using write/1.

When print/1 has to print a list, say [Term1,Term2,. . . ,TermN], it passes the whole list to
portray/1. As usual, if portray/1 succeeds, it is assumed to have printed the entire list,
and print/1 does nothing further with this term. Otherwise print/1 writes the list using
bracket notation, calling print/1 on each element of the list in turn.

Since [Term1,Term2,. . . ,TermN] is simply a different way of
writing .(Term1,[Term2,. . . ,TermN]), one might expect print/1 to be called recursively
on the two arguments Term1 and [Term2,. . . ,TermN], giving portray/1 a second chance
at [Term2,. . . ,TermN]. This does not happen; lists are a special case in which print/1 is
called separately for each of Term1,Term2,. . .TermN.

Chapter 18: Prolog Reference Pages 1231

If you would like lists of character codes printed by print/1 using double-quote notation,
you should include library(printchars) (see Section 12.13 [lib-abs], page 641) as part of
your version of portray/1.

Exceptions

Succeeds without error, except for any errors that may occur in the execution of portray/1.

See Also

portray/1, library(printchars)

1232 Quintus Prolog

18.3.133 print_message/2 hookable

Synopsis

print_message(+Severity, +MessageTerm)

Print a Message of a given Severity. The behavior can be customized using the two hooks
generate_message_hook/3 and message_hook/3.

Arguments

Severity atom
Unless the default system portrayal is overidden with message_hook/3, Severity
must be one of

Value Prefix

informational
‘% ’

warning ‘* ’

error ‘! ’

help no prefix

silent no prefix

MessageTerm term
any term

Description

Messages are parsed according to the definite clause grammars in qplib(’QU_
messages’), which defines ’QU_messages’:generate_message/3. If generate_
message(MessageTerm,L,[]) is true, the message is printed according to the transfor-
mation L; otherwise, the message is considered to be undefined.

An unhandled exception message E calls print_message(error, E) before returning to the
top level. The convention is that an error message is the result of an unhandled exception.
Thus, an error message should only be printed if raise_exception/1 does not find a handler
and unwind to the top-level.

All messages from the system are printed using this predicate. Means of intercepting these
messages before they are printed are provided.

print_message/2 always prints to user_error. Messages can be redirected to other
streams using message_hook/3 and print_message_lines/3

Chapter 18: Prolog Reference Pages 1233

“Silent” messages do not get translated or printed. They do not go through generate_
message/3 or generate_message_hook/3 but they can be intercepted with message_
hook/3.

See Also

message_hook/3, generate_message/3, print_message_lines/3, generate_message_
hook/3

Section 8.20.2 [ref-msg-tbm], page 327

1234 Quintus Prolog

18.3.134 print_message_lines/3

Synopsis

print_message_lines(+Stream, +Prefix, +Lines)

Print the Lines to Stream, preceding each line with Prefix. Note that print_message_
lines/3 only succeeds if Lines is a list of pair.

Arguments

Stream stream object
Any valid output stream.

Prefix term
Any term.

Lines list is of the form [Line1, Line2, ...], where each Linei is of the form [Control_
1-Args_1,Control_2-Args_2, ...].

Description

This command is intended to be used in conjunction with message_hook/3. After a message
is intercepted using message_hook/3, this command is used to print the lines. If the hook
has not been defined, the arguments are those provided by the system.

print_message_lines/3 is a simple failure driven loop over the Lines data structure, im-
plemented as:

:-use_module(library(basics),[member/2]).

print_message_lines(Stream,Prefix,Lines):-
member(Line,Lines),
format(Stream,’~N~w’,[Prefix]),
(member(C-A,Line),

format(Stream,C,A)
; nl(Stream)
),
fail.

print_message_lines(_,_,_).

Exceptions

Any exception that format/3 might raise.

Chapter 18: Prolog Reference Pages 1235

Examples

A typical use of this would be when using the user defined predicate, message_hook/3 to
redirect output. For example:

message_hook(_,_,Lines):-
my_stream(MyStream),
print_message_lines(MyStream,’’,Lines).

See Also:

message_hook/3, print_message/2, generate_message/3, query_hook/6

1236 Quintus Prolog

18.3.135 profile/[0,1,2,3] development

Synopsis

profile

profile(+Goal)

profile(+Goal,+Interval)

profile(+Goal,+Interval,+Sigtype)

Turns on the profiler and profiles the execution of Goal.

Arguments

Goal callable [MOD]
The goal to profile.

Interval integer
The hit interval in microseconds (default 10000).

Sigtype one of [with_sigprof,with_sigalrm,with_sigvtalrm]
Which signal to use (default SIGPROF).

Description

profile/0 turns the profiler on and resets all counts accumlated from previous runs of the
profiler. Counts of the number of call, choice points created and redos tried are maintained
by the profiler.

profile/1 performs this same action and then proceeds to execute Goal, in addition mon-
itoring timing data. Once execution of the goal has completed, the profiling results can be
displayed with show_profile_results/[0,1,2].

Note that the profiler cannot be used when in debugging mode.

This predicate is not supported in runtime systems.

See Also

noprofile/0, show_profile_results/[0,1,2]

Chapter 18: Prolog Reference Pages 1237

18.3.136 prolog_flag/[2,3]

Synopsis

prolog_flag(*FlagName, *Value)

FlagName is a flag, which currently is set to Value.

prolog_flag(+FlagName, -OldValue, +NewValue)

Unifies the current value of FlagName with OldValue and then sets the value of the flag to
NewValue.

Arguments

FlagName atom
Value atomic
OldValue atomic
NewValue atomic

Currently, the supported FlagNames and Values for both prolog_flag/2 and prolog_
flag/3 are:

FlagNames
Values

character_escapes
on or off

debugging
trace, debug, zip, or off

fileerrors
on or off

gc on or off

gc_margin
non-negative integer

in thousands of bytes

gc_trace on or off

unknown error or fail

syntax_errors
(see Section 8.19.4.10 [ref-ere-err-syn], page 322)

single_var
on or off

1238 Quintus Prolog

discontiguous
on or off

multiple on or off

Values available only to prolog_flag/2 (query-only) are:

FlagNames
Values

add_ons an atom containing the list of add-on products that are statically
linked into the Prolog system. If no add-ons are part of the system,
the empty atom ’’ is returned.

host_type
the host type, which is generally a hardware-operating system com-
bination. This prolog_flag is used to create the system file_
search_path/2 facts (see Section 8.6.1.4 [ref-fdi-fsp-pre], page 210
and Section 8.6.1.5 [ref-fdi-fsp-sys], page 213).

quintus_directory
the absolute name of the Quintus directory. The Quintus directory
is the root of the entire Quintus installation hierarchy.

runtime_directory
the absolute name of the directory where all the Prolog executables
reside.

version the version of the Prolog being run.

system_type
development or runtime.

Description

To inspect the value of a flag without changing it, use prolog_flag/2 or the following
idiom, where FlagName is bound to one of the valid flags above.

| ?- prolog_flag(FlagName, Value, Value).

Use prolog_flag/2 to query and prolog_flag/3 to set values.

prolog_flag/3 can be used to save flag values so that one can return a flag to its previous
state. For example:

...
prolog_flag(debugging,Old,on), % Save in Old and set
...
prolog_flag(debugging,_,Old), % Restore from Old
...

Chapter 18: Prolog Reference Pages 1239

The read-only prolog_flag/2 flags add_ons, host_type, quintus_directory, and
runtime_directory represent information set by the qsetpath program. For more de-
tail on the qsetpath and qgetpath utilities, see and .

Backtracking

prolog_flag/2 enumerates all valid flagnames of a given current value, or all pairs of flags
and their current values. It is not a way to find out non-current values for a flag.

Exceptions

instantiation_error
In prolog_flag/3, FlagName unbound, or
NewValue unbound and not identical to OldValue.

type_error
FlagName is not an atom.

domain_error
In prolog_flag/3, FlagName bound to an atom that does not represent a
supported flag, or
NewValue bound to atom that does not represent a valid value for FlagName.

See Also

gc/0, nogc/0, style_check/1, no_style_check/1, unknown/2, fileerrors/0,
nofileerrors/0

Section 8.10 [ref-lps], page 244

1240 Quintus Prolog

18.3.137 prolog_load_context/2

Synopsis

prolog_load_context(+Key, -Value)

prolog_load_context(*Key, *Value)

Finds out the context of the current load.

Arguments

Key atom

Value atom

Description

You can call prolog_load_context/2 from an embedded command or by term_
expansion/2 to find out the context of the current load. If called outside the context
of a load, it simply fails.

Key Value

module the module you are compiling into

file absolute filename of the file being compiled

stream the stream you are compiling from

directory
directory of the file on which the stream is open

term_position
a stream position object referring to the position of the clause just read

Backtracking

This predicate is meant to be used in the mode (‘+’, ‘-’), but it is also possible to backtrack
through it.

See Also

load_files/[1,2]

Chapter 18: Prolog Reference Pages 1241

Section 8.10 [ref-lps], page 244

1242 Quintus Prolog

18.3.138 prompt/[2,3]

Synopsis

prompt(-OldPrompt, +NewPrompt)

prompt(+Stream, -OldPrompt, +NewPrompt)

Queries or changes the prompt string of the current input stream or an input stream Stream.

Arguments

Stream stream object
a valid Prolog input stream.

OldPrompt atom
the old prompt atom of the stream.

NewPrompt atom
the new prompt atom of the stream.

Description

A prompt atom is a sequence of characters that indicates the Prolog system is waiting
for input when a “Read” or “Get” predicate is called. If an input stream connected to a
terminal is waiting for input at the beginning of a line (at line position 0), the prompt atom
of the stream will be printed through an output stream associated with the same terminal.

Prolog sets the prompt of the input stream to ‘|:’. This is the prompt that can be changed
by invoking prompt/[2,3]. Unlike state changes such as those implemented as prolog flags,
the scope of a prompt change is a goal typed at the toplevel. Therefore, the change is in
force only until returning to the toplevel (prompt = ‘| ?- ’).

To query the current prompt atom of a stream, OldPrompt and NewPrompt should be the
same unbound variable. For example:

prompt(X, X). prompt(user_input, X, X).

To set the prompt of a stream, NewPrompt should be an instantiated atom. prompt/2
queries or changes the prompt on the current Prolog input stream.

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

Chapter 18: Prolog Reference Pages 1243

instantiation_error
NewPrompt argument is not instantiated

type_error
NewPrompt is not an atom type

Comments

The “Load” predicates change the prompt of the input stream during the time operations
are performed: If a built-in loading predicate is performed on the module user (such as
compile(user), etc.), the prompt string of the standard Prolog input stream, user_input
(user) is set to ‘| ’. This prompt is not affected by prompt/[2,3].

prompt/3 succeeds for any valid input stream. If the input stream is not a tty format
stream, the Prolog system does not print out the prompt string when it is waiting input
from the stream.

Normally prompts only appear on user_error when the system is waiting for input on
user_input. These prompts are suppressed when user_input is not connected to a ter-
minal, unless the ‘+tty’ option to prolog(1) was specified. (See Section 10.5.4 [fli-ios-tty],
page 444.)

For prompts to be used on streams other than user_input or user_error, the C function
QP_add_tty() must be used.

See Also

QP_add_tty(), read/[1,2], read_term/[2,3], get/[1,2], get0/[1,2] Section 10.5 [fli-
ios], page 433

1244 Quintus Prolog

18.3.139 public/1 declaration

Synopsis

:- public +Term

Dummy declaration for backwards compatibility.

Arguments

Term term [MOD]

Chapter 18: Prolog Reference Pages 1245

18.3.140 put/[1,2]

Synopsis

put(+Char)

put(+Stream, +Char)

Evaluates the integer expression Char, and writes the lower 8-bits to the current output
stream or to Stream.

Arguments

Stream stream object
a valid Prolog output stream

Char expr a legal character code or an integer expression. A useful form of integer ex-
pression for this argument is a single character following ‘0’’, such as 0’a, 0’b,
etc.

Description

put/[1,2] writes out the least significant 8 bits of the evaluated Char to the specified
output stream unless Char is evaluated to be the line border code of the stream. The
character written out is usually stored in the buffer of the stream. If the buffer overflows,
it is written out to the disk. If the evaluated Char is the same as the line border code of
the output stream, the operation works like nl/[0,1]. The default line border code for a
text stream and a tty stream is the linefeed character (ASCII code 10).

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

instantiation_error
Char is not instantiated.

type_error
Char is not an integer type.

permission_error
There is an error in the bottom layer of write function of the stream.

1246 Quintus Prolog

See Also

nl/[0,1], skip_line/[0,1], open/[3,4]

Section 8.7 [ref-iou], page 214

Chapter 18: Prolog Reference Pages 1247

18.3.141 query_abbreviation/3 extendable

Synopsis

:- multifile ’QU_messages’:query_abbreviation/3.

query_abbreviation(+Tag, -Prompt, -Pairs)

A way to specify one letter abbreviations for responses to queries from the Prolog System.

Arguments

Tag atom This indicates which query type.

Prompt atom
An atom indicating appropriate abbreviations.

Pairs list of pair
A list of word-abbreviation pairs.

Description

Prolog only asks for keyboard input in a few different ways. These are enumerated in the
clauses for query_abbreviation/3 in the module messages(language(’QU_messages’)).
These clauses specify valid abbreviations for a given key word. For example,

query_abbreviation(yes_or_no,’(y/n)’,[yes-"yY",no-"nN"]).

a French translator might decide that the letters ‘O’ and ‘o’ are reasonable abreviations for
‘oui’ (yes), and therefore write

query_abbreviation(yes_or_no,’(o/n)’,[yes-"oO",no-"nN"]).

For an example of how this is used with query_hook/6, see the reference page for query_
hook_example.

See Also:

Section 8.20.3.4 [ref-msg-umf-int], page 331, and the reference page for query_hook/6

1248 Quintus Prolog

18.3.142 query_hook/6 hook

Synopsis

:- multifile query_hook/6.

query_hook(+QueryClass, +Prompt, +PromptLines, +Help, +HelpLines, -Answer)

Provides a method of overriding Prolog’s default keyboard based input requests. The query
hook is used by the Quintus User Interface.

Arguments

QueryClass term
determines the allowed values for the atom Answer.

If QueryClass is:
Answer must be:

yes_or_no(Question)
yes or no.

toplevel yes or no

yes_no_proceed
yes, no, or proceed.

Prompt list of pair
A message term.

PromptLines list of pair
The message generated from the Prompt message term.

Help term A message term.

HelpLines list of pair
The message generated from the Help message term.

Answer term
see QueryClass

Description

This provides a way of overriding Prolog’s default method of interaction. If this predicate
fails, Prolog’s default method of interaction is invoked.

The default method first prints out the prompt, then if the response from the user is not
one of the allowed values, the help message is printed.

Chapter 18: Prolog Reference Pages 1249

It is useful to compare this predicate to message_hook/3, since this explains how you might
use the Prompt, PromptLines, Help, HelpLines.

Exceptions

An exception raised by this predicate causes an error message to be printed and then the
default method of interation is invoked. In other words, exceptions are treated as failures.

Examples

If Prolog is looking for a yes-no response to one question ‘Done?’, as in the toplevel, this
request for input can be captured

query_hook(toplevel,_,_,_,_,Answer):-
my_yes_no(’Done?’,Answer).

where my_yes_no/2 binds Answer to either yes or no.

Here is roughly how the default method works. Notice the interaction with query_
abbreviation/3.

query_hook(QueryClass,_,PromptLines,_,HelpLines,Answer):-
’QU_messages’:query_abbreviation(QueryClass,

AbbreviationPrompt,
Pairs),

repeat,
(print_message_lines(user_output,’’,PromptLines),

(AbbreviationPrompt == ’’
-> write(Stream,’ ’)
; format(Stream,’ ~w ’,[AbbreviationPrompt])
),
flush_output(Stream),
get0(C),
member(Answer-Abrv,Pairs),
member(C,Abrv),
!

; print_message_lines(Stream,’’,HelpLines),
fail

).

Tips

1250 Quintus Prolog

See Also

query_abbreviation/3, message_hook/3, print_message_lines/3

Section 8.20 [ref-msg], page 325

Chapter 18: Prolog Reference Pages 1251

18.3.143 raise_exception/1

Synopsis

raise_exception(+Exception)

Raise an exception (that might be intercepted by on_exception/3).

Arguments

Exception nonvar
Any term.

Description

A call to raise_exception/1 can never backtrack, fail or succeed. Rather, raise_
exception/1 searches for an ancestor of the current goal, ProtectedGoal, which is of the
form:

on_exception(E,ProtectedGoal,Handler)

The first argument, E, unifies with Exception. It then executes the Handler instead of the
ProtectedGoal. It will always find a handler at the top level, which prints out a message
corresponding to the exception. See Section 8.20.2 [ref-msg-tbm], page 327 for a discussion
on how exceptions are printed.

Exceptions

instantiation_error
when Exception is unbound. When a built-in predicate detects an error situa-
tion, it causes an exception to be raised.

See Also

on_exception/3.

Section 8.19 [ref-ere], page 310

1252 Quintus Prolog

18.3.144 read/[1,2]

Synopsis

read(-Term)

read(+Stream, -Term)

Reads the next term from the current input stream or Stream and unifies it with Term.

Arguments

Stream stream object
a valid Prolog stream, which is open for input

Term term
the term to be read

Description

Term must be followed by a full-stop. The full-stop is removed from the input stream and
is not a part of the term that is read.

For the syntax of Prolog terms see Section 8.1.8 [ref-syn-syn], page 171.

The term is read with respect to current operator declarations. See Section 8.1.5 [ref-syn-
ops], page 165, for a discussion of operators.

Does not finish until the full-stop is encountered. Thus, if you type at top level

| ?- read(X)

you will keep getting prompts (first ‘|: ’, and five spaces thereafter) every time you type
〈RET〉, but nothing else will happen, whatever you type, until you type a full-stop.

When a syntax error is encountered, an error message is printed and then read/1 tries
again, starting immediately after the full-stop that terminated the erroneous “term”. That
is, read/1 does not fail on a syntax error, but perseveres until it eventually manages to
read a term.

If the end of the current input stream has been reached, then read(X) will cause X to be
unified with the atom end_of_file

Chapter 18: Prolog Reference Pages 1253

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

syntax_error

See Also

read_term/[2,3], prompt/[2,3]

Section 8.1.8 [ref-syn-syn], page 171

1254 Quintus Prolog

18.3.145 read_term/[2,3]

Synopsis

read_term+Options, -Term)]

read_term+Stream, +-Options, -Term)]

Read a term from the current input stream or from Stream, optionally returning extra
information about the term.

Arguments

Stream stream object
A valid Prolog stream, which is open for input

Term term
the term that is read

Options list of term
a list of zero or more of the following:

syntax_errors(Val)
Val must be bound to one of the following, indicating what should
be done when a syntax error is found:

quiet nothing is printed, and read_term/[2,3] fails

dec10 a syntax error message is printed, and read_
term/[2,3] tries to read the next term (this is com-
patible with DEC-10 Prolog and previous versions of
Quintus Prolog)

fail a syntax error message is printed, and read_
term/[2,3] fails

error an exception is raised.

The default value if this option is not specified is the current value
of the syntax_errors prolog flag. The default value for this flag is
dec10. See prolog_flag/2 for more information on these flags.

variable_names(Names)
On completion, Names is bound to a list of Name=Var pairs, where
each Name is an atom indicating the spelling of the name of a
variable in the term just read, and Var is the corresponding variable.
Note that anonymous variables, written as ‘_’, are not included in
this list.

Chapter 18: Prolog Reference Pages 1255

singletons(Singletons)
On completion, Singletons is bound to a list of Name=Var pairs,
one for each variable only appearing once in the term. Anonymous
variables are not included on this list.

term_position(Position)
On completion, Position is the position of the start of the actual
term, as might be returned by stream_position/2. Any white
space and comments before the actual term are not reflected by
the position. To find the position of the end of the term, you need
only call stream_position/2; it will give you the position of the
first character after the period ending the term.

subterm_positions(PositionTerm)
On completion, PositionTerm is bound to a position term that de-
scribes the position of the term just read and all of its subterms.
A position term is of one of the forms listed below. In all these
forms, Start and End are the character positions of first character
of the term and the character following the last character of the
term, respectively. Similarly FStart and FEnd specify the start
and end of the principle functor of the term. Note that the po-
sitions are character positions, not position terms as returned by
stream_position/2.

Start-End

The term corresponding to this position term is either
atomic or a variable. Start and End are the charac-
ter positions of the first character of the term and the
character following the last character of the term, re-
spectively.

list_position(Start,End,Elts,Tail)
The term corresponding to this position term is a list,
which was written using bracket notation (for example,
[a,list]). Elts is a list of position terms for each
proper element of the list. Tail is the position of the
tail of the list (the part following the ‘|’), or the atom
none if the list has no tail part.

string_position(Start,End)
The term corresponding to this position term is a list of
character codes written as a quoted string (for example,
"a string"). The positions specified include the quote
characters.

brace_term_position(Start,End,Arg)
The term corresponding to this position term is of the
form {X}. Arg is a position term describing the argu-
ment of this term.

1256 Quintus Prolog

term_position(Start,End,FStart,FEnd,Args)
The term corresponding to this position term is a com-
pound term not specifically mentioned above. This in-
cludes terms written with operators. Args is a list of
position terms, one for each argument of the term.

Exceptions

syntax_error
A syntax error is found

permission_error
The input stream cannot be read

domain_error
An illegal option or an invalid stream is specified

instantiation_error
Either Stream or Options, or one of the elements of the option list, or the
argument of the syntax_errors option is unbound

type_error
The argument to the syntax_errors option is not an atom

Examples

| ?- read_term([variable_names(L)], T).

|: append([U|X],Y,[U|Z]) :- append(X,Y,Z).

L = [’U’=_1988,’X’=_2003,’Y’=_2020,’Z’=_2046],
T = (append([_1988|_2003],_2020,[_1988|_2046]):-

append(_2003,_2020,_2046))

| ?- read_term([subterm_positions(P)], T).

|: foo+bar+baz.

P = term_position(1642,1653,1649,1650,
[term_position(1642,1649,1645,1646,

[1642-1645,1646-1649]),
1650-1653]),

T = foo+bar+baz

See Also

read/[1,2], prompt/[2,3] prolog_flag/[2,3]

Section 8.7 [ref-iou], page 214

Chapter 18: Prolog Reference Pages 1257

18.3.146 reconsult/1

Synopsis

reconsult(+Files)

Same as compile/1

Arguments

Files file spec or list of file spec [MOD]

1258 Quintus Prolog

18.3.147 recorda/3

Synopsis

recorda(+Key, +Term, -Ref)

records the Term in the internal database as the first item for the key Key; a database
reference to the newly-recorded term is returned in Ref.

Arguments

Key atomic
Term term
Ref db reference

Description

If Key is a compound term, only its principal functor is significant. That is, foo(1) repre-
sents the same key as foo(n).

Exceptions

instantiation_error
Key is not instantiated

range_error
Ref is not a database reference or an unbound variable

See Also

recorded/3, recordz/3, current_key/2

Section 8.14.1 [ref-mdb-bas], page 286

Chapter 18: Prolog Reference Pages 1259

18.3.148 recorded/3

Synopsis

recorded(-Key, -Term, +Ref)

recorded(+Key, *Term, *Ref)

searches the internal database for a term recorded under the key Key that unifies with
Term, and whose database reference unifies with Ref.

Arguments

Key atomic
Term term
Ref db reference

Description

If Ref is instantiated, then Key and Term are unified with the key and term associated with
Ref. Otherwise, If Key is a compound term, only its principal functor is significant. That
is, foo(1) represents the same key as foo(n).

A call to recorded/3 of the form (‘-’, ‘?’, ‘+’) will succeed if the expected relation holds.
Key need not be instantiated.

Backtracking

Can be used to backtrack through all the matching terms recorded under the specified
key. Therefore, if you want to match only a single term you should use a cut to prevent
backtracking. Alternatively, use the library(not) predicate once/1.

Exceptions

type_error
Ref is not a database reference, or Key is a float

instantiation_error

1260 Quintus Prolog

See Also

record/3, recorda/3, current_key/3

Chapter 18: Prolog Reference Pages 1261

18.3.149 recordz/3

Synopsis

recordz(+Key, +Term, -Ref)

Records the term Term in the internal database as the last item for the key Key; a database
reference to the newly-recorded term is returned in Ref.

Arguments

Key atomic
Term term
Ref db reference

Exceptions

instantiation_error
Key is not instantiated

range_error
Ref is not a db reference or an unbound variable

See Also:

recorded/3, recorda/3, current_key/2

1262 Quintus Prolog

18.3.150 remove_advice/3 development

Synopsis

remove_advice(+Goal,+*Port,+*Action)

remove the association of an action with entry to a port of a procedure. remove_advice/3
will only succeed when Port is var or one of {call, exit, done, redo, fail}, and Action is
var or callable.

Arguments

Goal callable [MOD]
a term to be unified against a calling goal of existing advice.

Port term any term.

Action term [MOD]
any term.

Description

remove_advice/3 removes the association of an advice action with a goal and port, undoing
the effect of add_advice/3.

This predicate is not supported in runtime systems.

Exceptions

instantiation_error
if an argument is not sufficiently instantiated.

type_error
if Goal or Action is not a callable, or a module prefix is not an atom, or Port
is not an atom.

domain_error
if Port is not a valid port.

permission_error
if a specified procedure is built-in.

See Also

add_advice/3, current_advice/3, check_advice/[0,1], nocheck_advice/[0,1]

Chapter 18: Prolog Reference Pages 1263

18.3.151 remove_spypoint/1 development

Synopsis

remove_spypoint(+Spyspec)

removes a spypoint from the specified predicate or call.

Arguments

Spyspec compound
a specification of an individual spypoint. Two forms of spyspec are allowed:

predicate(Pred)
A spypoint on any call to Pred. Pred must be a skeletal predicate
specification, and may be module qualified.

call(Caller,Clausenum,Callee,Callnum)
A spypoint on the Callnum call to Callee in the body of the
Clausenum clause of Caller. Callee and Callnum must be skeletal
predicate specifications. Callnum and Clausenum must be integers,
and begin counting from 1. Note that Callnum specifies a lexical
position, that is, the number of the occurrence of Callee counting
from the beginning of the body of the clause, and ignoring any
punctuation.

Description

This predicate is not supported in runtime systems.

See Also

current_spypoint/1, add_spypoint/1, spy/1, nospy/1, debugging/0

Section 6.1.1 [dbg-bas-bas], page 113

1264 Quintus Prolog

18.3.152 repeat/0

Synopsis

repeat

Succeeds immediately when called and whenever reentered by backtracking.

Description

Generally used to simulate the looping constructs found in traditional procedural languages.
The general form of a repeat loop is as follows:

repeat,
action1,
action2,
...,
actionn,
test,

!,
... rest of clause body ...

The effect of this is to execute action1 through actionn in sequence. The test is then
executed. If it succeeds, the loop is (effectively) terminated by the cut (!) (which cuts away
any alternatives in the clause, including the one created by repeat/0). A failure of the
test will cause backtracking that will be caught by repeat/0, which will succeed again and
re-execute the actions.

The easiest way to understand the effect of repeat/0 is to think of failures as “bouncing”
back off them causing re-execution of the later goals.

Repeat loops are not often needed; usually recursive procedure calls will lead to code that
is easier to understand as well as more efficient. There are certain circumstances, however,
in which repeat/0 will lead to greater efficiency. An important property of Quintus Prolog
is that all run-time data is stored in stacks so that any storage that has been allocated
during a proof of a goal is recovered immediately on backtracking through that goal. Thus,
in the above example, any space allocated by any of the actions is very efficiently reclaimed.
When an iterative construct is implemented using recursion, storage reclamation will only
be done by the garbage collector.

Chapter 18: Prolog Reference Pages 1265

Tips

In the most common use of repeat loops, each of the calls succeeds determinately. It can be
confusing if calls sometimes fail, so that backtracking starts before the test is reached, or if
calls are nondeterminate, so that backtracking does not always go right back to repeat/0.

Note that the repeat loop can only be useful if one or more of the actions involves a side-effect
— either a change to the data base (such as an assertion) or an I/O operation. Otherwise
you would do the same thing each time around the loop (which would never terminate).

Examples

repeat/0 could have been written in Prolog as follows:

repeat.
repeat :- repeat.

1266 Quintus Prolog

18.3.153 restore/1

Synopsis

restore(+FileSpec)

Restores a saved-state.

Arguments

FileSpec file spec
The name of a QOF file.

Description

restore(file) terminates the currently running executable and restarts it with the
command line arguments ‘+L file old args’ where old args are the arguments specified
when the executable was started. file is normally a file previously created by a call to
save program, but it can be any QOF file. The ‘+L’ option causes file to be loaded into the
executable as it starts up.

If file was created by save_program/[1,2], then it includes information about operator
declarations, debugging and advice information, Prolog flags, and file_search_path and
library_directory tables, as well as the Prolog code that was saved. Thus restoring file
will create the same Prolog state and database that existed at the time the save_program
was done (assuming that the same executable that was used for the save_program is used
for the restore).

It is also possible to give any QOF file to restore/1. In this case, the running executable
is reinitialized, and then the QOF file is reloaded into the system. As such QOF files store
no state information, the state is the same as in a freshly started Prolog system.

It is not normally useful to use restore/1 in a runtime system. In a runtime system,
command-line arguments are not interpreted by the system, so the re-started runtime sys-
tem will just begin again at runtime_entry(start) and will not load the specified file
automatically. An application could, if the programmer so chose, pick up the arguments
with unix(argv(L)), and then take some appropriate action. For example:

Chapter 18: Prolog Reference Pages 1267

runtime_entry(start) :-
unix(argv([’+L’,File|_])),
!,
load_files(File),
start_after_restore.

runtime_entry(start) :-
normal_start.

See Section 8.3.1 [ref-pro-arg], page 186 and Section 20.1.1 [too-too-prolog], page 1476 for
a description of the ‘+L’ option.

Exceptions

instantiation_error
FileSpec is not bound.

type_error
FileSpec is not a valid file specification.

domain_error
FileSpec is not a QOF file.

permission_error
FileSpec is not readable

Windows Caveat

Under Windows, it is not possible to replace a running executable with another. Under
Windows, restore/1 will instead start a new sub-process and then terminate the running
process. For more details see the Microsoft documentation for execv().

In a Windows command prompt window, the command interpreter does not wait when a
process executes an execv() library call. Thus after restore/1, the program gives the
appearance of running in the background.

See Also

load_files/[1,2], save_modules/2, save_predicates/2, save_program/[1,2]

Section 8.5 [ref-sls], page 192

1268 Quintus Prolog

18.3.154 retract/1

Synopsis

retract(+*Clause)

Removes the first occurrence of dynamic clause Clause from module M.

Arguments

Clause callable [MOD]
A valid Prolog clause.

Description

retract/1 erases the first clause in the database that matches Clause. Clause is retracted
in module M if specified. Otherwise, Clause is retracted in calling module.

retract/1 is nondeterminate. If control backtracks into the call to retract/1, successive
clauses matching Clause are erased. If and when no clauses match, the call to retract/1
fails.

Clause must be of one of the forms:

• Head

• Head :- Body

• Module:Clause

where Head is of type callable and the principal functor of Head is the name of a dynamic
procedure. If specified, Module must be an atom.

retract(Head) means retract the unit-clause Head. The exact same effect can be achieved
by retract((Head :- true)).

Body may be uninstantiated, in which case it will match any body. In the case of a unit-
clause it will be bound to true. Thus, for example,

| ?- retract((foo(X) :- Body)), fail.

is guaranteed to retract all the clauses for foo/1, including any unit-clauses, providing of
course that foo/1 is dynamic.

Since retract/1 is nondeterminate it is important if you only want to retract a single clause
to use a cut to eliminate the alternatives generated. See Section 8.14.5.1 [ref-mdb-rcd-efu],
page 290 for more information on the use of cuts with retract/1.

Chapter 18: Prolog Reference Pages 1269

retract/1 searches for the clause to remove in the same way that clause/2 does. (And, like
clause/2, it uses first argument indexing to speed up this search when possible.) Therefore
it is redundant to call clause/2 immediately before calling retract/1 on the clause it
returns. That is, the call to clause/2 in the following program fragment can be removed
without changing its effect.

... clause(H,B), retract((H:-B)), ...

The space occupied by a clause that is retracted is reclaimed. The reclamation does
not necessarily happen immediately, but is not delayed until backtracking past the call
to retract/1, as in some implementations.

WARNING: retract/1 is a nondeterminate procedure. Thus, we can use

| ?- retract((foo(X) :- Body)), fail.

to retract all clauses for foo/1. However, when retract/1 is used determinately; for
example, to retract a single clause, it is crucial that you cut away unintended chice points
to avoid “freezing” the retracted Clause, disabling tail recursion optimization, or runaway
retraction on the unexpected failure of a subsequent goal. See Section 8.14.5.1 [ref-mdb-
rcd-efu], page 290 for further discussion.

Exceptions

Same as assert/1.

See Also:

abolish/[1,2], assert/1, dynamic/1, erase/1, retractall/1.

1270 Quintus Prolog

18.3.155 retractall/1

Synopsis

retractall(+Head)

Removes every clause in module M whose head matches Head.

Arguments

Head callable [MOD]
Head of a Prolog clause.

Description

Head must be instantiated to a term that looks like a call to a dynamic procedure. For
example, to retract all the clauses of foo/3, you would write

| ?- retractall(foo(_,_,_)).

Head may be preceded by a M: prefix, in which case the clauses are retracted from module
M instead of the calling module.

retractall/1 could be defined (less efficiently) as

retractall(Head) :-
clause(Head, _, Ref),
erase(Ref),
fail ; true.

or

retractall(Head) :-
retract((Head :- _Body)),
fail ; true.

retractall/1 is useful for erasing all the clauses of a dynamic procedure without forget-
ting that it is dynamic; abolish/1 will not only erase all the clauses, but will also forget
absolutely everything about the procedure. retractall/1 only erases the clauses. This is
important if the procedure is called later on.

Since retractall/1 erases all the dynamic clauses whose heads match Head, it has no
choices to make, and is determinate. If there are no such clauses, it succeeds trivially. None
of the variables in Head will be instantiated by this command. For example,

Chapter 18: Prolog Reference Pages 1271

| ?- listing(baz/2).

baz(a,1).
baz(b,2).
baz(a,3).
baz(b,4).

yes
| ?- retractall(baz(a, X)).

X = _798

| ?- listing(baz/2).

baz(b,2).
baz(b,4).

yes

The space previously occupied by a retracted clause is reclaimed. This reclamation
is not necessarily immediate, but it is not delayed until backtracking past the call of
retractall/1, as in some implementations.

Exceptions

instantiation_error
if Head or Module is uninstantiated.

type_error
if Head is not of type callable.

permission_error
if the procedure corresponding to Head is built-in or has a static definition.

See Also

abolish/[1,2], assert/1, dynamic/1, erase/1, retract/1

Section 8.14.1 [ref-mdb-bas], page 286

1272 Quintus Prolog

18.3.156 runtime entry/1 hook

Synopsis

:- multifile runtime_entry/1.

runtime_entry(+Event)

This predicate is called upon start-up and exit of stand alone applications.

Arguments

Event one of [start,abort]

Description

In a default runtime system, the program starts by executing the goal,

runtime_entry(start)

When that goal terminates, either by succeeding or by failing, the runtime system termi-
nates.

Similarly, it is possible to specify what is to be done on an abort. An abort happens when
a call is made either to the built-in predicate abort/0 or to the C routine QP_action(QP_
ABORT). (By default, a call of QP_action(QP_ABORT) happens when a user types ^c — see
Section 9.2.4 [sap-rge-iha], page 358). At this point, the current computation is abandoned
and the program is restarted with the goal

runtime_entry(abort)

Effectively this replaces the original call to runtime_entry(start), so that when this call
succeeds or fails, the runtime system terminates.

Users of the module system should ensure that the predicate runtime_entry/1 is defined
in the module user, that is, not inside any user-defined module.

See Also

QP_toplevel()

Section 10.2.3.1 [fli-emb-how-mai], page 372

Chapter 18: Prolog Reference Pages 1273

18.3.157 save_modules/2

Synopsis

save_modules(+Modules, +File)

Saves all predicates in Modules in QOF format to File.

Arguments

Modules atom or list of atom
An atom representing a current module, or a list of such atoms representing a
list of modules.

File file spec
An atom representing a filename

Description

save_modules/2 saves the current definitions of all predicates in a module, or list of mod-
ules, in QOF format into a file. The modules imported by the saved modules are recorded
as dependencies in the QOF file. The foreign files loaded into that module are also recorded
as foreign dependencies in the QOF file. The QOF file produced can be loaded into a
development system (using load_files/1) or it can be linked using qld.

When multiple modules are saved into a file, loading that file will import only the first of
those modules into the module in which the load occurred.

Exceptions

instantiation_error
Modules or File is not bound.

type_error
Modules is not a valid list of module names, or a single module name, or File
is not a valid file specification

permission_error
File is not writable

existence_error
A given module is not a current module.

1274 Quintus Prolog

See Also:

load_files/1, save_predicates/2, save_program/1, volatile/1

Chapter 18: Prolog Reference Pages 1275

18.3.158 save_predicates/2

Synopsis

save_predicates(+PredSpecs, +File)

Saves the predicates specified by the PredSpecs in QOF format to File.

Arguments

PredSpecs pred spec tree [MOD]
A list of predicate specifications.

File file spec
An atom representing a filename

Description

save_predicates/2 saves the current definitions of all the predicates specified by the list
of predicate specifications in QOF format into a file. The exported and meta_predicate
properties of the predicates are not stored in the QOF file. The module of the predicates
saved in the QOF file is fixed, so it is not possible to save a predicate from any module
foo, and reload it into module bar. Likewise, the module dependencies or foreign file
dependencies of these predicates are not saved into the QOF file. A typical use of this
would be to take a snapshot of a table of dynamic facts. The QOF file that is written out
can be loaded into a development system (using load_files/1) or it can be linked with
other QOF files using qld.

Exceptions

instantiation_error
the list of predicate specifications or the filename is not ground.

type_error
domain_error

in the list of predicate specifications or in the filename.

permission_error
the file is not writable, or a predicate is built-in.

existence_error
A predicate is undefined.

1276 Quintus Prolog

See Also:

load_files/1, save_modules/2, save_program/1, volatile/1

Chapter 18: Prolog Reference Pages 1277

18.3.159 save_program/[1,2]

Synopsis

save_program(+File)

save_program(+File, +Goal)

Saves the state of the current execution in QOF format to File. A goal, Goal, to be called
upon execution/restoring of the saved state, may be specified.

Arguments

File file spec
An atom representing a filename.

Goal callable [MOD]
A goal.

Description

save_program/[1,2] creates a QOF representation of all predicates in all modules existing
in the system. However, it does not save the user’s pre-linked code. It also saves such
states of the system as operator definitions, prolog flags, debugging and advice state, and
initializations. Object files dynamically loaded into the system are saved in the qof file as
object dependencies.

The resulting file is executable, and can be started up as a command, or can be restored
using restore/1.

save_program/[1,2] saves module import/export information, which gets reinstated when
File is loaded. No new module-importation will be done when File is loaded, because it is
assumed that it was done before save_program/[1,2] was called. Thus if your program
consists of one or more modules, and you save it with save_program/[1,2], loading the
resulting File into some new module will not import any of your predicates into that module.
If you want to save out a module such that it will be imported automatically into any module
from which it is loaded, then use save_modules/2.

Exceptions

instantiation_error
File or Goal is not bound.

1278 Quintus Prolog

type_error
File is not a valid file specification, or Goal is not a valid goal.

permission_error
File is not writable.

See Also

load_files/[1,2], restore/1, save_modules/2, save_predicates/2, volatile/1

Section 8.5 [ref-sls], page 192

Chapter 18: Prolog Reference Pages 1279

18.3.160 see/1

Synopsis

see(+FileOrStream)

Makes file FileOrStream the current input stream.

Arguments

FileOrStream file spec or stream object
File specification or stream object.

Description

If there is an open input stream associated with FileOrStream, and that stream was opened
by see/1, then it is made the current input stream;

Otherwise, the specified file is opened for input and made the current input stream. If it is
not possible to open the file, see/1 raises an exception.

Different file names (that is, names that do not unify) represent different streams (even if
they correspond to the same file). Therefore, assuming ‘food’ and ‘./food’ represent the
same file, the following sequence will open two streams, both connected to the same file.

see(food)
...
see(’./food’)

It is important to remember to close streams when you have finished with them. Use seen/0
or close/1.

Exceptions

instantiation_error
FileOrStream is not instantiated enough.

existence_error
FileOrStream not currently open for input, and fileerrors flag is on.

domain_error
FileOrStream is neither a filename nor a stream.

1280 Quintus Prolog

See Also

seen/0, close/1, abort/0, seeing/1

Section 8.7.7.4 [ref-iou-sfh-opn], page 227

Chapter 18: Prolog Reference Pages 1281

18.3.161 seeing/1

Synopsis

seeing(-FileOrStream)

Unifies FileOrStream with the current input stream or file.

Arguments

FileOrStream file spec or stream object

Description

Exactly the same as current_input(FileOrStream), except that FileOrStream will be
unified with a filename if the current input stream was opened by see/1 (Section 8.7.7.4
[ref-iou-sfh-opn], page 227).

Can be used to verify that FileNameOrStream is still the current input stream as follows:

/* nonvar(FileNameOrStream), */
see(FileNameOrStream),
...
seeing(FileNameOrStream)

If the current input stream has not been changed (or if changed, then restored), the above
sequence will succeed for all file names and all stream objects opened by open/[3,4].
However, it will fail for all stream objects opened by see/1 (since only filename access to
streams opened by see/1 is supported). This includes the stream object user_input (since
the standard input stream is assumed to be opened by see/1, and so seeing/1 would return
user in this case).

If FileOrStream is instantiated to a value that is not the identifier of the current input
stream, seeing(FileOrStream) simply fails.

Can be followed by see/1 to ensure that a section of code leaves the current input un-
changed:

/* var(OldFileNameOrStream), */
seeing(OldFileNameOrStream),
...
see(OldFileNameOrStream)

The above is analogous to its stream-object-based counterpart,

1282 Quintus Prolog

/* var(OldStream), */
current_input(OldStream),
...
set_input(OldStream)

Both of these sequences will always succeed regardless of whether the current input stream
was opened by see/1 or open/3 (Section 8.7.7.4 [ref-iou-sfh-opn], page 227).

See Also

see/1, open/[3,4], current_input/1

Chapter 18: Prolog Reference Pages 1283

18.3.162 seek/4

Synopsis

seek(+Stream, +Offset, +Method, -NewLocation)

Seeks to an arbitrary byte position in Stream.

Arguments

Stream stream object
a valid Prolog stream

Offset integer
the offset in bytes to seek relative to Method specified.

Method one of [bof,current,eof]
specifies where to start seeking. It is one of the following.

bof Seek from beginning of the file stream.

current Seek from current position of the file stream.

eof Seek from end of the file stream.

NewLocation integer
The byte offset from beginning of the file after seeking operation.

Description

Sets the current position of the file stream Stream to a new position according to Offset
and Method. If Method is

bof the new position is set to Offset bytes from beginning of the file stream.

current the new position is Offset bytes plus the current position of Stream.

eof the new position is Offset bytes, a negative integer, plus the size of the file.

If Offset is 0, seek/4 returns the current position from the beginning of Stream and sets
the position to the same location.

If Stream is an output stream permitting flushing output, the characters in the buffer of the
stream are flushed before seek is performed. If the output stream Stream does not permit
flushing output and there are characters remaining in the buffer, then a permission error is
raised.

If Stream is an input stream, the characters in the input buffer of the stream are discarded
before seek is performed. The input buffer is empty when the seek/4 call returns.

1284 Quintus Prolog

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

domain_error
Method is not one of bof, current or eof.
Offset is a negative value and Method is bof.
Offset is a positive value and Method is eof.

instantiation_error
Offset or Method is not instantiated.

type_error
Stream is not a stream object.
Offset is not an integer type.
Method is not an atom type.

permission_error
Stream names an open stream but the stream is not open with seek(byte)
permission.
An error occurred while seeking in the file stream.
Flushing attempted but not permitted.

See Also

stream_position/[2,3], open/4, character_count/2, line_count/2,
line_position/2.

Section 8.7 [ref-iou], page 214

Chapter 18: Prolog Reference Pages 1285

18.3.163 seen/0

Synopsis

seen

Closes the current input stream.

Description

Current input stream is set to be user_input; that is, the user’s terminal.

Always succeeds

See Also

close/1

1286 Quintus Prolog

18.3.164 set_input/1

Synopsis

set_input(+Stream)

makes Stream the current input stream.

Arguments

Stream stream object
a valid input stream

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

instantiation_error
type_error

See Also

read/1, get/1

Chapter 18: Prolog Reference Pages 1287

18.3.165 set_output/1

Synopsis

set_output(+Stream)

makes Stream the current output stream.

Arguments

Stream stream object
a valid output stream

Description

Subsequent output predicates such as write/1 and put/1 will use this stream.

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

instantiation_error
type_error

See Also:

write/1, put/[1,2]

1288 Quintus Prolog

18.3.166 setof/3

Synopsis

setof(+Template, +*Generator, *Set)

Returns the set Set of all instances of Template such that Generator is provable.

Arguments

Template term
Generator callable [MOD]

a goal to be proved as if by call/1.

Set list of term
non-empty set

Description

Set is a set of terms represented as a list of those terms, without duplicates, in the stan-
dard order for terms (see Section 8.9.7 [ref-lte-cte], page 242). If there are no instances of
Template such that Generator is satisfied, then setof/3 simply fails.

Obviously, the set to be enumerated should be finite, and should be enumerable by Prolog
in finite time. It is possible for the provable instances to contain variables, but in this case
Set will only provide an imperfect representation of what is in reality an infinite set.

If Generator is instantiated, but contains uninstantiated variables that do not also appear
in Template, then setof/3 can succeed nondeterminately, generating alternative values for
Set corresponding to different instantiations of the free variables of Generator. (It is to
allow for such usage that Set is constrained to be non-empty.)

If Generator is of the form A^B then all the variables in A are treated as being existentially
quantified.

Examples

See findall/3 for examples that illustrate the differences among findall/3, setof/3, and
bagof/3.

Chapter 18: Prolog Reference Pages 1289

Exceptions

As for call/1, and additionally:

resource_error
Template contains too many free variables.

See Also

bagof/3, ^/2

Section 8.15 [ref-all], page 295

1290 Quintus Prolog

18.3.167 show_profile_results/[0,1,2] development

Synopsis

show_profile_results

show_profile_results(+By)

show_profile_results(+By,+Num)

Displays the results of the last profiled execution.

Arguments

By one of [by_time,by_choice_points,by_calls,by_redos]
Num integer

Description

Displays profiling information accumulated from the last call to profile/1. The By ar-
gument specifies the display mode, which determines how the list is sorted and what the
percentage figure included in the output refers to. The Num argument determines the max-
imum number of predicates displayed. This list is always sorted in descending order so that
the top Num predicates are displayed for a give display mode.

The output lists the predicate name, number of calls, choice points and redos for the pred-
icate, then the time in milliseconds and a percentage figure that depends on the display
mode. For example, if the display mode is by_calls then this is the percentage of the total
calls during profiling made to this predicate.

Then the callers are listed, showing for each caller the predicate name, clause number and
call number within that clause of the call, followed by the number of calls made from here
and the percentage of time spent in the predicate attributed to this caller.

show_profile_results/1 displays up to a maximum of 10 predicates.

show_profile_results/0 displays up to a maximum of 10 predicates using the by_time
display mode.

This predicate is not supported in runtime systems.

Chapter 18: Prolog Reference Pages 1291

Example

| ?- show_profile_results(by_time, 3).

Proc Calls ChPts Redos Time %
Caller(proc,cl#,cll#,%)

user:setof/3 227 0 0 2.04 34.0
user:satisfy/1,6,1 152 61.0
user:seto/3,1,1 48 20.0
user:satisfy/1,7,1 27 17.0

user:satisfy/1 35738 36782 14112 0.32 5.3
user:satisfy/1,1,2 13857 43.0
user:satisfy/1,2,1 12137 31.0
user:satisfy/1,1,1 7315 18.0
user:satisfy/1,3,1 1155 6.0

user:inv_map_l/5 4732 4732 3115 0.20 3.3
user:inv_map_l/5,2,1 3115 60.0
user:inv_map/4,5,1 1617 40.0

See Also

profile/[0,1,2,3], get_profile_results/4, noprofile/0

1292 Quintus Prolog

18.3.168 simple/1 meta-logical

Synopsis

simple(+Term)

Term is currently instantiated to either an atom, a number, a database or a variable.

Arguments

Term term

Examples

| ?- simple(9).

yes
| ?- simple(_X).

_X = _2487
| ?- simple("a").

no

See Also

atom/1, number/1, var/1, compound/1, callable/1, nonvar/1

Chapter 18: Prolog Reference Pages 1293

18.3.169 skip/[1,2]

Synopsis

skip(+Char)

skip(+Stream, +Char)

Skips over characters from the current input stream, or Stream, through the first character
whith an ASCII code that match the lower 8-bits of the value of the integer expression
Char.

Arguments

Stream stream object
Char expr an integer expression.

Description

Char may be an integer expression. The most useful form of integer expression in this
context is the zero-quote notation, for example, 0’a, which evaluates to 97, the ASCII code
for the letter ‘a’, so that

| ?- skip(0’a).

skips over (ignores) all input until the next occurrence of the letter ‘a’.

If Char does appear, skip/1 will consume Char, so that get0/1 will read the following
character.

To skip to the end of the current input stream:

| ?- repeat, get0(-1), !.

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

instantiation_error
type_error
domain_error

Char evaluates to a float, or an integer outside the range 0..25.

1294 Quintus Prolog

existence_error
If Char does not appear on the current input stream, an error message is given
for reading beyond the end of the stream, and the computation is aborted.
The portion of the input following Char is not a valid Prolog term.

See Also

tab/1

Chapter 18: Prolog Reference Pages 1295

18.3.170 skip_line/[0,1]

Synopsis

skip_line

skip_line(+Stream)

Skip the remaining input characters on the current line on the current input stream, or on
Stream.

Arguments

Stream stream object
a valid Prolog input stream

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

existence_error
Trying to read beyond end of Stream.

Comments

Coding with skip_line/[0,1] and at_end_of_line/[0,1] to handle line input is more
portable among different operating systems than checking end of line by the input character
code.

See Also

get0/[1,2], at_end_of_line/[0,1], at_end_of_file/[0,1].

1296 Quintus Prolog

18.3.171 sort/2

Synopsis

sort(+List1, -List2)

Sorts the elements of the list List1 into the ascending standard order, and removes any
multiple occurrences of an element. The resulting sorted list is unified with the list List2.

Arguments

List1 list of term
List2 list of term

Examples

| ?- sort([a,X,1,a(x),a,a(X)], L).

L = [X,1,a,a(X),a(x)]

(The time taken to do this is at worst order (N log N) where N is the length of the list.)

Exceptions

instatiation error
List1 is not properly instantiated

type_error
List1 is not a proper list

See Also

keysort/2 Section 8.9.7.3 [ref-lte-cte-sor], page 243

Chapter 18: Prolog Reference Pages 1297

18.3.172 source_file/[1,2,3]

Synopsis

source_file(+AbsFile)

source_file(*AbsFile)

source_file(*Pred, *AbsFile)

source_file(*Pred, *ClauseNumber, *AbsFile)

AbsFile is the absolute name of a loaded file, and ClauseNumber is the number of a clause
for Pred in that file.

Arguments

Pred callable [MOD]
selected predicate specification.

ClauseNumber integer
integer representing clause number

AbsFile atom
absolute filename

Description

Loaded files include compiled, QOF loaded and pre-linked files.

If AbsFile is not the name of a loaded file, then source_file(AbsFile) simply fails. If
AbsFile is bound to an illegal filename, source_file/1 fails.

If Pred is not a loaded predicate, then source_file/2 simply fails. If bound to an illegal
predicate specification, it fails. Pred is assumed to refer to the source module. Thus, to
find any predicates defined in a given file, use the form:

source_file(M:P, File)

source_file/3 is true if clause number ClauseNumber of predicate Pred comes from file
AbsFile. source_file/3 is useful for handling multifile predicates, but it works for predi-
cates defined completely in one file, as well.

Any combination of bound and unbound arguments is possible, and source_file/3 will
generate the others.

1298 Quintus Prolog

Backtracking

If AbsFile is unbound, it is successively unified with the absolute names of all currently
loaded files. Files loaded through the foreign function interface are not reported by source_
file/1.

If Pred is instantiated to the skeletal specification of a loaded predicate, then AbsFile will
be successively unified with the absolute names of the files in which the Pred was defined.

If AbsFile is instantiated to the absolute name of a loaded file, then Pred will be successively
unified with the skeletal specifications of all predicates defined in AbsFile.

See Also

absolute_file_name/[2,3], multifile/1

Chapter 18: Prolog Reference Pages 1299

18.3.173 spy/1 development

Synopsis

spy +PredSpecs

Sets spypoints on all the predicates represented by PredSpecs

Arguments

PredSpecs gen pred spec tree
Single predicate specification of form: Name, or Name/Arity, or a list of such.
[MOD]

Description

Turns debugger on in debug mode, so that it will stop as soon as it reaches a spypoint.
Turning off the debugger does not remove spypoints. Use nospy/1 or nospyall/0) to
explicitly remove them.

Note that since spy is a built-in operator, the parentheses, which usually surround the
arguments to a predicate, are not necessary (although they can be used if desired).

If you use the predicate specification form Name but there are no clauses for Name (of any
arity), then a warning message will be displayed and no spypoint will be set.

| ?- spy test.
% The debugger will first leap -- showing spypoints (debug)
* There are no predicates with the name test in module user

yes
[debug]

To place a spypoint on a currently undefined procedure, use the full form Name/Arity; you
will still get a warning message, but the spypoint will be set .

| ?- spy test/1.
* You have no clauses for user:test/1
% Spypoint placed on user:test/1

yes
[debug]
| ?-

1300 Quintus Prolog

If spy/1 is given any invalid argument it prints a warning.

This predicate is not supported in runtime systems.

Exceptions

instantiation_error
if the argument is not ground.

type_error
if a Name is not an atom or an Arity not an integer.

domain_error
if a PredSpec is not a valid procedure specification, or if an Arity is specified
as an integer outside the range 0-255.

permission_error
if a specified procedure is built-in or imported into the source module.

See Also

nospy/1, nospyall/0, debug/0, current_spypoint/1, add_spypoint/1, remove_
spypoint/1

Chapter 18: Prolog Reference Pages 1301

18.3.174 statistics/[0,2]

Synopsis

statistics

Displays statistics relating to memory usage and execution time.

statistics(+Keyword, -List)

statistics(*Keyword, *List)

Obtains individual statistics.

Arguments

Keyword atom
keyword such as runtime

List list of integer
list of statistics (see following table)

Times are given in milliseconds and sizes are given in bytes.

runtime [cpu time used by Prolog, cpu time since last call to statistics/[0,2]]

system_time
[cpu time used by the operating system, cpu time used by the system since the
last call to statistics/[0,2]]

real_time
[wall clock time since 00:00 GMT 1/1/1970, wall clock time since the last call
to statistics/[0,2]]

memory [total virtual memory in use, total virtual memory free]

stacks [total global stack memory, total local stack memory]

program [program space, 0]

global_stack
[global stack in use, global stack free]

local_stack
[local stack in use, local stack free]

trail [size of trail, 0]

garbage_collection
[number of GCs, freed bytes, time spent]

1302 Quintus Prolog

stack_shifts
[number of global stack area shifts, number of local stack area shifts, time spent
shifting]

atoms [number of atoms, atom space in use, atom space free]

atom_garbage_collection
[number of AGCs, freed bytes, time spent]

core (same as memory)

heap (same as program)

Description

statistics/0 displays various statistics relating to memory usage, runtime and garbage
collection, including information about which areas of memory have overflowed and how
much time has been spent expanding them.

Garbage collection statistics are initialized to zero when a Prolog session starts (this includes
sessions started from saved-states created by save_program/[1,2], and includes re-starts
caused when restore/1 is used). The statistics increase until the session is over.

statistics/2 is usually used with Keyword instantiated to a keyword such as runtime and
List unbound. The predicate then binds List to a list of statistics related to the keyword.
It can be used in programs that depend on current runtime statistical information for their
control strategy, and in programs that choose to format and write out their own statistical
summaries.

If keyword is garbage_collection the list returned contains three elements:

• the number of garbage collections performed since the beginning of the Prolog session.
• the number of bytes of heap space freed by those garbage collections.
• the number of milliseconds spent performing those garbage collections.

Examples

The output from statistics/0 looks like this:

Chapter 18: Prolog Reference Pages 1303

memory (total) 377000 bytes: 350636 in use, 26364 free
program space 219572 bytes

atom space (2804 atoms) 61024 in use, 43104 free
global space 65532 bytes: 9088 in use, 56444 free

global stack 6984 bytes
trail 16 bytes
system 2088 bytes

local stack 65532 bytes: 356 in use, 65176 free
local stack 332 bytes
system 24 bytes

0.000 sec. for 0 global and 0 local space shifts
0.000 sec. for 0 garbage collections

which collected 0 bytes
0.000 sec. for 0 atom garbage collections

which collected 0 bytes
0.233 sec. runtime

To report information on the runtime of a predicate p/0, add the following to your program:

:- statistics(runtime, [T0|_]),
p,
statistics(runtime, [T1|_]),
T is T1 - T0,
format(’p/0 took ~3d sec.~n’, [T]).

See Also

Section 8.12.1.2 [ref-mgc-ove-sta], page 257

1304 Quintus Prolog

18.3.175 stream_code/2

Synopsis

stream_code(-Stream, +CStream)

stream_code(+Stream, -CStream)

Converts between Prolog representation, Stream, and C representation, CStream, of a
stream.

Arguments

Stream stream object
a variable or a valid Prolog stream

CStream integer
a variable or a valid C stream

Description

stream_code/2 is used when there are input/output related operations performed on the
same stream in both Prolog code and foreign code.

Stream argument is a valid type if it is user, user input, user output, user error, a variable,
or a value obtained through open/[3,4] or previous stream_code/2 call. Such a valid
Stream value can be used as the stream argument to any of the Prolog built-in I/O predicates
taking a stream argument.

CStream argument is a valid type if it is a variable, a value obtained through previous
stream_code/2 call, a value obtained through QP_fopen(), QP_fdopen(), or a value of
pointer to QP_stream structure obtained through foreign function call. Such a valid CStream
value can be used as the stream argument to any of the QP foreign function taking stream
as an argument.

Exceptions

instantiation_error
Stream argument or CStream argument is not ground.

type_error
Stream or CStream is not a stream type or CStream is not an integer type.

Chapter 18: Prolog Reference Pages 1305

existence_error
Stream is syntactically valid but does not name an open stream or CStream is
of integer type but does not name a pointer to a stream.

Comments

The most frequent use of stream_code/2 is to get a stream value to be used in Prolog code
for a stream created in foreign code. This is necessary when a desired stream can not be
obtained through open/[3,4]; e.g. a stream referring to a socket or an encrypted file.

See Also:

open/[3,4], QP_fopen(), QP_fdopen()

1306 Quintus Prolog

18.3.176 stream_position/[2,3]

Synopsis

stream_position(+Stream, -Current)

True when Current represents the current position of Stream.

stream_position(+Stream, -Current, +New)

Unifies the current position of the read/write pointer for Stream with Current, then sets
the position to New.

Arguments

Stream stream object
an open stream

Current term
stream position object representing the current position of Stream.

New term stream position object

Caution

A stream position object is represented by a special Prolog term. The only safe way of
obtaining such an object is via stream_position/3 or stream_position/2. You should
not try to construct, change, or rely on the form of this object. It may vary under differ-
ent operating systems and/or change in subsequent versions of Quintus Prolog. On some
systems, a stream position object currently has the form:

’$stream_position’(CharCount, LineCount, LinePos, Magic1, Magic2)

Description

Character count, line count and line position determine the position of the pointer in the
stream. Such information is found by using character_count/2, line_count/2 and line_
position/2.

stream_position/2 may be used on any stream at all: streams that are connected to
disk files, streams that are connected to sockets, streams that are connected to the terminal
(including the standard streams user_input, user_output, user_error), and even streams
defined using QP_make_stream().

Chapter 18: Prolog Reference Pages 1307

stream_position/3 may only be used on streams that are connected to disk files.

Standard term comparison of two stream position objects for the same stream will work as
one expects. When SP1 and SP2 refer to positions in the same stream, SP1 @< SP2 if and
only if SP1 is before SP2 in the stream.

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

type_error
Current, New are not valid stream position objects.

instantiation_error

Example

To find the current position of a stream without changing it, one can ask

| ?- stream_position(Stream, Current).

See Also

seek/4, open/[3,4], character_count/2, line_count/2, line_position/2. Section 8.7
[ref-iou], page 214

1308 Quintus Prolog

18.3.177 style_check/1

Synopsis

style_check(+Type)

Turns on the specified Type of compile-time style checking.

Arguments

Type atom
is one of the following atoms:

all Turn on all style checking.

single_var
Turn on checking for clauses containing a single instance of a named
variable, where variables that start with a ‘_’ are not considered
named.

discontiguous
Turn on checking for procedures whose clauses are not all adjacent
to one another in the file.

multiple Turn on checking for multiple definitions of the same procedure in
different files.

Description

Since all style checking is on by default, this predicate is only used to put back style checking
after it has been turned off by no_style_check/1.

Exceptions

instantiation_error Type is not bound.
type_error Type is not an atom.
domain_error Type is not a valid type of style checking.

See Also

no_style_check/1.

Chapter 18: Prolog Reference Pages 1309

18.3.178 subsumes_chk/2 meta-logical

Synopsis

subsumes_chk(+General, +Specific)

True when General subsumes Specific; that is, when Specific is an instance of General.

Arguments

General term
Specific term

Description

In previous releases, subsumes_chk/2 was available as a library predicate. In release 2.5,
it was made part of the system because it was found to be useful in applications such as
writing theorem provers. The built-in predicate behaves identically to the original version
of subsumes_chk/2 but is much more efficient.

Term subsumption is a sort of one-way unification. Term S and T unify if they have
a common instance, and unification in Prolog instantiates both terms to that common
instance. S subsumes T if T is already an instance of S. For our purposes, T is an instance
of S if there is a substitution that leaves T unchanged and makes S identical to T.

Comments

There are two other related predicates defined in library(subsumes), subsumes/2 and
variant/2. These predicates are defined in terms of subsumes_chk/2, and they are still
available in that library package.

See Also

library(subsumes), library(occurs)

1310 Quintus Prolog

18.3.179 tab/[1,2]

Synopsis

tab(+Integer)

tab(+Stream, +Integer)

Writes Integer spaces to the current output stream, or Stream.

Arguments

Stream stream object
Integer expr

an integer expression.

Description

If Integer evaluates to a negative integer, tab/1 simply succeeds without doing anything.

If the current output device is the user’s terminal, the spaces are not necessarily printed
immediately; see ttyflush/0.

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

instantiation_error
type_error

N is not an integer.

permission_error
There is an error in the bottom layer of write function of the stream.

See Also

ttyflush/0

Chapter 18: Prolog Reference Pages 1311

18.3.180 tell/1

Synopsis

tell(+FileOrStream)

makes FileOrStream the current output stream.

Arguments

FileOrStream file spec or stream object
file specification or stream object.

Description

If there is an open output stream currently associated with the filename, and that stream
was opened by tell/1, then it is made the current output stream;

Otherwise, the specified file is opened for output and made the current output stream. If the
file does not exist, it is created. If it is not possible to open the file (because of protections,
for example), tell/1 raises an exception.

Different file names (names that do not unify) represent different streams (even if they
correspond to the same file). Therefore, assuming ‘food’ and ‘./food’ represent the same
file, the following sequence will open two streams, both connected to the same file:

tell(food)
...
tell(’./food’)

It is important to remember to close streams when you have finished with them. Use
told/0 (Section 8.7.7.8 [ref-iou-sfh-cst], page 229) or close/1 (Section 8.7.7.8 [ref-iou-sfh-
cst], page 229).

Exceptions

instantiation_error
FileOrStream is not instantiated enough.

domain_error
FileOrStream is neither a filename nor a stream.

permission_error
FileOrStream exists but cannot be opened.

1312 Quintus Prolog

existence_error
FileOrStream not currently open for input, and fileerrors flag is on.

See Also

told/0, telling/1

Chapter 18: Prolog Reference Pages 1313

18.3.181 telling/1

Synopsis

telling(-FileOrStream)

Unifies FileOrStream with the current output stream.

Arguments

FileOrStream file spec or stream object

Description

Exactly the same as current_output(FileOrStream) Section 8.7.7.6 [ref-iou-sfh-cos],
page 228), except that FileOrStream will be unified with a filename if the current out-
put stream was opened by tell/1.

If FileOrStream is not a filename or stream object corresponding to an open output stream,
telling(FileOrStream) simply fails.

A common usage of telling/1 is

tell(’Some File Name’)
...
telling(’Some File Name’)

Should succeed if the current input stream was not changed (or if changed, restored).
It succeeds for any filename (including user) and any stream object opened by open/3
(Section 8.7.7.4 [ref-iou-sfh-opn], page 227), but fails for user_output and any stream
object opened by tell/1 (Section 8.7.7.4 [ref-iou-sfh-opn], page 227). Passing file names
to tell/1 is the only DEC-10 Prolog usage of telling/1, so Quintus Prolog is compatible
with this usage.

Examples

WARNING: The following sequence will fail if the current output stream was opened by
tell/1.

telling(File),
...
set_output(File),

1314 Quintus Prolog

The only sequences that are guaranteed to succeed are

telling(FileOrStream),
...
tell(FileOrStream)

and

current_output(Stream),
...
set_output(Stream)

See Also

tell/1, open/[3,4], current_output/1

Chapter 18: Prolog Reference Pages 1315

18.3.182 term_expansion/2 hook

Synopsis

:- multifile term_expansion/2.

term_expansion(+Term1, -Term2)

The user may override the standard transformations to be done by expand_term/2 by
defining clauses for term_expansion/2.

Arguments

Term1 term
Term2 term

Description

expand_term/2 calls term_expansion/2 first; if it succeeds, the standard grammar rule
expansion is not tried.

expand_term/2 always calls term_expansion/2 in module user. Therefore, to be visible
to expand_term/2, term_expansion/2 must either be defined in or imported into module
user. Alternatively, you may define it in any module by using module prefixing; refer to
Section 8.13.6 [ref-mod-vis], page 274.

This hook predicate may now return a list of terms rather than a single term. Each of the
terms in the list is then treated as a separate clause.

Tip

See Also

expand_term/2, -->/2, phrase/[2,3], ’C’, prolog_load_context/2. Section 8.16 [ref-
gru], page 298

1316 Quintus Prolog

18.3.183 told/0

Synopsis

told

Closes the current output stream.

Description

Current output stream is set to be user_output; that is, the user’s terminal.

Always succeeds without error.

Chapter 18: Prolog Reference Pages 1317

18.3.184 trace/0 development

Synopsis

trace

Turns the debugger on and starts it creeping; that is, it sets the debugger to trace mode.

Description

The debugger will start showing goals as soon as the first call is reached, and it will stop
to allow you to interact as soon as it reaches a leashed port (see leash/1, Section 18.3.90
[mpg-ref-leash], page 1157). Setting the debugger to trace mode means that every time you
type a query, the debugger will start by creeping.

The effect of this predicate can also be achieved by typing the letter t after a ^c interrupt
(see Section 8.11.1 [ref-iex-int], page 250).

This predicate is not supported in runtime systems.

See Also

debug/0, notrace/0

1318 Quintus Prolog

18.3.185 trimcore/0

Synopsis

trimcore

Force reclamation of memory in all of Prolog’s data areas.

Description

Reduces the free space in all the data areas as much as possible, and gives the space no
longer needed back to the operating system.

Exceptions

Automatically called after each directive at the top level.

See Also

Section 8.12.1.1 [ref-mgc-ove-rsp], page 257

Chapter 18: Prolog Reference Pages 1319

18.3.186 true/0

Synopsis

true

Always succeeds. This could have been trivially defined in Prolog by the single clause:

true.

1320 Quintus Prolog

18.3.187 ttyflush/0, ttyget/1, ttyget0/1, ttynl/0, ttyput/1,
ttyskip/1, ttytab/1

Synopsis

ttyflush Equivalent to flush_output(user).

ttyget(-Char) Equivalent to get(user, Char).

ttyget0(-Char) Equivalent to get0(user, Char).

ttynl Equivalent to nl(user).

ttyput(+Char) Equivalent to put(user, Char).

ttyskip(+Char) Equivalent to skip(user, Char).

ttytab(+Integer) Equivalent to tab(user, Integer).

Arguments

Char char

Integer expr

Description

For compatibility with DEC-10 Character I/O a set of predicates are provided, which are
similar to the primary ones except that they always use the standard input and output
streams, which normally refer to the user’s terminal rather than to the current input stream
or current output stream. They are easily recognizable as they all begin with "tty".

Given stream-based input/output, these predicates are actually redundant. For example,
you could write get0(user, C) instead of ttyget0(C).

Chapter 18: Prolog Reference Pages 1321

18.3.188 unix/1

Synopsis

unix(shell(+Command)) Spawns a command interpreter and executes Command. Note
that, despite the name, unix/1 works on both UNIX and Windows.

unix(system(+Command)) Spawns a shell process and executes Command.

unix(system(+Command, -Status)) Spawns a shell process and executes Command. The
exit status of the executed command is returned in Status.

unix(cd(+Path)) Changes working directory to Path.

unix(argv(-ArgList)) Returns in ArgList the list of commandline arguments as Prolog
objects.

unix(args(-ArgList)) Returns in ArgList the list of commandline arguments as a list of
atoms.

Arguments

Command term
atom corresponding to a command (or null)

Status integer
exit status of the command executed

Path atom
atom corresponding to a legal directory (or null)

ArgList list of term
list of arguments used to start up current session.

Description

unix(cd) changes the working directory of Prolog (and of Emacs if running under the editor
interface) to your home directory. Note that the 〈ESC〉 x cd command under Emacs has the
same effect as this, except that Emacs also provides filename completion.

If the return status of Command is 0, unix(system(Command)) succeeds, otherwise it fails.

unix(system(Command, Status)) returns the status of the executed command, similar to
the function system(3). The low-order 8 bits of the Status is the value returned by the
system call wait(2V) and the next 8-bits higher up in the Status has the shell exit status

1322 Quintus Prolog

if the shell was not interrupted by a signal. An exit status of 127 indicates that the shell
could not be executed.

To start up an interactive shell, type unix(shell).

If ArgList is instantiated to a term that does not unify with the result returned,
unix(argv(ArgList)) or unix(args(ArgList)) will simply fail.

Exceptions

instantiation_error
Argument to unix/1 is not sufficiently instantiated.

domain_error
Argument to unix/1 is invalid.

type_error
Path is not an atom.

existence_error
Path is a nonexistent directory.

Examples

To list the QOF files in the current working directory:

| ?- unix(shell(’ls -l *.qof’)).

-rw-rw-r-- 1 joe 9152 Oct 20 1990 table.qof
-rw-rw-r-- 1 joe 576 Oct 25 1990 test.qof

yes

Alternatively, enter a command interpreter, execute commands, and type exit to return to
prolog:

| ?- unix(shell).

% ls -l *.qof

-rw-rw-r-- 1 joe 9152 Oct 20 1990 table.qof
-rw-rw-r-- 1 joe 576 Oct 25 1990 test.qof
% exit

yes
| ?-

If Prolog was invoked using the command (A), the command line arguments can be retrieved
as in (B):

Chapter 18: Prolog Reference Pages 1323

% prolog screaming yellow + yellow.pl (A)
.
.
.

| ?- unix(argv(ArgList)). (B)

ArgList = [screaming, yellow]

See Also

QP_initialize(), QP_toplevel(), system/1 — from library(strings)

Section 8.18 [ref-aos], page 307

1324 Quintus Prolog

18.3.189 unknown/2

Synopsis

unknown(-OldAction, +NewAction)

Unifies OldAction with the current action on unknown procedures, and then sets the current
action to NewAction.

Arguments

OldAction one of [error,fail]
NewAction one of [error,fail]

Description

This action determines what happens when an undefined predicate is called:

error Undefined procedures will raise an exception

fail Undefined procedures will simply fail

The default action is error. trace is accepted as a synonym for error for backword
compatibility. Note that

| ?- unknown(Action, Action).

just returns Action without changing it.

Procedures that are known to be dynamic just fail when there are no clauses for them. Their
behavior is not affected by unknown/2. For more information on dynamic procedures, see
Section 8.14.2 [ref-mdb-dsp], page 287.

See Also

unknown_predicate_handler/3

Chapter 18: Prolog Reference Pages 1325

18.3.190 unknown_predicate_handler/3 hook

Synopsis

:- multifile unknown_predicate_handler/3.

unknown_predicate_handler(+Goal, +Module, -NewGoal)

User definable hook to trap calls to unknown predicates

Arguments

Goal callable
Any Prolog term

Module atom
Any atom that is a current module

NewGoal callable
Any callable Prolog term

Description

When Prolog comes across a call to an unknown predicate and the unknown flag is set
to error, Prolog makes a call to unknown_predicate_handler/3 in module user with the
first two arguments bound. Goal is bound to the call to the undefined predicate and Module
is the module in which that predicate is supposed to be defined. If the call to unknown_
predicate_handler/3 succeeds then Prolog replaces the call to the undefined predicate
with the call to NewGoal. By default NewGoal is called in module user. This can be
overridden by making NewGoal have the form Module:SomeGoal.

Examples

The following clause gives the same behaviour as setting unknown(_,fail).

unknown_predicate_handler(_, _, fail).

The following clause causes calls to undefined predicates whose names begin with ‘xyz_’ in
module m to be trapped to my_handler/1 in module n. Predicates with names not beginning
with this character sequence are not affected.

1326 Quintus Prolog

unknown_predicate_handler(G, m, n:my_handler(G)) :-
functor(G,N,_),
atom_chars(N,Chars),
append("xyz_" _, Chars).

Tips

See Also

unknown/2, prolog_flag/3

Chapter 18: Prolog Reference Pages 1327

18.3.191 use_module/[1,2,3]

Synopsis

use_module(+Files)

Loads the module-file(s) Files, if not already loaded and up-to-date imports all exported
predicates.

use_module(+File, +Imports)

Loads module-file File, if not already loaded and up-to-date imports according to Imports.

use_module(+Module, -File, +Imports)

Module is already loaded and up-to-date. Imports according to Imports.

use_module(-Module, +File, +Imports)

Module has not been loaded, or is out-of-date. Loads Module from File and imports ac-
cording to Imports.

Arguments

File file spec or list of file spec [MOD]
Any legal file specification. Only use_module/1 accepts a list of file specifica-
tions. A ‘.pl’ or ‘.qof’ extension may be omitted in a file specification.

Imports list of simple pred spec or atom
Either a list of predicate specifications in the Name/Arity form to import into
the calling module, or the atom all, meaning all predicates exported by the
module are to be imported.

Module atom
The module name in Files, or a variable, in which case the module name is
returned.

Description

Loads each specified file except the previously loaded files that have not been changed since
last loaded. All files must be module-files, and all the public predicates of the modules are
imported into the calling module (or module M if specified).

use_module/2 imports only the predicates in Imports when loading Files.

1328 Quintus Prolog

use_module/3 allows Module to be imported into another module without requiring that
its source file (File) be known, as long as the Module already exists in the system. This
predicate is particularly useful when the module in question has been linked with the De-
velopment Kernel as described in Section 9.1 [sap-srs], page 337.

Generally, use_module/3 is similar to use_module/[1,2], except that if Module is already
in the system, Module, or predicates from Module, are simply imported into the calling
module, and File is not loaded again. If Module does not already exist in the system, File
is loaded, and use_module/3 behaves like use_module/2, except that Module is unified,
after the file has been loaded, with the actual name of the module in File. If Module is a
variable, File must exist, and the module name in File is returned.

When use_module/3 is called from an embedded command in a file being compiled with qpc,
and File is unbound, an initialization/1 fact is generated, so that the actual execution
of the use_module/3 command is delayed until the QOF file is loaded. This means that
the module given must exist when the QOF file is loaded, but not when it is created.

As File is not checked if Module already exists in the system, and File can even be left
unnamed in that case, for example,

:- use_module(mod1, _, all).

In other words, the filename may be an unbound variable as long as Module is already in
the system.

Special case of load_files/2 and is defined as

use_module(Files) :-
load_files(Files, [if(changed),

load_type(latest),
must_be_module(true)]).

use_module(File, Imports) :-
load_files(File, [if(changed),

load_type(latest),
must_be_module(true),
imports(Imports)]).

use_module/1 is similar to ensure_loaded/1 except that all files must be module-files.

An attempt to import a predicate may fail or require intervention by the user because a
predicate with the same name and arity has already been defined in, or imported into, the
loading module (or module M if specified). Details of what happens in the event of such a
name clash are given in Section 8.13.13 [ref-mod-ncl], page 279.

After loading the module-file, the source module will attempt to import all the predicates
in Imports. Imports must be a list of predicate specifications in Name/Arity form. If any
of the predicates in Imports are not public predicates, an error message is printed, but the
predicates are imported nonetheless. This lack of strictness is for convenience; if you forget

Chapter 18: Prolog Reference Pages 1329

to declare a predicate to be public, you can supply the necessary declaration and reload its
module, without having to reload the module that has imported the predicate.

While use_module/1 may be more convenient at the top level, use_module/2 is recom-
mended in files because it helps document the interface between modules by making the list
of imported predicates explicit.

For consistency, use_module/2 has also been extended so that the Imports may be specified
as the term all, in which case it behaves the same as use_module/1, importing the entire
module into the caller.

For further details on loading files, see Section 8.4 [ref-lod], page 189. On file specifications,
see Section 8.6 [ref-fdi], page 205.

Exceptions

instantiation_error
M, Files, or Imports is not ground.

type_error
One of the arguments is the wrong type.

existence_error
A specified file does not exist. If the fileerrors flag is off, the predicate fails
instead of raising this exception.

permission_error
A specified file is protected. If the fileerrors flag is off, the predicate fails
instead of raising this exception.

See Also

compile/1, ensure_loaded/1, initialization/1, load_files/[1,2], volatile/1,

Section 8.4 [ref-lod], page 189, Section 8.6 [ref-fdi], page 205

1330 Quintus Prolog

18.3.192 user_help/0 hook

Synopsis

:- multifile user_help/0.

user_help

A hook for users to add more information when help/0 is called.

Description

Useful when you want a standard way to tell users something, like how to run a demo.

help/0 always calls user_help/0 in module user. Therefore, to be visible to help/0,
user_help/0 must either be defined in or imported into module user.

Example

The common test harness for many Quintus test suites includes the clause:

user_help :-
suite_type(_,Type), suite_host(Host),
write(’You have loaded the Quintus test suite for ’),
write(Type), write(’ on ’), write(Host), nl, nl,
write(’You can invoke the suite as follows:’), nl, nl,
write(’ ?- quiet. % run suite, concise output’), nl,
write(’ ?- verbose. % run suite, verbose output’), nl,
write(’ ?- quiet(+Pred). % run suite, concise output for’), nl,
write(’ % tests of predicate Pred’), nl,
write(’ ?- quiet(+Pred, +N). % similar to above, but runs the’),nl,
write(’ % test specified by N’), nl,
write(’ ?- verbose(+Pred). % run suite, verbose output for’), nl,
write(’ % tests of predicate Pred’), nl,
write(’ % (Pred a name, NOT name/arity!’),nl,
write(’ ?- verbose(+Pred, +N). % similar to above, but runs the’),nl,
write(’ % test specified by N’), nl,
write(’ ?- help. % to get this message’), nl.

So if you compile the Prolog, C, Pascal or FORTRAN suites, you have a consistent help
message telling you how to run the suites:

Chapter 18: Prolog Reference Pages 1331

<run prolog>

<compile /ptg/suite/plsuite.pl>

| ?- help.

If you have loaded the Quintus test suite for Prolog on Sun ??? you can invoke the suite as
follows:

?- quiet. % run suite, concise output
?- verbose. % run suite, verbose output
?- quiet(+Pred). % run suite, concise output for

% tests of predicate Pred
?- quiet(+Pred, +N). % similar to above, but runs the

% test specified by N
?- verbose(+Pred). % run suite, verbose output for

% tests of predicate Pred
% (Pred a name, NOT name/arity!

?- verbose(+Pred, +N). % similar to above, but runs the
% test specified by N

?- help. % to get this message

See Also

help/1 Section 8.17 [ref-olh], page 304

1332 Quintus Prolog

18.3.193 var/1 meta-logical

Synopsis

var(+Term)

Term is currently uninstantiated (‘var’ is short for variable).

Arguments

Term term

Description

An uninstantiated variable is one that has not been bound to anything, except possibly
another uninstantiated variable. Note that a compound term with some arguments that
are uninstantiated is not itself considered to be uninstantiated.

Examples

| ?- var(foo(X,Y)).

no
| ?- var([X,Y]).

no
| ?- var(X).

X = _3437 ;

no
| ?- Term = foo(X,Y), var(Term).

no

See Also

atom/1, atomic/1, number/1, compound/1, callable/1, nonvar/1, simple/1

Chapter 18: Prolog Reference Pages 1333

18.3.194 version/[0,1]

Synopsis

version

version(+Atom)

Display system identification messages

Add the atom A to the list of introductory messages.

Arguments

Atom atom

1334 Quintus Prolog

18.3.195 vms/[1,2]

Synopsis

vms(+-Command)

vms(+-Command, +Flag)

Issue a VMS specific system command (only available on VMS platforms).

Arguments

Command term
Flag one of [n,i]

Chapter 18: Prolog Reference Pages 1335

18.3.196 volatile/1 declaration

Synopsis

:- volatile +PredSpecs

Declares PredSpecs to be volatile. Volatile predicates are not saved in QOF files by Prolog
‘save’ predicates.

Arguments

PredSpecs pred spec forest [MOD]
A single predicate specification of the form Name/Arity, or a sequence of pred-
icate specifications separated by commas. Name must be an atom and Arity
an integer in the range 0..255.

Description

A built-in prefix operator, so that declarations can be written as e.g.

:- volatile a/1, b/3.

callable both at compile-time and run-time. In both cases the predicate specified will, with
immediate effect, be declared as volatile.

When used as a compile-time directive, the volatile declaration of a predicate must appear
before all clauses of that predicate. The predicate is reinitialized.

When used as a callable goal, the only effect on the predicate is that it is set to be volatile.

Exceptions

instantiation_error
If PredSpec is not ground.

type_error
If PredSpec is not a proper predicate specification.

permission_error
PredSpec names a non-volatile predicate that is already defined (This exception
is only raised when volatile is used as a compile-time directive.)

1336 Quintus Prolog

Comments

Whether PredSpec is volatile can be checked with predicate_property/2.

The properties, as well as the predicate, can be deleted with abolish/1.

PredSpec clauses are saved by qpc.

Examples

see examples under initialization/1.

See Also

initialization/1, save_program/[1,2], save_modules/2, save_predicates/2

Section 8.5.6.2 [ref-sls-igs-vol], page 203

Chapter 18: Prolog Reference Pages 1337

18.3.197 write/[1,2]

Synopsis

write(+Term)

write(+Stream, +Term)

Writes Term to the current output stream or Stream.

Arguments

Stream stream object
a valid output stream

Term term
the term to be written

Description

Equivalent to write_term/[2,3] with these options:

[quoted(false),ignore_ops(false),numbervars(true)]

If Term is uninstantiated, it is written as an anonymous variable (an underscore followed
by a non-negative integer).

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226), plus:

existence_error

Example

| ?- write(’a b’).

a b

See Also

read[1,2], writeq/[1,2], write_canonical/[1,2] or write_term/[2,3].

1338 Quintus Prolog

18.3.198 write_canonical/[1,2]

Synopsis

write_canonical(+Term)

write_canonical(+Stream, +Term)

Writes Term to the current or specified output stream in standard syntax.

Arguments

Stream stream object
a valid Prolog stream, which is open for output

Term term
the term to be written

Description

Equivalent to write_term/[2,3] with the options:

[quoted(true),ignore_ops(true),numbervars(false),char_escapes(false)]

This predicate is provided so that Term, if written to a file, can be read back by read/[1,2]
regardless of special characters in Term or prevailing operator declarations.

Does not terminate its output with a full-stop, which is required by read/[1,2].

In general, one can only read (using read/[1,2]) a term written by write_canonical/1 if
the value of the character_escapes flag is the same when the term is read as when it was
written.

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226).

Examples

The following sequence will succeed:

Chapter 18: Prolog Reference Pages 1339

...
open(FileName, write, StreamOut),
write_canonical(StreamOut, Term),
write(StreamOut, ’.’),
nl(StreamOut),
close(StreamOut),
...
open(FileName, read, StreamIn),
read(StreamIn, Term),
close(StreamIn),
...

To contrast write/[1,2] and write_canonical/[1,2]:

| ?- write({’A’ + ’$VAR’(0) + [a]}).

{A+A+[a]}

| ?- write_canonical({’A’ + ’$VAR’(0) + [a]}).

{}(+(+(’A’,’$VAR’(0)),.(a,[])))

See Also

write_term/[2,3], write/[1,2], writeq/[1,2], read/[1,2]

Section 8.7.4.2 [ref-iou-tou-cha], page 218

1340 Quintus Prolog

18.3.199 write_term/[2,3]

Synopsis

write_term(+Term, +Options)

write_term(+Stream, +Term, +Options)

Writes Term to the current output stream or to Stream in a format given by the options.

Arguments

Stream stream object
a valid Prolog stream, which is open for output

Term term
the term to be written

Options list of term
a list of zero or more of the following, where Bool must be true or false (false
is the default).

quoted(Bool)
Should atoms and functors be quoted as necessary to make them
acceptable as input to read?

ignore_ops(Bool)
Ignore current operator declarations? If Bool is true, com-
pound terms are always written in the form: predicate name

(arg1,...,argn).

portrayed(Bool)
Call user:portray/1 for each subterm. By default the behavior of
write_term/[2,3] is controlled by Options, but you can change
its effect by providing clauses for the predicate portray/1.

character_escapes(Bool)
Use character escapes. Bool must be true or false (the default
depends on the value of the character_escapes flag as set by
prolog_flag/3). If Bool is true then write_term/[2,3] tries to
write layout characters (except ASCII 9 and ASCII 32) in the form
‘\lower-case-letter’, if possible; otherwise, write_term/[2,3]
writes the ‘\^control-char’ form. If Bool is false then it writes
the actual character, without using an escape sequence.

numbervars(Bool)
Should terms like ’$VAR’(N) be treated specially? If Bool is
true, write_term/[2,3] writes ‘A’ if N=0, ‘B’ if N=1, . . . ‘Z’ if

Chapter 18: Prolog Reference Pages 1341

N=25, ‘A1’ if N=26, etc. Terms of this form are generated by
numbervars/3.

max_depth(N)
Depth limit on printing. N is any integer; 0 means no limit and
approximately 33 million is the default.

Description

write_term/[2,3] is the most general of the write family of predicates. write_term/[2,3]
subsumes all predicates in the family, with the exception of portray_clause/1. That is,
all write predicates can be written as calls to write_term/[2,3].

Exceptions

domain_error
Options contains an undefined option.

instantiation_error
Any of the Options arguments or Stream is not ground.

type_error
In Stream or in Options.

existence_error
Stream is syntactically valid but does not name an open stream.

permission_error
Stream names an open stream but the stream is not open for output.

Comments

If an option is specified more than once the rightmost option takes precedence. This provides
for a convenient way of adding default values by putting these defaults at the front of the
list of options. For example, the predicate my_write_term/2 defined as

my_write_term(Term, Options) :-
write_term(Term, [quoted(true),

numbervars(true)|Options]).

is equivalent to write_term/2 except that two of the defaults are different.

Examples

How certain options affect the output of write_term/2:

1342 Quintus Prolog

| ?- write_term(’a b’, [quoted(true)]).

’a b’

| ?- write_term(a+b, [ignore_ops(true)]).

+(a,b)

| ?- write_term(f(’$VAR’(2)),
[numbervars(true)].)

f(C)

| ?- write_term(f(’$VAR’(’C’)),
[numbervars(true)]).

f(C)

If your intention is to name variables such as that generated by read_term/2 with the
variable names option then this can be done by defining a predicate like:

var_to_names([]) :- !.
var_to_names([=(Name,Var)|RestofPairs]) :-

(var(Var) ->
Var = ’$VAR’(Name)

; true
),
var_to_names(RestofPairs).

| ?- read_term([variable_names(Names)], X),

var_to_names(Names),

write_term(X, [numbervars(true)]),

nl,

fail.

|: a(X, Y).

a(X, Y).

no

See Also

write/[1,2], writeq/[1,2], write_canonical/[1,2], display/1, print/1, portray_
clause/1

Section 8.7.4.2 [ref-iou-tou-cha], page 218

Chapter 18: Prolog Reference Pages 1343

18.3.200 writeq/[1,2]

Synopsis

writeq(+Term)

writeq(+Stream, +Term)

Writes the term Term to Stream or the current output stream.

Arguments

Stream stream object
a valid Prolog stream, which is open for output

Term term
the term to be written

Description

Equivalent to write_term/[2,3] with the options:

[quoted(true),ignore_ops(false),numbervars(true)]

Does not terminate its output with a full-stop. Therefore, if you want this term to be input
to read/[1,2], you must explicitly write a full-stop to mark the end of the term.

Comments

Depending upon whether character escaping is on or off, writeq/[1,2] and write_
canonical/[1,2] behave differently when writing quoted atoms. If character escaping
is on:

• The characters with ASCII codes 9 (horizontal tab), 32 (space), and 33 through 126
(non-layout characters) are written as themselves.

• The characters with ASCII codes 8, 10, 11, 12, 13, 27, and 127 are written in their
‘\lowercase letter’ form (see above for the corresponding letter).

• The character with ASCII code 39 (single quote) is written as two consecutive single
quotes.

• The character with ASCII code 92 (back slash) is written as two consecutive back
slashes.

• All other characters are written in their ‘\^control char’ form.

1344 Quintus Prolog

If character escaping is off:

• The character with ASCII code 39 (single quote) is written as two consecutive single
quotes.

• All other characters are written as themselves.

Exceptions

Stream errors (see Section 8.7.7.2 [ref-iou-sfh-est], page 226)

See Also

write_term/[2,3], write/[1,2], write_canonical/[1,2]

Section 8.1.4 [ref-syn-ces], page 163 for information about character escaping.

Chapter 19: C Reference Pages 1345

19 C Reference Pages

19.1 Return Values and Errors

Quintus Prolog C functions return the following:

integer one of

QP_SUCCESS
(0)

QP_FAILURE
(-1)

QP_ERROR (-2)

boolean true (1), false (0)

pointer a pointer or null (0)

In some error situations, a global variable, QP_errno may also be set to give more informa-
tion about the error condition.

Those I/O related predicates that take a Prolog stream argument do not set the error code
in QP_errno. Instead, they set the errno field of the stream.

There are two QP_ functions provided to help diagnose error conditions from error numbers:

QP_perror()
prints out a user message, together with a short error message describing the
last error encountered that set QP_errno. This function is similar to the system
function perror(3).

QP_error_message()
returns a pointer to the diagnostic message corresponding to a specified error
number.

In addition, the error number is sometimes reported in the message field of exception terms,
as in

existence_error(Goal, _,_,_,errno(error number))

See Section 18.1.1 [mpg-ref-ove], page 985 for a description of the conventions observed in
the Reference Pages for Prolog predicates. C function Reference Pages differ primarily in
the synopsis.

1346 Quintus Prolog

19.2 Topical List of C Functions

Following is a complete list of Quintus-supplied C functions. They fall into two categories:
built-in and user-redefinable. The user-redefinable functions are used in embedding Prolog
sub-programs (see Section 10.2 [fli-emb], page 365). Quintus provides default definitions
for these functions, and for most purposes it is unneccessary to even know about them.
However, it is possible to redefine any of these to make Quintus Prolog programs behave
appropriately when embedded in C code. Changing these default definitions means replacing
them with your own code, not adding clauses.

By convention these functions are named to be recognizable as C functions, and as belonging
to one or the other of these categories: Regular C builtins are prefixed with QP_ and user-
redefinable ones with QU_.

19.2.1 C Errors

QP_perror()
prints an error message based on a QP error number

QP_error_message()
gets the corresponding error message from a QP error number

QU_error_message()
as QP_error_message(), but user-redefinable

19.2.2 Character I/O

QP_char_count()
obtains the character count for a Prolog stream

QP_fgetc()
gets a character from a Prolog input stream

QP_fgets()
gets a string from a Prolog input stream

QP_fpeekc()
looks a character ahead from a Prolog input stream

QP_fprintf()
prints formatted output on a Prolog output stream

QP_fputc()
puts a character on a Prolog output stream

QP_fputs()
puts a character string on a Prolog output stream

QP_fskipln()
skips the current input record of a Prolog input stream

Chapter 19: C Reference Pages 1347

QP_getc()
gets a character from a Prolog input stream

QP_getchar()
gets a character from the Prolog current input stream

QP_newln()
terminates an output record for a Prolog output stream

QP_newline()
terminates an output record for the Prolog current output stream

QP_peekc()
looks a character ahead from a Prolog input stream

QP_peekchar()
looks a character ahead from the Prolog current input stream

QP_putc()
puts a character on a Prolog output stream

QP_putchar()
puts a character on the Prolog current output stream

QP_puts()
puts a character string on the Prolog current output stream

QP_skipline()
skips the current input record of the Prolog current input stream

QP_skipln()
skips the current input record of a Prolog input stream

QP_tab() puts the specified character the number of times specified on a Prolog output
stream

QP_tabto()
puts the specified character up to the specified line position on a Prolog output
stream

QP_ungetc()
"unget"s the previous read character from a Prolog input input stream

19.2.3 Exceptions

QP_exception_term()
fetches the Prolog term representing the most recently raised exception

19.2.4 Files and Streams

QP_add_tty()
registers a created Prolog stream as a tty stream group

1348 Quintus Prolog

QP_clearerr()
clears the previous error on a Prolog stream

QP_close()
closes a Prolog stream

QP_eof() tests for the end of file on an input stream

QP_eoln()
tests for the end of record on an input stream

QP_fclose()
closes a Prolog stream

QP_fdopen()
creates a text stream or a binary stream from a file descriptor

QP_ferror()
tests error condition for a Prolog stream

QP_flush()
flushes output on a Prolog output stream

QP_fnewln()
terminates an output record for a Prolog output stream

QP_fopen()
opens a text file or a binary file as a Prolog stream

QP_getpos()
gets the current position for a Prolog stream

QP_line_count()
obtains the line count for a Prolog stream

QP_line_position()
obtains the line position for a Prolog stream

QP_prepare_stream()
initializes internal fields of a QP_stream structure

QP_register_stream()
registers a created Prolog stream

QP_rewind()
repositions a Prolog stream back to the beginning

QP_seek()
seeks to a random position in a Prolog stream

QP_setinput()
sets the Prolog current input stream

QP_setoutput()
sets the Prolog current output stream

QP_setpos()
positions a Prolog stream back to a previous read/written position

Chapter 19: C Reference Pages 1349

QU_fdopen()
creates streams opened by QP_fdopen()

QU_initio()
creates three Prolog initial streams

QU_open()
creates streams opened by open/[3,4]

QU_stream_param()
sets up default field values in a QP_stream stream structure

19.2.5 Foreign Interface

QP_atom_from_padded_string()
returns the Prolog atom corresponding to a blank-padded string; used with
FORTRAN & Pascal

QP_atom_from_string()
returns the Prolog atom corresponding to a null-terminated string

QP_close_query()
closes a Prolog query opened from C by QP_open_query()

QP_cons_functor()
creates a Prolog compound term from C

QP_cons_list()
creates a Prolog list from C

QP_cut_query()
terminates a nondeterminate Prolog query opened from C

QP_exception_term()
returns the Prolog term to C corresponding to the most recent Prolog error

QP_get_arg()
fetches a specified argument of a compound term in a Prolog term reference

QP_get_atom()
fetches an atom from a Prolog term reference

QP_get_float()
fetches a floating point number from a Prolog term reference

QP_get_functor()
fetches the name and arity of a term in a Prolog term reference

QP_get_head()
fetches the head of a list in a Prolog term reference

QP_get_integer()
fetches an integer in a Prolog term reference

QP_get_list()
fetches the head and tail of a list in a Prolog term reference

1350 Quintus Prolog

QP_get_tail()
fetches the tail of a list in a Prolog term reference

QP_next_solution()
gets the next solution, if any, to an open Prolog query

QP_open_query()
opens a Prolog query from C

QP_padded_string_from_atom()
returns the blank-padded string corresponding to a Prolog atom; used with
FORTRAN & Pascal

QP_pred()
fetches an identifier for a Prolog predicate

QP_predicate()
fetches an identifier a Prolog predicate

QP_put_atom()
assigns an atom to a Prolog term reference

QP_put_float()
assigns a floating point number to a Prolog term reference

QP_put_functor()
assigns a new compound term to a Prolog term reference

QP_put_integer()
assigns a Prolog integer to a Prolog term reference

QP_put_list()
assigns a new list to a Prolog term reference

QP_put_term()
assigns a Prolog term reference to another Prolog term reference

QP_put_variable()
assigns a Prolog variable to a Prolog term reference

QP_query()
makes a determinate query to a Prolog predicate

QP_string_from_atom()
returns a null-terminated string corresponding to a Prolog atom

19.2.6 Input Services

QP_add_input()
registers a function to be called when input occurs on a file descriptor

QP_add_output()
registers a function to be called when output occurs on a file descriptor

Chapter 19: C Reference Pages 1351

QP_add_exception()
registers a function to be called when an exception condition occurs on a file
descriptor

QP_add_timer()
arranges for a function to be called after a period of time

QP_add_absolute_timer()
arranges for a function to be called at a given time

QP_remove_input()
removes any input callbacks registered on a file descriptor

QP_remove_output()
removes any output callbacks registered on a file descriptor

QP_remove_exception()
removes any exception callbacks registered on a file descriptor

QP_remove_timer()
removes a timer callback

QP_select()
waits until I/O is ready on any of a set of file descriptors, or a timeout period
occurs

QP_wait_input()
waits until input is ready on a file descriptor or a timeout period occurs

19.2.7 main()

QP_initialize()
initializes Prolog default

QP_toplevel()
in a development system, calls the Prolog “read-prove” loop; in a runtime sys-
tem, calls runtime_entry/1.

19.2.8 Memory Management

QP_register_atom()
prevents an atom from being discarded by atom garbage collection even if not
referenced by Prolog code

QP_trimcore()
asks Prolog to purge all memory not in use

QP_unregister_atom()
enables an atom to be discarded during atom garbage collection if not referenced
by Prolog code

QU_alloc_init_mem()
user-redefinable function to allocate memory for Prolog

1352 Quintus Prolog

QU_alloc_mem()
user-redefinable function to allocate memory for Prolog

QU_free_mem()
user-redefinable function to free memory from Prolog

19.2.9 Signal Handling

QP_action()
requests certain kinds of Prolog action

19.2.10 Terms in C

QP_compare()
compares two terms using Prolog’s standard term order

QP_new_term_ref()
returns a reference, which can be used to hold a Prolog term in C

QP_unify()
unifies two Prolog terms

19.2.11 Term I/O

QP_fread()
reads several items of data from a Prolog input stream

QP_fwrite()
writes several items of data on a Prolog output stream

QP_printf()
prints formatted output on the Prolog current output stream

QP_vfprintf()
prints formatted output of a varargs argument list on a Prolog output stream

19.2.12 Type Tests

QP_is_atom()
tests whether a Prolog term reference contains an atom

QP_is_atomic()
tests whether a Prolog term reference contains an atomic term

QP_is_compound()
tests whether a Prolog term reference contains a compound term

QP_is_float()
tests whether a Prolog term reference contains a floating point number

Chapter 19: C Reference Pages 1353

QP_is_integer()
tests whether a Prolog term reference contains a Prolog integer

QP_is_list()
tests whether a Prolog term reference contains a list

QP_is_number()
tests whether a Prolog term reference contains an integer or a floating point
number

QP_is_variable()
tests whether a Prolog term reference contains a Prolog variable

QP_term_type()
returns the type of the term in a Prolog term reference

19.3 C Functions

The following reference pages, alphabetically arranged, describe the Quintus Prolog built-in
C functions.

For a functional grouping of these functions including brief descriptions, see Section 19.2
[cfu-top], page 1346.

For information about return values and errors, see Section 19.1 [cfu-rve], page 1345

1354 Quintus Prolog

19.3.1 QP_action()

Synopsis

#include <quintus/quintus.h>

int QP_action(action)
int action;

Called to request certain actions of Prolog.

Arguments

action is one of:

QP_ABORT *Abort to the current break level

QP_REALLY_ABORT
*Abort to top level

QP_STOP Stop (suspend) process

QP_IGNORE
Do nothing

QP_EXIT Exit Prolog immediately

QP_MENU Present action menu

QP_TRACE Turn on trace mode

QP_DEBUG Turn on debugging

Description

This function allows the user to make Prolog abort, exit, suspend execution, turn on de-
bugging, or prompt for the desired action.

Calls to QP_action() from an interrupt handler must be viewed as requests. They are
requests that will definitely be honored, but not always at the time of the call to QP_
action(). If Prolog is in a critical region the action might be delayed to when it has
exitted the critical region.

Return Value

QP_ERROR

QP_SUCCESS

Chapter 19: C Reference Pages 1355

Errors

For systems that do not have a toplevel, the actions marked with an asterisk
(*) will have no effect other than to make QP_action() return QP_ERROR.

Examples

For a full discussion of QP_action() and examples of its use, see Section 8.11.2 [ref-iex-iha],
page 251

1356 Quintus Prolog

19.3.2 QP_add_*()

Synopsis

#include <quintus/quintus.h>

int QP_add_input(id,fn,data,flush_fn, flush_data)
int id;
void (*fn)();
char *data;
void (*flush_fn)();
char *flush_data;

int QP_add_output(id,fn,data,flush_fn,flush_data)
int id;
void (*fn)();
char *data;
void (*flush_fn)();
char *flush_data;

int QP_add_exception(id,fn,data,flush_fn,flush_data)
int id;
void (*fn)();
char *data;
void (*flush_fn)();
char *flush_data;

int QP_add_timer(msecs,fn,data)
int msecs;
void (*fn)();
char *data;

int QP_add_absolute_timer(timeo,fn,data)
struct timeval *timeo;
void (*fn)();
char *data;

These C functions register callback functions to be called on input/output or timing events.

Description

QP_add_input() arranges for a function to be called when input becomes available on the
file descriptor id. The callback function fn is called with two arguments: the file descriptor
id and the specified call data data.

Chapter 19: C Reference Pages 1357

Before the function is called, the callback is disabled so that the function will not be
inadvertently reentered while it is running. The callback will be enabled automatically
after the callback function returns.

If the flush function flush fn is not NULL then it is called whenever Prolog needs to wait
for input. This is useful when you communicate with another process using bidirectional
buffered connections, where you must flush the output before you wait for input, lest your
process waits for a response to a message that is still buffered in your output queue.

QP_add_output() is like QP_add_input() except that the callback function is called if
output is ready on file descriptor id. QP_add_exception() is like QP_add_input() except
that the callback function is called if an exception condition occurs on file descriptor id.

QP_add_timer() arranges for a function to be called in msecs milliseconds time with two
arguments: the actual time waited and the specified call data data. This timer does not
repeat automatically; if you want a repeating timer, you should call QP_add_timer() within
the callback function explicitly.

QP_add_absolute_timer() is like QP_add_timer() except that an absolute time is specified
by the timeval structure timeo; see gettimeofday(2).

Return Values

timerid

Returned by QP_add_timer() and QP_add_absolute_time() if successful.

QP_SUCCESS
Returned by other functions.

QP_ERROR

Returned by all functions if an error occurs.

Tips

Often your code will maintain a buffer associated with an input connection. If this is the
case, then your flush function must check for this buffered input, and as long as it finds
some, it should repeatedly call your callback function directly. If you don’t do this, then
your callback function may not be called, even though you have pending input, since the
operating system isn’t aware of your buffer.

See Also

QP_wait_input(), QP_select(), QP_remove_*()

1358 Quintus Prolog

19.3.3 QP_add_tty()

Synopsis

#include <quintus/quintus.h>

int QP_add_tty(stream, tty_id)
QP_stream *stream;
char *tty_id;

Register a created Prolog stream to a tty stream group.

Arguments

stream a pointer to a valid stream structure

tty id an identification string for a tty group

Description

This function is used to register a stream to a tty group. All the streams in a tty group
share a single stream position (see the reference pages for line_count/2, line_position/2
and character_count/2). When input is requested on one of the streams and the shared
line position is 0, a prompt is output on one of the output streams.

See Also

Section 10.5.4 [fli-ios-tty], page 444

Chapter 19: C Reference Pages 1359

19.3.4 QP_atom_from_string(), QP_atom_from_padded_string()

Synopsis

#include <quintus/quintus.h>

QP_atom QP_atom_from_string(string)
char *string;

Returns the canonical representation of the atom whose printed representation is the (null-
terminated) string string.

QP_atom QP_atom_from_padded_string(p_atom, p_string, p_length)
QP_atom *p_atom;
char *p_string;
int *p_length;

Computes the canonical representation of the atom whose printed representation is the
(blank-padded) string p string in a character array of length p length.

Description

QP_atom_from_string() returns the canonical representation of the atom whose printed
representation is string. string must be a valid null-terminated string. The string is copied
and internalised by Prolog and the foreign function can reuse the string and its space.

QP_atom_from_padded_string() is useful for Pascal and FORTRAN and can be used with
any language that has a C-compatible calling convention for passing integers and pointers
(on the user’s platform). e.g. some Pascal and FORTRAN compilers running under UNIX.

p string is a pointer to a character array and p length is a pointer to an integer specifying the
length of the array. QP_atom_from_padded_string() sets the atom referenced by p atom
to the canonical representation of the atom whose printed representation is the string (less
any trailing blanks) in the character array. It returns the length of the resulting atom (not
the character array’s length) as the function value.

Examples

rev_atom() is a C function that takes an atom and returns an atom whose string represen-
tation is the reverse of the string representation of the atom passed in.

foo.pl

foreign(rev_atom, c, rev_atom(+atom, [-atom])).

1360 Quintus Prolog

foo.c

QP_atom rev_atom(atom)
QP_atom atom;
{

char *string[MAX_ATOM_LEN];

strcpy(string, QP_string_from_atom(atom));
reverse(string); /* reverses string in place */
return QP_atom_from_string(string);

}

Giving:

| ?- rev_atom(draw, X).

X = ward

yes
| ?-

See Also

QP_string_from_atom(), QP_padded_string_from_atom()

Section 10.3.7 [fli-p2f-atm], page 389

Chapter 19: C Reference Pages 1361

19.3.5 QP_char_count()

Synopsis

#include <quintus/quintus.h>

int QP_char_count(stream)
QP_stream *stream;

Obtains the current character count for the Prolog stream stream. QP_char_count() is a
macro.

Arguments

stream a pointer to a valid Prolog stream structure

See Also

QP_get_pos(), QP_line_count(), QP_line_position(), character_count/2, QP_
getpos(), QP_setpos(), QP_seek(), stream_position/[2,3]

Section 10.5 [fli-ios], page 433

1362 Quintus Prolog

19.3.6 QP_clearerr()

Synopsis

#include <quintus/quintus.h>

void QP_clearerr(stream)
QP_stream *stream;

Resets the error indication and EOF indication to zero on the named stream.

QP_clearerr() is similar to the library function clearerr(3V), however the return values
differ and stream is a Prolog stream rather than a stdio stream.

Return Value

QP_SUCCESS
If function succeeds

QP_ERROR Otherwise

See Also

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1363

19.3.7 QP_close_query()

Synopsis

#include <quintus/quintus.h>

int QP_close_query(qid)
QP_qid qid;

Equivalent to the Prolog call:

!, fail.

Description

The cut renders the current computation determinate, removing the possibility of future
backtracking. The following call to fail/0 then initiates backtracking to the first parent
goal with outstanding alternatives. In doing so it pops the Prolog heap to its state when
the parent goal succeeded, in effect throwing away any terms created since that parent goal.

In the context of calling Prolog from foreign languages, terminating a query using QP_
close_query() generally means throwing away the last solution that was calculated, unless
that solution has been copied into a more permanent place. (Of course, any previous
solutions must also be assumed to have been overwritten by subsequent solutions unless
copied elsewhere!) The converse of this behavior is that closing a query using QP_close_
query() automatically frees up the Prolog memory that holds the last solution.

Return Values

QP_SUCCESS
Query was closed successfully

QP_ERROR either the query could not be closed or an exception was signalled from Prolog
but not caught

See Also

QP_cut_query(), QP_open_query(), QP_query(), QP_next_solution(), QP_pred(), QP_
predicate(), Section 10.4 [fli-ffp], page 413

1364 Quintus Prolog

19.3.8 QP_compare()

Synopsis

#include <quintus/quintus.h>

int QP_compare(term1, term2)
QP_term_ref term1;
QP_term_ref term2;

Compares the two terms referenced by term1 and term2. Both arguments are term1 before
term2

Description

The comparison uses the standard total ordering of Prolog terms (also used by the built-in
Prolog predicate compare/3).

In Standard Order:
Ret Value

term1 before term2
-1

term1 same as term2
0

term1 after term2
1

Examples

c_compare(term1, term2) is an equivalent C version of the Prolog builtin compare/3:

foo.pl

foreign(c_compare, c, c_compare(+term, +term, +term)).

Chapter 19: C Reference Pages 1365

foo.c

#include <quintus/quintus.h>

int c_compare(t1, t2, t3)
QP_term_ref t1, t2;
{

int res;
QP_term_ref l_than = QP_new_term_ref();
QP_term_ref equal = QP_new_term_ref();
QP_term_ref g_than = QP_new_term_ref();

QP_put_atom(l_than, QP_atom_from_string("<"));
QP_put_atom(equal, QP_atom_from_string("="));
QP_put_atom(g_than, QP_atom_from_string(">"));

res = QP_compare(t2, t3);
if (res < 0) {

return QP_unify(t1, l_than);
} else if (res == 0) {

return QP_unify(t1, equal);
} else if (res > 0) {

return QP_unify(t1, g_than);
}

}

See Also:

QP_unify(), compare/3

1366 Quintus Prolog

19.3.9 QP_cons_*()

Synopsis

#include <quintus/quintus.h>

void QP_cons_list(term, head, tail)
QP_term_ref term;
QP_term_ref head;
QP_term_ref tail;

void QP_cons_functor(term, name, arity, arg1, ... ,arg_arity)
QP_term_ref term;
QP_atom name;
int arity;
QP_term_ref arg1, ... , arg_arity;

Description

These are C functions that can be used to create new Prolog terms from C.

QP_cons_list() assigns to term a reference to a list whose head is the term referred to by
head and whose tail is the term referred to by tail.

QP_cons_functor() assigns to term a reference to a compound term whose functor is the
atom represented by name and whose arity is the integer arity. The arguments of the
compound term are terms referred to by arg1, arg2, etc. The call to this function should
make sure that the number of arguments passed is equal to the arity of the compound term.

Note that the following are equivalent:

QP cons list(term, head, tail)

dot = QP atom from string("."); QP cons functor(term, dot, 2, head, tail)

However, the former is likely to be more efficient.

Examples

float_to_chars() is a C function that converts a floating point number to a list of char-
acters. Note the use of QP_put_integer().

foo.pl

foreign(flt_to_chars, flt_to_chars(+float, -term)).

Chapter 19: C Reference Pages 1367

foo.c

#include <quintus/quintus.h>

void flt_to_chars(flt, chars)
double flt;
QP_term_ref chars;
{

char buffer[28], *p;
int len;
QP_term_ref term_char = QP_new_term_ref();

QP_put_nil(chars);
sprintf(buffer , "%.17e" , flt);

/* move to end of buffer */
for (p=buffer, len=0; *p; p++, len++);

while (len--) {
QP_put_integer(term_char, *--p);
QP_cons_list(chars, term_char, chars);

}
}

See Also:

QP_term_type(), QP_get_*(), QP_new_term_ref()

1368 Quintus Prolog

19.3.10 QP_cut_query()

Synopsis

#include <quintus/quintus.h>

int QP_cut_query(qid)
QP_qid qid;

Equivalent to just calling ‘!’ in Prolog.

Description

The computation is rendered determinate, but as it is not failed over the Prolog heap is
not popped. Thus when terminating a query using QP_cut_query() more space may be
retained, but so is the last solution.

Return Values

QP_SUCCESS
QP_ERROR either something is wrong with the QP_qid or Prolog has not been initialized

See Also

QP_query(), QP_close_query(), QP_next_solution(), QP_open_query(), QP_pred(),
QP_predicate()

Section 10.4 [fli-ffp], page 413

Chapter 19: C Reference Pages 1369

19.3.11 QP_error_message()

Synopsis

#include <quintus/quintus.h>

int QP_error_message(errno, is_qp_error, error_string)
int errno;
int *is_qp_error;
char **error_string;

Arguments

errno the error number in question

is qp error
set to:

0 if it is not an error number created by Quintus.

1 if it is an error number created by Quintus.

error string
the text of the error message.

Description

This function supplies the text corresponding to the error number errno. The output
parameter is qp error can be used to determine if the error number was one created by
Quintus or is a system error number.

Typically, the error number of interest is the one in the global variable QP_errno. This
variable is discussed in the man pages for QP_perror().

Return Value

QP_SUCCESS

Examples

The following fragment takes the status value returned by some function that returns C
calling Prolog style status values and prints out the corresponding error.

1370 Quintus Prolog

#include <quintus/quintus.h>
...

int is_qp_error;
char *error_message;

...
status = some_function();
switch(status) {
case QP_ERROR:

(void) QP_error_message(QP_errno, &is_qp_error,
&error_message);

if(is_qp_error)
(void) QP_fputs("prolog error: ", QP_stderr);

else (void) QP_fputs("UNIX error: ", QP_stderr);
(void) QP_fputs(error_message, QP_stderr);
(void) QP_fnewln(QP_stderr);
...

See Also

QP_perror()

Chapter 19: C Reference Pages 1371

19.3.12 QP_exception_term()

Synopsis

#include <quintus/quintus.h>

int QP_exception(term)
QP_term_ref term;

A function that users can call when their call to Prolog signals an error. If QP_query()
returns QP_ERROR then users can call QP_exception_term() to get at the exception term
signalled.

Description

If C calls Prolog and the Prolog goal raises an exception, QP_query() (or QP_next_
solution()) returns the value QP_ERROR. If the user wants to get at the exception term that
has been raised, they can call the function QP_exception_term(). QP_exception_term()
takes a QP_term_ref as argument and returns a Prolog term.

Example

foo.pl

:- extern(error).

error :- raise_exception(error_term(from_prolog)).

foo.c

QP_pred_ref pred;

if ((pred = QP_predicate("error",0,"user")) !=
(QP_pred_ref) QP_ERROR) {

if (QP_query(pred) == QP_ERROR) {
QP_term_ref err_term = QP_new_term_ref();

QP_exception_term(err_term);
}

}

Once you get err_term, you can use functions such as the QP_get_*() family to take apart
the error term or to print it.

1372 Quintus Prolog

See Also

QP_query(), QP_next_solution(), raise_exception/3

Section 8.19 [ref-ere], page 310

Chapter 19: C Reference Pages 1373

19.3.13 QP_fclose()

Synopsis

#include <quintus/quintus.h>

int QP_fclose(stream)
QP_stream *stream;

Writes out any buffered data for the named stream, and closes the named stream.

QP_fclose() is similar to the library function fclose(3S), however the return values differ
and stream is a Prolog stream rather than a stdio stream.

Return Value

QP_SUCCESS
If function succeeds

QP_ERROR Otherwise

See Also

QP_fopen()

Section 10.5 [fli-ios], page 433

1374 Quintus Prolog

19.3.14 QP_fdopen()

Synopsis

#include <quintus/quintus.h>

QP_stream *QP_fdopen(fildes, type)
int fildes;
char *type;

Associates a stream with the file descriptor files. File descriptors are obtained from system
calls like open(2V), dup(2), creat(2), or pipe(2), which open files but do not return
streams. Streams are necessary input for many of the system functions. The type of the
stream must agree with the mode of the open file.

QP_fdopen() is similar to the library function fdopen(3V), however the return values differ
and the normal return value is a Prolog stream rather than a stdio stream.

Return Value

QP_SUCCESS
If function succeeds

QP_ERROR Otherwise

See Ablso

QP_fclose(), QP_fopen(), QP_prepare_stream/[3,4]

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1375

19.3.15 QP_ferror()

Synopsis

#include <quintus/quintus.h>

int QP_ferror(stream)
QP_stream *stream;

Returns non-zero when an error has occurred reading from or writing to the named stream,
otherwise zero.

QP_ferror() is similar to the library function ferror(3V), however the return values differ
and stream is a Prolog stream rather than a stdio stream.

Return Value

QP_SUCCESS
If function succeeds

QP_ERROR Otherwise

See Also

QP_fopen()

Section 10.5 [fli-ios], page 433

1376 Quintus Prolog

19.3.16 QP_fgetc()

Synopsis

#include <quintus/quintus.h>

int QP_fgetc(stream)
QP_stream *stream;

Behaves like QP_getc(), but is a function rather than a macro.

QP_fgetc() is similar to library function fgetc(3V), however the return values differ and
stream is a Prolog stream rather than a stdio stream.

Return Value

QP_SUCCESS
If function succeeds

QP_ERROR Otherwise

See Also

QP_ferror(), QP_fopen(), QP_fread(), QP_putc(), QP_ungetc()

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1377

19.3.17 QP_fgets()

Synopsis

#include <quintus/quintus.h>

char *QP_fgets(s, n, stream)
char *s;
int n;
QP_stream *stream;

Reads characters from the stream into the array pointed to by s, until n-1 characters are
read, a NEWLINE character is read and transferred to s, or an EOF condition is encoun-
tered. The string is then terminated with a NULL character.

QP_fgets() is similar to the library function fgets(3S), however the return values differ
and stream is a Prolog stream rather than a stdio stream.

Return Value

QP_SUCCESS
If function succeeds

QP_ERROR Otherwise

See Also

Section 10.5 [fli-ios], page 433

1378 Quintus Prolog

19.3.18 QP_flush()

Synopsis

#include <quintus/quintus.h>

int QP_flush(stream)
QP_stream *stream;

Forces the buffered output of the stream stream to be sent to the associated device.

Arguments

stream pointer to a valid stream structure.

Description

Calls the bottom layer flushing function of Stream to write out the current buffered output
of the stream. The output is usually written out to a disk or a tty device.

Return Value

QP_SUCCESS
The function succeeds

QP_ERROR There is an error in the function call, the error number is stored in both QP_
errno and stream->errno.

Errors

QP_E_PERMISSION
stream is not an output stream or it does not permit flushing.

QP_E_CANT_WRITE
Unknown error in the bottom layer of flush function of stream

Errors from host operating system

See Also

flush_output/1.

Chapter 19: C Reference Pages 1379

19.3.19 QP_fnewln()

Synopsis

#include <quintus/quintus.h>

int QP_fnewln(stream)
QP_stream *stream;

Terminates an output record for a Prolog output stream.

Arguments

stream pointer to a valid stream structure

See Also

QP_newline(), QP_newln(), nl/[0,1]

Section 10.5 [fli-ios], page 433

1380 Quintus Prolog

19.3.20 QP_fopen()

Synopsis

#include <quintus/quintus.h>

QP_stream *QP_fopen(filename, type)
unsigned char *filename;
char *type;

Opens the file named by filename and associates a stream with it.

QP_fopen() is similar to the library function fopen(3V), however the return values differ
and stream is a Prolog stream rather than a stdio stream.

Return Value

QP_SUCCESS
If function succeeds

QP_ERROR Otherwise

See Also

QP_fopen(), QP_fdopen(), QP_prepare_stream/[3,4]

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1381

19.3.21 QP_fpeekc()

Synopsis

#include <quintus/quintus.h>

int QP_fpeekc(stream)
QP_stream *stream;

Look ahead for the next character to be read in from a Prolog input stream.

Arguments

stream pointer to a valid stream structure

Return Value

Character code or QP_ERROR.

See Also

QP_peekc(), QP_peekchar(), peek_char/[1,2]

1382 Quintus Prolog

19.3.22 QP_fprintf()

Synopsis

#include <quintus/quintus.h>

int QP_fprintf(stream, format [, arg]...)
QP_stream *stream;
char *format;

Places output onto the Prolog output stream stream.

QP_fprintf() is similar to the library function fprintf(3V), however the return values
differ and stream is a Prolog stream rather than a stdio stream.

Return Value

QP_SUCCESS
If function succeeds

QP_ERROR Otherwise

See Also

QP_printf(), QP_putc()

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1383

19.3.23 QP_fputc()

Synopsis

#include <quintus/quintus.h>

int QP_fputc(c, stream)
int c;
QP_stream *stream;

Behaves like QP_putc(), but is a function rather than a macro.

QP_fputc() is similar to the library function fputc(3S), however the return values differ
and stream is a Prolog stream rather than a stdio stream.

Return Value

QP_SUCCESS
If function succeeds

QP_ERROR Otherwise

See Also

QP_fclose(), QP_ferror(), QP_fopen(), QP_fread(), QP_getc(), QP_printf(), QP_
puts()

Section 10.5 [fli-ios], page 433

1384 Quintus Prolog

19.3.24 QP_fputs()

Synopsis

#include <quintus/quintus.h>

int QP_fputs(s, stream)
unsigned char *s;
QP_stream *stream;

Writes the NULL-terminated string pointed to by s to the named output stream.

QP_fputs() is similar to the library function fputs(3S), however the return values differ
and stream is a Prolog stream rather than a stdio stream.

Return Value

QP_SUCCESS
If function succeeds

QP_ERROR Otherwise

See Also

QP_ferror(), QP_fopen(), QP_fread(), QP_printf(), QP_putc()

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1385

19.3.25 QP_fread()

Synopsis

#include <quintus/quintus.h>

int QP_fread (ptr, size, nitems, stream)
char *ptr;
int size;
int nitems;
QP_stream *stream;

Reads, into a block pointed to by ptr, nitems items of data from the named input stream
stream, where an item of data is a sequence of bytes (not necessarily terminated by a NULL
byte) of length size.

QP_fread() is similar to the library function fread(3S), however the return values differ
slightly and stream is a Prolog stream rather than a stdio stream.

Return Value

the number of items read
Returned if the function succeeds

QP_ERROR Otherwise

See Also

QP_fopen(), QP_getc(), QP_gets(), QP_putc(), QP_puts(), QP_printf()

Section 10.5 [fli-ios], page 433

1386 Quintus Prolog

19.3.26 QP_fskipln()

Synopsis

#include <quintus/quintus.h>

int QP_fskipln(stream)
QP_stream *stream;

Skip the current input record of a Prolog input stream

Return Value

QP_SUCCESS, or QP_ERROR

Errors

When QP_ERROR is returned, QP_errno contains an error code.

See Also

skip_line/[0,1]

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1387

19.3.27 QP_fwrite()

Synopsis

#include <quintus/quintus.h>

int QP_fwrite(ptr, size, nitems, stream)
char *ptr;
int size;
int nitems;
QP_stream *stream;

Writes at most nitems items of data from the block pointed to by ptr to the named Prolog
output stream. QP_fwrite() stops writing when it has written nitems of date or if an error
condition is encountered on stream.

QP_fwrite() is similar to the library function fwrite().

Return Value

the number of items written
Returned if the function succeeds

QP_ERROR Otherwise

See Also

QP_fopen(), QP_getc(), QP_gets(), QP_putc(), QP_puts(), QP_printf()

Section 10.5 [fli-ios], page 433

1388 Quintus Prolog

19.3.28 QP_get_*()

Synopsis

#include <quintus/quintus.h>

int QP_get_atom(term, atom)
QP_term_ref term;
QP_atom *atom;

int QP_get_integer(term, integer)
QP_term_ref term;
long int *integer;

int QP_get_float(term, float)
QP_term_ref term;
double *float;

int QP_get_functor(term, name, arity)
QP_term_ref term;
QP_atom *name;
int *arity;

int QP_get_arg(argnum, term, arg)
int argnum;
QP_term_ref term;
QP_term_ref arg;

int QP_get_list(term, head, tail)
QP_term_ref term;
QP_term_ref head;
QP_term_ref tail;

int QP_get_head(term, head)
QP_term_ref term;
QP_term_ref head;

int QP_get_tail(term, tail)
QP_term_ref term;
QP_term_ref tail;

int QP_get_nil(term)
QP_term_ref term;

int QP_get_db_reference(term, ref)
QP_term_ref term;
QP_db_reference *ref;

Chapter 19: C Reference Pages 1389

These C functions can be used to test and access Prolog terms passed to C through the
foreign interface.

Description

If term refers to an atom then QP_get_atom() assigns to *atom the unsigned integer rep-
resenting that atom and returns 1. Else QP_get_atom() returns 0. To get at the string
corresponding to the atom, use QP_string_from_atom().

If term refers to a Prolog integer then QP_get_integer() assigns that integer to *integer
and returns 1. Else QP_get_integer() returns 0.

If term refers to a floating point number then QP_get_float() assigns that number to
*float and returns 1. Else QP_get_float() returns 0.

If term refers to a compound term then QP_get_functor() assigns to *name the unsigned
integer representing the name of the functor, assigns to *arity the arity of the functor and
returns 1. If term refers to an atom, then QP_get_functor() assigns to *name that atom,
assigns 0 to *arity and returns 1. If term does not refer to a compound term or an atom
then QP_get_functor() returns 0. Note that a list is a compound term with functor . and
arity 2.

If term refers to a compound term and argnum is between 1 and the arity of the compound
term then QP_get_arg() assigns to arg a reference to the argnum argument of the compound
term and returns 1. If term does not refer to a compound term QP_get_arg() returns 0.
Note that QP_get_arg() is similar to the Prolog builtin arg/3 with its first and second
arguments bound and its third argument unbound. QP_get_arg() differs from the other
QP_get functions in that it does not have term as its first argument. This is to make it
consistent with arg/3.

If term refers to a list then QP_get_list() assigns to head a reference to the head of that
list, assigns to tail a reference to the tail of the list and returns 1. If term does not refer to
a list then QP_get_list() returns 0.

If term refers to a list then QP_get_head() assigns to head a reference to the head of that
list and returns 1. If term does not refer to a list then QP_get_head() returns 0.

If term refers to a list then QP_get_tail() assigns to tail a reference to the tail of that list
and returns 1. If term does not refer to a list then QP_get_tail() returns 0.

If term refers to the atom [] then QP_get_nil() returns 1. Else it returns 0.

If term refers to a db reference (e.g. returned by asserta/3 or recorda/3) then QP_get_
db_reference() assigns to *ref that reference and returns 1. If term does not refer to a
db reference then QP_get_db_reference() returns 0.

1390 Quintus Prolog

Examples

write_term() is a C function that writes out a Prolog term passed to it.

foo.pl

foreign(write_term, c, write_term(+term)).

foo.c

#include <quintus/quintus.h>

void write_term(term)
QP_term_ref term;
{

QP_atom a;
long int i;
double d;
switch (QP_term_type(term)) {
case QP_VARIABLE:

QP_printf("_");
break;

case QP_INTEGER:
QP_get_integer(term, &i);
QP_printf("%d", i);
break;

case QP_FLOAT:
QP_get_float(term, &d);
QP_printf("%f", d);
break;

case QP_ATOM:
QP_get_atom(term, &a);
QP_printf("%s", QP_string_from_atom(a));
break;

case QP_DB_REFERENCE:
QP_printf("’$ref’()");
break;

case QP_COMPOUND:
if (QP_is_list(term)) {

write_list(term);
} else {

write_compound(term);
}
break;

}
}

Chapter 19: C Reference Pages 1391

foo.c

void write_list(term)
QP_term_ref term;
{

QP_term_ref head = QP_new_term_ref();
QP_term_ref tail = QP_new_term_ref();
QP_atom a;

QP_printf("[");
QP_get_list(term, head, tail);
write_term(head);
while (QP_is_list(tail)) {

QP_printf(",");
QP_get_list(tail, head, tail);
write_term(head);

}
if (QP_get_nil(tail)) {

QP_printf("]");
} else {

QP_printf("|");
write_term(tail);
QP_printf("]");

}
}

void write_compound(term)
QP_term_ref term;
{

int i, arity;
QP_atom name;
QP_term_ref arg = QP_new_term_ref();

QP_get_functor(term, &name, &arity);
QP_printf("%s(", QP_string_from_atom(name));
for (i = 1; i < arity; i++) {

QP_get_arg(i, term, arg);
write_term(arg);
QP_printf(",");

}
QP_get_arg(i, term, arg);
write_term(arg);
QP_printf(")");

}

1392 Quintus Prolog

See Also

QP_term_type(), QP_put_*(), QP_new_term_ref()

Chapter 19: C Reference Pages 1393

19.3.29 QP_getchar()

Synopsis

#include <quintus/quintus.h>

int QP_getchar()

Defined as QP_getc(QP_curin).

QP_getchar() is similar to the library function getchar(3V), however it operates on
the Prolog current input stream rather than the standard input stream stdin. Like
getchar(3V), QP_getchar() is a macro.

Return Value

QP_SUCCESS
If function succeeds

QP_ERROR Otherwise

See Also

QP_ferror(), QP_fopen(), QP_fread(), QP_gets(), QP_putc(), QP_ungetc()

Section 10.5 [fli-ios], page 433

1394 Quintus Prolog

19.3.30 QP_getpos()

Synopsis

#include <quintus/quintus.h>

int QP_getpos(stream, pos)
QP_stream *stream;
QP_position *pos;

Get the current position for a Prolog stream

Arguments

stream pointer to a valid stream structure

pos pointer to a QP_position structure

Description

Upon successful return of this function call, the char count, line count, line position and
magic member of the QP_position structure pointed to by pos have the valid values indi-
cating the current character count, line count, line position and system-dependent position.
The pos can be passed as the second argument to QP_setpos() for seeking back to the
current position later.

Return Value

Always returns QP_SUCCESS.

See Also

QP_setpos(), QP_seek(), stream_position/[2,3], QP_char_count(), QP_line_
count(), QP_line_position()

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1395

19.3.31 QP_initialize()

Synopsis

#include <quintus/quintus.h>

int QP_initialize(argc, argv)
int argc;
char **argv;

Initializes Prolog’s memory management, I/O, symbol table, etc.

Arguments

argc number of command line arguments (or 0)

argv list of command line arguments (or NULL)

Description

You can ignore QP_initialize() if you aren’t redefining main().

Must be called before any other QP functions if you are redefining main() (in which case
your top-level view of Prolog is via QP_predicate() and QP_query()).

Summary of functionality: Initializes memory, I/O; sets up command line arguments; ini-
tializes file search paths, file tables and symbol tables; do initializations and start up hooks
associated with a statically linked component in qof files; do any necessary restores, and
any initlization and start up hooks associated with the restored files.

QP_initialize() also sets up signal handlers so that users can interrupt the execution of
a start-up goal or initialization with a ^c. If users chose the a option after a ^c (or if the
builtin abort/0 is called) when initializations are run, then QP_initialize() returns. In a
default system, (where main() hasnt been redefined) this means that QP_toplevel() gets
called. QP_toplevel() executes the toplevel read-prove loop in a development system. In
a runtime system, it results in runtime_entry(start) being called.

argc and argv are necessary for Prolog to execute the builtin unix/1 (e.g. unix(argv(_))
etc.) properly, as well as for restoring saved states.

Can be safely called any number of times.

Please note: The first call to QP_initialize() with non-null arguments will
determine the command line arguments as seen by Prolog.

1396 Quintus Prolog

Return Value

QP_SUCCESS
Prolog was successfully initialized.

QP_FAILURE
otherwise

Examples

In Quintus Prolog the default implementation of main() looks like this:

#include <quintus/quintus.h>

main(argc, argv)
int argc;
char **argv;
{

int status;

status = QP_initialize(argc, argv);

if (status == QP_SUCCESS) QP_toplevel();
}

The user can choose not to have the default main() and the default toplevel loop. Here is
an example of how the user can call a Prolog predicate with their own main().

hello.pl

:- extern(hi(+atom)).

hi(X) :-
format(’Hello world from ~a to Prolog~n’,[X]).

Chapter 19: C Reference Pages 1397

main.c

#include <quintus/quintus.h>

main(argc, argv)
int argc;
char **argv;
{

int status;
QP_pred_ref pred;

status = QP_initialize(argc, argv);

if (status == QP_SUCCESS) {
pred = QP_predicate("hi", 1, "user");

if (pred != QP_BAD_PREDREF) {
status = QP_query(pred,

QP_atom_from_string("C"));

if (status == QP_FAILURE) {
printf("hi/1 failed\n");
exit(1);

} else if (status == QP_ERROR) {
printf("hi/1 raised exception\n");

/* Use QP_exception_term to get
the error term signaled */

exit(1);
}

} else {
printf("hi/1 doesn’t exist or ");
printf("doesn’t have an extern ");
printf("declaration\n");
exit(1);

}
} else {

printf("QP_initialize didn’t succeed\n");
exit(1);

}
}

Steps to produce the executable:

1. Compile ‘hello.pl’ using qpc -c hello.pl

2. Compile ‘main.c’ using cc -c main.c

3. Link the two using qld -Dd hello.qof main.o -o qtest

4. Run qtest. The output should be: ‘Hello from C to Prolog’

1398 Quintus Prolog

See Also:

runtime_entry/1, unix/1, QP_predicate(), QP_query(), QP_toplevel()

Section 10.2 [fli-emb], page 365

Chapter 19: C Reference Pages 1399

19.3.32 QP_is_*()

Synopsis

#include <quintus/quintus.h>

int QP_is_variable(term)
QP_term_ref term;

int QP_is_atom(term)
QP_term_ref term;

int QP_is_integer(term)
QP_term_ref term;

int QP_is_float(term)
QP_term_ref term;

int QP_is_compound(term)
QP_term_ref term;

int QP_is_list(term)
QP_term_ref term;

int QP_is_db_reference(term)
QP_term_ref term;

int QP_is_atomic(term)
QP_term_ref term;

int QP_is_number(term)
QP_term_ref term;

These C functions and macros can be used to test the type of the Prolog terms passed to
C through the foreign interface.

Description

QP_is_variable()
(macro) returns a nonzero value if its argument is a Prolog variable; zero oth-
erwise.

QP_is_atom()
(macro) returns a nonzero value if its argument is an atom; zero otherwise.

1400 Quintus Prolog

QP_is_integer()
(macro) returns a nonzero value if its argument is a Prolog integer; zero other-
wise.

QP_is_float()
(macro) returns a nonzero value if its argument is a float; zero otherwise.

QP_is_compound()
(macro) returns a nonzero value if its argument is a compound Prolog term;
zero otherwise.

QP_is_list()
(function) returns a nonzero value if its argument is a Prolog list; zero otherwise.

QP_is_db_reference()
(macro) returns a nonzero value if its argument is a database reference; zero
otherwise.

QP_is_atomic()
(function) returns a nonzero value if its argument is an atomic Prolog object;
zero otherwise.

QP_is_number()
(function) returns a nonzero value if its argument is a Prolog integer or float;
zero otherwise.

Examples

print_type() is a C function that prints the type of the Prolog term passed to it.

foo.pl

foreign(print_type, c, print_type(+term)).

Chapter 19: C Reference Pages 1401

foo.c

#include <quintus/quintus.h>

void print_type(term)
QP_term_ref term;
{

if (QP_is_atom(term)) {
QP_printf("Term is an atom\n");

} else if (QP_is_integer(term)) {
QP_printf("Term is an integer\n");

} else if (QP_is_float(term)) {
QP_printf("Term is a float\n");

} else if (QP_is_variable(term)) {
QP_printf("Term is a variable\n");

} else if (QP_is_db_reference(term)) {
QP_printf("Term is a database reference\n");

} else if (QP_is_compound(term)) {
if (QP_is_list(term)) {

QP_printf("Term is a list\n");
} else {

QP_printf("Term is a compound term\n");
}

} else {
QP_printf("Unrecognized term\n");

}
}

See Also

QP_get_*(), QP_put_*(), QP_new_term_ref()

1402 Quintus Prolog

19.3.33 QP_line_count()

Synopsis

#include <quintus/quintus.h>

int QP_line_count(stream)
QP_stream *stream;

Obtains the line count for a Prolog stream. QP_line_count() is a macro.

Arguments

stream pointer to a valid stream structure

See Also

QP_getpos(), QP_setpos(), QP_seek(), stream_position/[2,3] QP_char_count(), QP_
line_position()

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1403

19.3.34 QP_line_position()

Synopsis

#include <quintus/quintus.h>

int QP_line_position(stream)
QP_stream *stream;

Obtains the line position for a Prolog stream. QP_line_position() is a macro.

Arguments

stream pointer to a valid stream structure

See Also

QP_getpos(), QP_setpos(), QP_seek(), stream_position/[2,3] QP_char_count(), QP_
line_count(),

Section 10.5 [fli-ios], page 433

1404 Quintus Prolog

19.3.35 QP_malloc(), QP_free()

Synopsis

#include <quintus/quintus.h>

void *QP_malloc(size)
int size;

A replacement for the C function malloc().

void QP_free(mem)
void *mem;

A replacement for the C function free().

Description

These function provide memory allocation and deallocation via Prolog’s embeddable mem-
ory allocation layer, instead of directly via the C library. Using the embeddable memory
allocation layer tends to keep memory fragmentation down.

See Also

Section 10.2 [fli-emb], page 365

Chapter 19: C Reference Pages 1405

19.3.36 QP_new_term_ref()

Synopsis

#include <quintus/quintus.h>

QP_term_ref QP_new_term_ref()

Description

QP_new_term_ref() returns an initialized QP_term_ref. Every QP_term_ref declared has
to be initialized with a call to this function. A QP_term_ref can be considered as a reference
to a Prolog term. Calling this function initialises that reference to a location where terms
can be stored. The actual term that the reference points to is initialized to [].

Example

create_term() is a simple C function that returns different types of Prolog terms depending
on its first argument.

foo.pl

foreign(create_term, create_term(+integer,[-term])).

1406 Quintus Prolog

foo.c

#include <quintus/quintus.h>

QP_term_ref create_term(kind);
long int kind;
{

QP_term_ref new = QP_new_term_ref();

switch (kind) {
case 1:

QP_put_integer(new, 23);
break;

case 2:
QP_put_atom(new, QP_atom_from_string("Ayn"));
break;

case 3:
QP_put_float(new, 1.1);
break;

default:
QP_put_nil(new);
break;

}
return new;

}

See Also:

QP_put_*(), QP_term_type(), QP_get_*()

Chapter 19: C Reference Pages 1407

19.3.37 QP_newline()

Synopsis

#include <quintus/quintus.h>

int QP_newline()

Terminates the current output record for the Prolog current output stream. QP_newline()
is a macro.

Arguments

stream pointer to a valid stream structure

Description

Calling QP_newline() is equivalent to call QP_newln(QP_stdout).

Return Value

a line border character or QP_ERROR

See Also

QP_newln(), QP_error_message(), nl/[0,1]

Section 10.5 [fli-ios], page 433

1408 Quintus Prolog

19.3.38 QP_newln()

Synopsis

#include <quintus/quintus.h>

int QP_newln(stream)
QP_stream *stream;

Terminates the current output record for a specified Prolog output stream. QP_newln() is
a macro.

Arguments

stream pointer to a valid stream structure

Return Value

a line border character or QP_ERROR

See Also

QP_newline(), QP_error_message(), nl/[0,1]

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1409

19.3.39 QP_next_solution()

Synopsis

#include <quintus/quintus.h>

int QP_next_solution(qid)
QP_qid qid;

Returns the next solution (if any) from an open nondeterminate Prolog query.

Description

Solutions are computed on demand, and multiple solutions are returned in the normal
Prolog order. QP_next_solution() is passed the QP_qid returned by QP_open_query()
when the nondeterminate query was opened. No additional input or output parameters are
passed: after a call to QP_open_query(), Prolog manages inputs itself, and has been told
where storage for outputs has been reserved.

Each time QP_next_solution() computes a new solution it writes it on the output storage
for the foreign function to use as it likes. Each new solution overwrites the old memory,
destroying the previous solution, so it is important that the foreign function copies solutions
elsewhere if it wants to accumulate them.

Comment

An important restriction: only the innermost, i.e. the most recent, open query can be asked
to compute a solution. A new nondeterminate query can be made at any point whether or
not other queries are open; however, while the new query remains open only it will be able
to return solutions. Of course, determinate queries can be made at any time.

Return Values

QP_SUCCESS
Solution found

QP_FAILURE
No solution found

QP_ERROR

1410 Quintus Prolog

See Also

QP_cut_query(), QP_close_query(), QP_query(), QP_open_query(), QP_pred(), QP_
predicate(),

Section 10.4 [fli-ffp], page 413

Chapter 19: C Reference Pages 1411

19.3.40 QP_open_query()

Synopsis

#include <quintus/quintus.h>

QP_qid QP_open_query(pred_ref, arg1,...,arg255)
QP_pred_ref pred_ref;

Initiates a nondeterminate Prolog query.

Description

The first argument passed to QP_query() is a reference to the Prolog predicate to be called.
QP_query() accepts between 0 and 255 arguments after its first argument. Any arguments
after the first represent parameters to be passed to and from the Prolog predicate. For the
types of arguments that may be passed between C and Prolog predicates, see Section 10.4
[fli-ffp], page 413.

The arguments passed to QP_open_query() are identical to those that would be passed
to QP_query(); however, QP_open_query() does not compute a solution to the query. Its
effect is to prepare Prolog for the computation of solutions to the query, which must be
initiated using QP_next_solution(). For consistency checking, QP_open_query() returns
a QP_qid, which represents the Prolog query. The type definition for QP_qid is found in
the file ‘<quintus/quintus.h>’.

The QP_qid returned by a call to QP_open_query() must be passed to each call to QP_
next_solution() for that query, as well as to QP_cut_query() or QP_close_query()
when terminating the query.

When requesting solutions from an open nondeterminate query, input and output param-
eters are not passed. The effect of QP_open_query() is to pass inputs to Prolog, which
subsequently maintains them. It also tells Prolog where storage for outputs has been re-
served. This storage will be written to when solutions are returned.

Return Value

QP_qid query was opened successfully

QP_ERROR an error occurred when attempting to open the query and the query was auto-
matically terminated

1412 Quintus Prolog

See Also

QP_cut_query(), QP_close_query(), QP_query(), QP_next_solution(), QP_pred(), QP_
predicate(),

Section 10.4 [fli-ffp], page 413

Chapter 19: C Reference Pages 1413

19.3.41 QP_peekc()

Synopsis

#include <quintus/quintus.h>

int QP_peekc(stream)
QP_stream *stream;

Look a character ahead from a specified Prolog input stream. QP_peekc() is a macro.

Arguments

stream pointer to a valid stream structure

Return Value

Character code or QP_ERROR.

See Also

QP_peekchar(), QP_fpeekc(), peek_char/[1,2]

Section 10.5 [fli-ios], page 433

1414 Quintus Prolog

19.3.42 QP_peekchar()

Synopsis

#include <quintus/quintus.h>

int QP_peekchar()

Look a character ahead from the Prolog current input stream. QP_peekchar() is a macro.

Description

QP_peekchar() is equvalent to QP_peekc(QP_stdin).

Return Values

Character code or QP_ERROR.

See Also

QP_peekc(), QP_fpeekc(), peek_char/[2,3]

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1415

19.3.43 QP_perror()

Synopsis

#include <quintus/quintus.h>

void QP_perror(s)
char *s;

Description

QP_perror() produces a short error message on the stream user_error describing the last
error encountered. If s is not a NULL pointer and does not point to a null string, the string
it points to is printed, followed by a colon, followed by a space, followed by the message and
a NEWLINE. If s is a NULL pointer or points to a null string, just the message is printed,
followed by a NEWLINE. To be of most use, the argument string should include the name of
the program that incurred the error. The error number is taken from the external variable
QP errno (see Section 19.1 [cfu-rve], page 1345), which is set when errors occur but not
cleared when non-erroneous calls are made.

This function is modeled on the system function perror(3).

See Also

QP_error_message()

1416 Quintus Prolog

19.3.44 QP_pred()

Synopsis

#include <quintus/quintus.h>

QP_pred_ref QP_pred(name_atom, arity, module_atom)
QP_atom name_atom;
int arity;
QP_atom module_atom;

Looks up a callable Prolog predicate.

QP_pred() is faster, but less convenient, than QP_predicate()

Description

Differences from QP_predicate(): Name and module arguments passed as Prolog atoms.
These may have been returned to C from Prolog, or may have been built in the foreign
language using QP_atom_from_string().

The name passed is not the name of the Prolog predicate to be called, but rather the name
of the interface predicate constructed when the Prolog predicate was made callable from
foreign code (see Section 10.4.2 [fli-ffp-ppc], page 414).

Much of the cost of QP_predicate() is from having to look up Prolog atoms for its name
and module arguments. By avoiding doing this unnecessarily, what QP_pred() gives up in
convenience is returned in performance.

Return Value

QP_pred_ref
a valid predicate reference

QP_ERROR if the predicate called hasn’t been declared callable or doesn’t exist

See Also

QP_predicate(), QP_query(), QP_open_query(), QP_next_solution(), QP_cut_
query(), QP_close_query(), Section 10.4 [fli-ffp], page 413

Chapter 19: C Reference Pages 1417

19.3.45 QP_predicate()

Synopsis

#include <quintus/quintus.h>

QP_pred_ref QP_predicate(name_string, arity, module_string)
char *name_string;
int arity;
char *module_string;

Description

Before a Prolog predicate can be called from a foreign language it must be looked up. The
C functions QP_predicate() and QP_pred() perform this function. The lookup step could
have been folded into the functions that make the query, but if a predicate was to be called
many times the redundant, if hidden, predicate lookup would be a source of unnecessary
overhead. Instead, QP_predicate() or QP_pred() can be called just once per predicate.
The result can then be stored in a variable and used as necessary.

Both QP_predicate() and QP_pred() return a QP_pred_ref(), which represents a Prolog
predicate.

QP_predicate() is the most convenient way of looking up a callable Prolog predicate. It
is simply passed the name and module of the predicate to be called as strings, the arity as
an integer, and returns a QP_pred_ref(), which is used to make the actual call to Prolog.

QP_predicate() can only be used to look up predicates that have been declared callable
from foreign code. If some other predicate, or a predicate that does not exist, is looked up,
QP_ERROR is returned. This protects you from attempting to call a predicate that isn’t yet
ready to be called.

Return Value

QP_pred_ref
a valid predicate reference

QP_ERROR if the predicate called hasn’t been declared callable or doesn’t exist

See Also

QP_pred(), QP_query(), QP_open_query(), QP_next_solution(), QP_cut_query(), QP_
close_query()

1418 Quintus Prolog

Section 10.4 [fli-ffp], page 413

Chapter 19: C Reference Pages 1419

19.3.46 QP_prepare_stream()

Synopsis

#include <quintus/quintus.h>

void QP_prepare_stream(stream, buffer)
QP_stream *stream;
unsigned char *buffer;

Initialize internal fields of a QP_stream structure.

Arguments

stream pointer to a valid stream structure

buffer pointer to a buffer

Description

QP_prepare_stream() should be called after other fields in QP_stream are properly set up.

The first parameter is a pointer to QP_stream and the second parameter is the address of the
input/output buffer for the stream. Here &stream->qpinfo is used to get the corresponding
QP_stream pointer from stream although a casting operation of QP_stream *stream will
have the same effect.

Example

QP_prepare_stream(&stream->qpinfo, stream->buffer);

See Also

QP_fdopen(), QP_fopen(), open/[3,4],

Section 10.5.5.6 [fli-ios-cps-ire], page 450

1420 Quintus Prolog

19.3.47 QP_printf()

Synopsis

#include <quintus/quintus.h>

int QP_printf(format [, arg] ...)
char *format;

Places output onto the current Prolog output stream.

QP_printf() is similar to the library function printf(3V), however the return values differ
it puts its output on the current Prolog output stream (QP_curout) rather than a stdio
stream.

Return Value

the number characters written
Returned if the function succeeds

QP_ERROR Otherwise

See Also

QP_putc()

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1421

19.3.48 QP_put_*()

Synopsis

These C functions can be used to create new Prolog terms from C.

#include <quintus/quintus.h>

void QP_put_variable(term)
QP_term_ref term;

void QP_put_atom(term, atom)
QP_term_ref term;
QP_atom atom;

void QP_put_integer(term, integer)
QP_term_ref term;
long int integer;

void QP_put_float(term, float)
QP_term_ref term;
double float;

void QP_put_functor(term, name, arity)
QP_term_ref term;
QP_atom name;
int arity;

void QP_put_list(term)
QP_term_ref term;

void QP_put_nil(term)
QP_term_ref term;

void QP_put_term(term1, term2)
QP_term_ref term1;
QP_term_ref term2;

void QP_put_db_reference(term, ref)
QP_term_ref term1;
QP_db_reference ref;

1422 Quintus Prolog

Description

QP_put_variable()
assigns to term a reference to a new unbound Prolog variable.

QP_put_atom()
assigns to term a reference to the atom represented by atom. atom is assumed
to be the canonical representation of a Prolog atom, either obtained from Prolog
or returned by QP_atom_from_string().

QP_put_integer()
assigns to term a reference to integer tagged as a Prolog term.

QP_put_float()
assigns to term a reference to the floating point number float tagged as a Prolog
term.

QP_put_functor()
assigns to term a reference to a new compound term whose functor is the atom
represented by name and whose arity is arity. All the args of the compound
term are unbound. This is similar to the Prolog builtin functor/3 with its first
argument unbound and its second and third argument bound.

QP_put_list()
assigns to term a reference to a new list whose head and tail are both unbound.

QP_put_nil()
assigns to term a reference to the atom [].

QP_put_term()
assigns to term1 a reference to the term that term2 references. Any reference
to another term that term1 contained is lost.

QP_put_db_reference()
assigns to term a reference to the Prolog db reference represented by ref. ref
must have been a reference obtained through QP_get_db_reference(). Any
reference to another term that term1 contained is lost.

Examples

flt_to_chars() is a C function that converts a floating point number to a list of characters.
Note the use of QP_put_integer().

foo.pl

foreign(flt_to_chars, flt_to_chars(+float, -term)).

Chapter 19: C Reference Pages 1423

foo.c

#include <quintus/quintus.h>

void flt_to_chars(flt, chars)
double flt;
QP_term_ref chars;
{

char buffer[28], *p;
int len;
QP_term_ref term_char = QP_new_term_ref();

QP_put_nil(chars);
sprintf(buffer , "%.17e" , flt);

/* move to end of buffer */
for (p=buffer, len=0; *p; p++, len++);

while (len--) {
QP_put_integer(term_char, *--p);
QP_cons_list(chars, term_char, chars);

}
}

See Also

QP_term_type(), QP_get_*(), QP_new_term_ref()

1424 Quintus Prolog

19.3.49 QP_puts()

Synopsis

#include <quintus/quintus.h>

int QP_puts(s)
unsigned char *s;

Writes the NULL-terminated string pointed to by s, followed by a NEWLINE character, to
the Prolog current output stream QP_curout.

QP_puts() is similar to the library function puts(3S), however it operates on the Prolog
current output stream rather than the standard output stream stdout.

Return Value

QP_SUCCESS
If function succeeds

QP_ERROR Otherwise

See Also

QP_ferror(), QP_fopen(), QP_fread(), QP_printf(), QP_putc()

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1425

19.3.50 QP_query()

Synopsis

#include <quintus/quintus.h>

int QP_query(pred_ref, arg1,...,arg255)
QP_pred_ref pred_ref;

Make a determinate query in a single C function call.

Description

The first argument passed to QP_query() is a reference to the Prolog predicate to be called.
QP_query() accepts between 0 and 255 arguments after its first argument. Any arguments
after the first represent parameters to be passed to and from the Prolog predicate. For the
types of arguments that may be passed between C and Prolog predicates, see Section 10.4
[fli-ffp], page 413.

The foreign language interface will interpret arguments passed to the Prolog predicate
according to the call specification given when the predicate was made callable. Hence, it
is important that the arguments to be passed to and from the Prolog predicate should
correspond with that call specification. In certain cases (passing Prolog atoms in canonical
form) it is possible to detect inconsistencies between data supplied to QP_query() and the
call specification, but for the most part this is impossible. Calls that are inconsistent with
their call specifications will produce undefined results.

Only when the return value is QP_SUCCESS are the values in variables passed as outputs
from Prolog valid. Otherwise, their contents are undefined.

Return Value

QP_SUCCESS
query was made and a solution to the query was computed

QP_FAILURE
query was made but no solution could be found

QP_ERROR either the query could not be made, or that an exception was signaled from
Prolog but not caught.

1426 Quintus Prolog

See Also

QP_cut_query(), QP_close_query(), QP_next_solution(), QP_open_query(), QP_
pred(), QP_predicate(), Section 10.4 [fli-ffp], page 413

Chapter 19: C Reference Pages 1427

19.3.51 QP_register_atom(), QP_unregister_atom()

Synopsis

#include <quintus/quintus.h>

int QP_register_atom(atom)
QP_atom atom;

int QP_unregister_atom(atom)
QP_atom atom;

Description

garbage_collect_atoms/0 is able to locate all atoms accessible from Prolog code, but
cannot trace atoms that are only accessible from foreign code.

QP_register_atom() registers an atom as referenced from foreign code so that if garbage_
collect_atoms/0 is called, the atom will not be reclaimed. QP_unregister_atom() un-
registers the atom, so that if no other code (Prolog or foreign) refers to it, then it is a
candidate for atom garbage collection.

These functions use a reference counting mechanism to keep track of atoms that have been
registered. As a result, it is safe to combine different libraries that register and unregister
atoms multiple times; the atoms will not be reclaimed until everyone has unregistered them.

Return Value

the current reference count of the atom or QP_ERROR if an error occurs.

Tips

Atoms do not normally need to be registered when calling foreign code. The only situation
where this is needed is when the atom is being stored in a global or static data structure
before returning to Prolog code, to be accessed subsequently by later calls to the foreign
code.

See Also

garbage_collect_atoms/0

1428 Quintus Prolog

19.3.52 QP_register_stream()

Synopsis

#include <quintus/quintus.h>

int QP_register_stream(stream)
QP_stream *stream;

Register a created Prolog stream.

Arguments

stream pointer to a valid stream structure

Description

A customized Prolog stream must be registered via a call to QP_register_stream() before
it can be accessed in Prolog code.

See Also

stream_code/2

Section 10.5.5.6 [fli-ios-cps-ire], page 450

Chapter 19: C Reference Pages 1429

19.3.53 QP_remove_*()

Synopsis

#include <quintus/quintus.h>

int QP_remove_input(id)
int id;

int QP_remove_output(id)
int id;

int QP_remove_exception(id)
int id;

int QP_remove_timer(timerid)
int timerid;

These C functions remove registered input/output or timing callback functions.

Description

QP_remove_input() removes any input callback functions registrations for the file descrip-
tor id. Similarly, QP_remove_output() and QP_remove_exception() remove output and
exception callbacks respectively.

QP_remove_timer() removes timer callback identified by timerid, which is the value re-
turned by QP_add_timer() or QP_add_absolute_timer().

Return Values

QP_SUCCESS
If the callback is removed

QP_ERROR Otherwise

See Also

QP_add_*(), QP_select(), QP_wait_input()

1430 Quintus Prolog

19.3.54 QP_rewind()

Synopsis

#include <quintus/quintus.h>

int QP_rewind(stream)
QP_stream *stream;

QP_rewind() is similar to the library function rewind(3S), however the return values differ
and stream is a Prolog stream rather than a stdio stream.

Return Value

QP_SUCCESS
If function succeeds

QP_ERROR Otherwise

See Also

QP_fopen(), QP_ungetc()

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1431

19.3.55 QP_seek()

Synopsis

#include <quintus/quintus.h>

int QP_seek(stream, offset, whence)
QP_stream *stream;
long int offset;
int whence;

Seeks to an arbitrary byte position on the stream.

Arguments

stream pointer to a valid stream structure.

offset the offset in bytes to seek relative to whence specified.

whence specifies where to start seeking. It is one of the following.

QP_BEGINNING
seek from beginning of the file stream. The new position of the file
stream is set to offset bytes.

QP_CURRENT
seek from current position of the file stream. The new position of
the file stream is set to its current location plus offset.

QP_END seek from end of the file stream. The new position of the file stream
is set to the size of the file plus offset.

Description

The new position in bytes from the beginning of the file stream is stored in magic field of
stream. It is stream->magic.byteno under UNIX.

If stream is an output stream permitting flushing output, the characters in the buffer of
the stream is flushed through QP_flush() before seek is performed. If the stream does not
permit flushing output and there are characters remaining in the output buffer, it is an
error to seek. If stream is an input stream, the characters in the input buffer of the stream
are discarded before seek is performed. The input buffer is empty when QP_seek() returns.

Return Value

QP_SUCCESS
The function succeeds

1432 Quintus Prolog

QP_ERROR There is an error in function call, the error number is stored in both QP_errno
and stream->errno.

Errors

QP_E_INVAL
whence is not one of QP_BEGINNING, QP_CURRENT, or QP_END.

QP_E_CANT_SEEK
Unknown error in the bottom layer of seek function of stream

Errors from QP_flush()

Errors from host operating system

Tips

QP_seek(stream, 0L, QP_CURRENT) sets the current position to the magic field of stream.
It does not change the position of stream, but the side effect of flushing output and clearing
buffer also takes place.

Comments

The seek type in stream must permits seeking by bytes, i.e. the seek type field in stream is
QP_SEEK_BYTE. So stream is created by defining a private stream and setting seek type field
to QP_SEEK_BYTE, opening a Prolog stream with seek(byte) option in open/4, or opening a
binary stream through QP_fopen() or QP_fdopen().

Examples

Get the current byte offset from beginning of the file stream.

if (QP_seek(stream, 0L, QP_CURRENT) != QP_SUCCESS)
QP_perror(stream->errno, "QP_seek");

else
location = stream->magic.byteno;

See Also

QP_getpos(), QP_setpos(), QP_rewind(), QP_flush().

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1433

19.3.56 QP_select()

Synopsis

#include <quintus/quintus.h>

int QP_select(wid,read_fds,write_fds,except_fds,timeo)
int wid;
fd_set *read_fds;
fd_set *write_fds;
fd_set *except_fds;
struct timeval *timeo;

Wait until I/O is ready on a file descriptor or until a timeout occurs

Description

This is a more general version of QP_wait_input(), which is compatible with the system call
select(2). It waits for any of read fds to be ready for reading, or write fds to be ready for
writing, or except fds to have an exceptional command pending, or for the timeout period
timeo to elapse, whichever comes first. Callbacks on other descriptors are handled while
waiting. However, no callbacks on any of the desciptors specified in read fds, write fds, and
except fds are called, rather QP_select() returns immediately.

Return Values

the number of descriptors in the bit mask, QP_SUCCESS if a timeout occurred or QP_ERROR
if an error occurred.

Windows Caveats

Under Windows, there is a special SOCKET data type, which is different from file descriptors.
The arguments to QP_select() are sets of such sockets, not file descriptors, exactly like
the WinSock select() function.

QP_select() is not interruptible by ^C. For this reason, calling QP_select() with infinite
timeout is probably a bad idea. If called with infinite timeout and if there are no open
sockets, then QP_select() will return immediately, indicating a timeout.

With a finite timeout value but no open sockets, QP_select() will use the Win32 Sleep()
function to perform a (non-interruptible) sleep.

1434 Quintus Prolog

See Also

QP_wait_input(), QP_add_*()

Chapter 19: C Reference Pages 1435

19.3.57 QP_setinput()

Synopsis

#include <quintus/quintus.h>

QP_stream *QP_setinput(stream)
QP_stream *stream;

Set the Prolog current input stream to a specified value stream.

Arguments

stream pointer to a valid input stream

Description

This function sets an input stream stream to be the current Prolog input stream and returns
the previous current Prolog input stream.

See Also

set_input/1, QP_setoutput()

Section 10.5 [fli-ios], page 433

1436 Quintus Prolog

19.3.58 QP_setoutput()

Synopsis

#include <quintus/quintus.h>

QP_stream *QP_setoutput(stream)
QP_stream *stream;

Set the Prolog current output stream to a specified value stream.

Arguments

stream pointer to a valid Prolog output stream

Description

This function sets the current Prolog outpout stream to stream and returns the previous
current Prolog output stream before the operation.

See Also

set_ouptut/1, QP_setinput()

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1437

19.3.59 QP_setpos()

Synopsis

#include <quintus/quintus.h>

int QP_setpos(stream, pos)
QP_stream *stream;
QP_position *pos;

Reset a specified Prolog stream back to a previous read/written position.

Arguments

stream pointer to a valid stream structure

pos pointer to a QP_position structure.

Description

Upon successful return of this function call, the stream is repositioned to the value specified
in the magic member pointed to by pos. The character, line and line position counts of
stream are also reset to the values specified in char_count, line_count and line_position
members in pos.

The specified stream must have the permission to seek back to a previous read/written
position. Typically, the value of pos is obtained through a previous QP_getpos() call.

See Also

QP_getpos(), QP_seek(), stream_position/[2,3] QP_char_count(), QP_line_count(),
QP_line_position()

Section 10.5 [fli-ios], page 433

1438 Quintus Prolog

19.3.60 QP_skipline()

Synopsis

#include <quintus/quintus.h>

int QP_skipline()

Skip the current input record of the current Prolog input stream. QP_skipline() is a
macro.

Description

QP_skipline() is equivalent to QP_skipln(QP_curin).

See Also

QP_skipln()

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1439

19.3.61 QP_skipln()

Synopsis

#include <quintus/quintus.h>

int QP_skipln(stream)
QP_stream *stream;

Skip the current input record of a Prolog input stream. QP_skipln() is a macro.

Arguments

stream pointer to a valid Prolog input stream

See Also

QP_skipline(), QP_fskipln()

Section 10.5 [fli-ios], page 433

1440 Quintus Prolog

19.3.62 QP_string_from_atom(), QP_padded_string_from_atom()

Synopsis

#include <quintus/quintus.h>

char *QP_string_from_atom(atom)
QP_atom atom;

int QP_padded_string_from_atom(p_atom, p_string, p_length)
QP_atom *p_atom;
char *p_string;
int *p_length;

Description

QP_string_from_atom() returns a pointer to a string representing atom. This string should
not be overwritten by the foreign function.

QP_padded_string_from_atom() is useful for Pascal and FORTRAN and can be used for
any language that has a C-compatible calling convention for passing integers and pointers
(on the users platform). This is true for many Pascal and FORTRAN compilers running
under UNIX.

p atom and p length can be seen as integers passed by reference. Fills in the character array
of length length with the string representation of atom. The string is truncated or blank-
padded to length. The length of the atom (not length) is returned as the function value.
In the above description atom refers to the argument passed by reference corresponding to
the declared argument p atom and similarly for p string and p length.

Examples

rev_atom() is a C function that takes an atom and returns an atom whose string represen-
tation is the reverse of the string representation of the atom passed in.

foo.pl

foreign(rev_atom, c, rev_atom(+atom, [-atom])).

Chapter 19: C Reference Pages 1441

foo.c

QP_atom rev_atom(atom)
QP_atom atom;
{

char * string[MAX_ATOM_LEN];

strcpy(string, QP_string_from_atom(atom));
reverse(string); /* reverses string in place */
return QP_atom_from_string(string);

}

| ?- rev_atom(draw, X).

X = ward

yes
| ?-

See Also

QP_atom_from_string(), QP_atom_from_padded_string()

Section 10.3.7 [fli-p2f-atm], page 389

1442 Quintus Prolog

19.3.63 QP_tab()

Synopsis

#include <quintus/quintus.h>

int QP_tab(stream, count, c)
QP_stream *stream;
int count;
int c;

Output count number of the character c on Prolog output stream stream.

Arguments

stream pointer to a valid Prolog output stream

count how many characters of c to be output

c character to be written out

Examples

QP_tab(QP_curout, 5, ’ ’) puts 5 blank characters to the current output stream.

See Also

QP_tabto()

Chapter 19: C Reference Pages 1443

19.3.64 QP_tabto()

Synopsis

#include <quintus/quintus.h>

int QP_tabto(stream, line_pos, c)
QP_stream *stream;
int line_pos;
int c;

Pad the character c up to the specified line position line pos on Prolog output stream
stream.

Arguments

stream pointer to a valid Prolog output stream

line pos line position to be padded to.

c character used for padding

See Also

QP_tab()

1444 Quintus Prolog

19.3.65 QP_term_type()

Synopsis

#include <quintus/quintus.h>

int QP_term_type(term)
QP_term_ref term;

Tests the type of Prolog terms in C.

Description

QP_term_type() returns the type of a Prolog term that is passed to it as argument. The
returned value is one of the following constants defined in the file ‘<quintus/quintus.h>’:
QP_VARIABLE, QP_INTEGER, QP_ATOM, QP_FLOAT or QP_COMPOUND.

Examples

print_type() is a C function that prints the type of the Prolog term passed to it.

foo.pl

foreign(print_type, c, print_type(+term)).

Chapter 19: C Reference Pages 1445

foo.c

#include <quintus/quintus.h>

void print_type(term)
QP_term_ref term;
{

switch (QP_term_type(term)) {
case QP_VARIABLE:

QP_printf("Term is a variable\n");
break;

case QP_INTEGER:
QP_printf("Term is an integer\n");
break;

case QP_FLOAT:
QP_printf("Term is a float\n");
break;

case QP_ATOM:
QP_printf("Term is an atom\n");
break;

case QP_COMPOUND:
if (QP_is_list(term)) {

QP_printf("Term is a list\n");
} else {

QP_printf("Term is a compound term\n");
}
break;

}
}

See Also

QP_is_*(), QP_get_*(), QP_put_*(), QP_new_term_ref()

1446 Quintus Prolog

19.3.66 QP_toplevel()

Synopsis

#include <quintus/quintus.h>

int QP_toplevel()

Description

Invokes Prolog’s default top level read-prove loop.

For runtime systems, QP_toplevel() immediately transfers control to the definition of the
Prolog predicate runtime_entry/1.

QP_toplevel() takes no arguments. QP_query() and related predicates should be used for
calling specific Prolog predicates.

One of the effects of calling this function is that the default signal handling for Prolog is
enabled. Upon return, the old signal handlers are restored.

The built-in predicate break/0 calls this function. Nested calls to this function are equiv-
alent to calling the Prolog predicate break/0.

This function returns when an end-of-file character is read.

Return Value

QP_SUCCESS
QP_FAILURE
QP_ERROR

See Also

QP_initialize(), break/0.

Chapter 19: C Reference Pages 1447

19.3.67 QP_trimcore()

Synopsis

#include <quintus/quintus.h>

int QP_trimcore()

QP_trimcore() is the C equivalent of Prolog’s trimcore/0.

Description

trimcore/0 is usually called by Prolog when you return to top level after each query. But
if you have an embedded application without Prolog’s top level or a runtime system then
you can call QP_trimcore() explicitly to ask Prolog to consolidate all its free memory and
free as much as possible back to the operating system.

Like trimcore/0 it should be used judiciously, as overuse can result in unnecessary time
being spent in memory expansion and contraction. However, it can be used when Prolog is
to be dormant for a period, or as much free memory as possible is desired.

See Also

trimcore/0

Section 10.2 [fli-emb], page 365

1448 Quintus Prolog

19.3.68 QP_ungetc()

Synopsis

#include <quintus/quintus.h>

int QP_ungetc(c, stream)
int c;
QP_stream *stream;

Pushes the character c back onto Prolog input stream stream.

QP_ungetc() is similar to the library function ungetc(3S), however the return values differ
and stream is a Prolog stream rather than a stdio stream.

Return Value

QP_SUCCESS
If function succeeds

QP_ERROR Otherwise

See Also

QP_fseek(), QP_getc()

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1449

19.3.69 QP_unify()

Synopsis

#include <quintus/quintus.h>

int QP_unify(term1, term2)
QP_term_ref term1;
QP_term_ref term2;

Unify two Prolog terms.

Description

QP_unify() unifies the two terms referenced by term1 and term2. Both should be initialized
references. If the unification succeeds, the function returns QP_SUCCESS, otherwise it returns
QP_FAILURE. If the unification results in any bindings then the bindings are trailed. If Prolog
backtracks over the foreign function that called QP_unify() then the bindings are undone.

Examples

c_unify(term1, term2) is equivalent to the usual Prolog builtin =/2, but it returns a third
argument, which is an integer indicating success or failure.

foo.pl

foreign(c_unify, c, c_unify(+term, +term, [-integer])).

foo.c

#include <quintus/quintus.h>

long int c_unify(t1, t2);
QP_term_ref t1, t2;
{

return QP_unify(t1, t2);
}

See Also

=/2

1450 Quintus Prolog

19.3.70 QP_vfprintf()

Synopsis

#include <quintus/quintus.h>

int QP_vfprintf(stream, format, ap)
QP_stream *stream;
char *format;
va_list ap;

Places output onto the Prolog output stream stream.

QP_vfprintf() is also similar to the library function vfprintf(3V), however the return
values differ and stream is a Prolog stream rather than a stdio stream. It also resembles
QP_fprintf() except that rather than being called with a variable number of arguments,
it is called with an argument list as defined by varargs(3).

Return Value

QP_SUCCESS
If function succeeds

QP_ERROR Otherwise

See Also

QP_printf(), QP_fprintf()

Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1451

19.3.71 QP_wait_input()

Synopsis

#include <quintus/quintus.h>

int QP_wait_input(id,timeout)
int id;
int *timeout;

Wait until I/O is ready on a file descriptor or until a timeout occurs

Description

QP_wait_input() waits until input is ready on file descriptor id or until timeout milliseconds
pass. If timeout is QP_NO_TIMEOUT, it waits indefinitely for input to arrive on id. While
waiting, QP_wait_input() makes sure that registered callbacks are called when input is
ready on other file descriptors. However, no callback will be called when input is ready on
id even if one is registered, rather QP_wait_input() returns immediately.

Return Values

QP_SUCCESS
if input arrived on id

QP_FAILURE
if a timeout occurred

QP_ERROR if an error occurs

See Also

QP_select(), QP_add_*()

1452 Quintus Prolog

19.3.72 QU_alloc_mem(), QU_alloc_init_mem(), QU_free_mem()

Synopsis

char *QU_alloc_mem(size, alignment, actualsize)
unsigned int size;
unsigned int alignment;
unsigned int *actualsize;

The primitive function that Prolog calls to get memory

char *QU_alloc_init_mem(size, alignment, actualsize)
unsigned int size;
unsigned int alignment;
unsigned int *actualsize;

Called when Prolog needs memory for the first time

int QU_free_mem(mem, size)
char *mem;
unsigned int size;

The primitive function called when Prolog wants to free memory.

Description

These are the primitive functions on which the all of Prolog’s sophisticated memory man-
agement is built. If Prolog is to be embedded into an application that would like to provide
its own memory management routines then the user can redefine these functions and link
it with the Prolog system.

QU_alloc_mem() must allocate a piece of memory that has at least size bytes aligned at
alignment in it and return a pointer to it. The memory returned itself need not be aligned at
alignment. The alignment argument is guaranteed to be a power of 2. The actual size of the
piece of memory returned should be stored in *actualsize. Prolog uses all the memory given
to it; there is no memory wasted when actualsize is greater than size. QU_alloc_mem()
should return 0 if it cannot allocate any more memory.

QU_alloc_init_mem() is a special case of QU_alloc_mem(). It can do whatever initializa-
tion that this layer of memory management wants to do.

QU_free_mem() is called with a pointer to the memory that is to be freed and the size of
the memory to be freed. If QU_free_mem() was not able to free this piece of memory then
this function should return 0. In this case Prolog will continue using the memory as if it
was not freed.

Chapter 19: C Reference Pages 1453

The default definitions for these functions look at the environment variables
PROLOGINITSIZE, PROLOGINCSIZE, PROLOGKEEPSIZE and PROLOGMAXSIZE. These environ-
ment variables are useful to customize the default memory manager. If users redefine this
layer of memory management they can choose to ignore these environment variables.

Examples

Here is a simple example of the embeddable layer of memory management based on
malloc(3) and free(3). This example is far from ideal because you might be over-
allocating memory to ensure the required size of aligned memory, but demonstrates the
capability. The C file ‘mem.c’ defines QU_alloc_mem(), QU_alloc_init_mem() and QU_
free_mem().

1454 Quintus Prolog

mem.c

unsigned int IncSize = 0x100000; /* 1M */
unsigned int InitSize = 0x100000; /* 1M */
unsigned int MaxSize = 0x1000000; /* 16 M */
unsigned int KeepSize = 0x100000; /* 1M */
unsigned int MemTotal;

char * QU_alloc_mem(size, align, actualsize)
unsigned int size; /* in bytes */
unsigned int align; /* power of 2 */
unsigned int *actualsize;
{

char *mem, *malloc();

size = size + align;
if (size <= IncSize) size = IncSize;
if ((size + MemTotal) > MaxSize) return 0;
mem = malloc(size);
*actualsize = size;
MemTotal += (mem == 0 ? 0 : size);
return mem;

}

char * QU_alloc_init_mem(size, align, actualsize)
unsigned int size; /* in bytes */
unsigned int align; /* power of 2 */
unsigned int *actualsize;
{

char *mem, *str, *malloc(), *getenv();

str = getenv("PROLOGINCSIZE");
if (str) sscanf(str, "%u", &IncSize);
str = getenv("PROLOGINITSIZE");
if (str) sscanf(str, "%u", &InitSize);
str = getenv("PROLOGMAXSIZE");
if (str) sscanf(str, "%u", &MaxSize);
str = getenv("PROLOGKEEPSIZE");
if (str) sscanf(str, "%u", &KeepSize);

MemTotal = 0;
return QU_alloc_mem(size, align, actualsize);

}

int QU_free_mem(mem, size)
char * mem;
unsigned int size;
{

if ((MemTotal - size) < KeepSize) return 0;
free(mem);
MemTotal = MemTotal - size;
return 1;

}

Chapter 19: C Reference Pages 1455

To build a Prolog development system based on the functions defined in ‘mem.c’:

% cc -c mem.c

% qld -D mem.o -o prolog_on_my_mm_fns

See Also

Section 10.2 [fli-emb], page 365

1456 Quintus Prolog

19.3.73 QU_fdopen() user-redefinable

Synopsis

#include <quintus/quintus.h>

QP_stream *QU_fdopen(stream_option, system_option, er-
ror_number, file_des)
QP_stream *stream_option;
char *system_option;
int *error_number;
int file_des;

The embedding function for creating a stream opened through open/[3,4] or QP_fopen().
Creates a stream and returns the QP_stream pointer for that stream.

Description

QU_fdopen() is similar to QU_open() except that the file stream is already opened and the
opened file descriptor is passed through the parameter file des.

Examples

See the example in the manual page for QU_open().

See Also

QU_open(), Section 10.5 [fli-ios], page 433

Chapter 19: C Reference Pages 1457

19.3.74 QU_free_mem() user-redefinable

Described in reference page for QU_alloc_mem().

1458 Quintus Prolog

19.3.75 QU_initio() user-redefinable

Synopsis

#include <quintus/quintus.h>

int QU_initio(user_input, user_output, user_error, act_astty, error_num)
QP_stream **user_input;
QP_stream **user_output;
QP_stream **user_error;
int act_astty;
int *error_num;

Initializes Prolog input/output system. Returns QP_SUCCESS upon success and QP_ERROR
upon failure.

Description

The three Prolog initial stream are created in QU_initio(). The Prolog standard input
stream is returned through user input, the standard output stream is returned through
user output, and the standard error stream is returned through user error. The created
streams are accessed in the Prolog system as user_input (QP_stdin), user_output (QP_
stdout), and user_error (QP_stderr).

If act astty is non-zero, the Prolog system requests QU_initio() to initialize the three
initial streams as tty streams even if they are not really connected to a tty. One example
of such a request is that Prolog is running under remote shell.

The parameter error num stores the error code if QU_initio() returns QP_ERROR. The
error code can be any of the host operating system error numbers, QP error numbers or a
user-defined error number.

Tip

The process required to create these three initial streams is similar to that of implementing
a customized Prolog stream. (see Section 10.5.5 [fli-ios-cps], page 445). However, these
three initial streams should not be registered. Calling QP_register_stream() to register
any of the three streams created by QU_initio() may cause an error when Prolog starts
up.

Chapter 19: C Reference Pages 1459

Examples

The following is the source code for an implementation of QU_initio() function in C
language.

1460 Quintus Prolog

#include <sys/types.h>
#include <sys/stat.h>
#include <quintus/quintus.h>

#define TTY_BUFSIZ 128
#define MAX_FIFO_BUFSIZ 4096

extern QP_stream *QU_fdopen();

/*
* This I/O initialization function only handles three possible
* types of file, a tty file , a pipe and an ordinary file
*/
int QU_initio(user_input, user_output, user_error, act_astty,

error_num)
QP_stream **user_input, **user_output, **user_error;
int act_astty, *error_num;
{

int fd, is_tty;
struct stat statbuf;
QP_stream option, *streams[3], *prompt_stream;
extern char *ttyname();

for (fd=2; fd >= 0 ; --fd) {
is_tty = isatty(fd);
QU_stream_param((is_tty) ? "/dev/tty" : "",

(fd) ? QP_WRITE : QP_READ, &option);
if (is_tty || act_astty) {

/* make sure other parameters are right */
option.format = QP_DELIM_TTY;
option.max_reclen = TTY_BUFSIZ;
option.seek_type = QP_SEEK_ERROR;
if (fd == 0)

option.peof_act = QP_PASTEOF_RESET;
} else {

if (fstat(fd, &statbuf) < 0)
return QP_ERROR;

if ((statbuf.st_mode & S_IFIFO) == S_IFIFO) {
option.max_reclen = MAX_FIFO_BUFSIZ;
option.seek_type = QP_SEEK_ERROR;

} else
option.max_reclen = statbuf.st_blksize;

}

Chapter 19: C Reference Pages 1461

option.mode = (fd) ? QP_WRITE : QP_READ;
if ((streams[fd]=QU_fdopen(&option,"",error_num,fd))

==QP_NULL_STREAM)
return QP_ERROR;

if (is_tty) {
char *tty_id;
if (! (tty_id = ttyname(fd)))

tty_id = "/PROLOG DEFAULT TTYS";
(void) QP_add_tty(streams[fd], tty_id);

} else if (act_astty)
(void) QP_add_tty(streams[fd],

"/PROLOG INITAIL STREAMS");
}
(streams[0])->filename="USER$INPUT";
*user_input = streams[0];
(streams[1])->filename="USER$OUTPUT";
*user_output = streams[1];
(streams[2])->filename="USER$ERROR";
*user_error = streams[2];
if ((streams[0])->format == QP_DELIM_TTY

&& (streams[1])->format != QP_DELIM_TTY
&& (streams[2])->format != QP_DELIM_TTY) {

char *tty_id;
/* create an output stream for prompt */
QU_stream_param(isatty(0) ? "/dev/tty" : "", QP_WRITE,

&option);
option.format = QP_DELIM_TTY;
option.max_reclen = TTY_BUFSIZ;
option.seek_type = QP_SEEK_ERROR;
if ((prompt_stream = QU_fdopen(&option, "", error_num,

0)) == QP_NULL_STREAM)
return QP_ERROR;

(void) QP_register_stream(prompt_stream);
if (! (tty_id = ttyname(0)))

tty_id = "/PROLOG DEFAULT TTYS";
(void) QP_add_tty(prompt_stream, tty_id);

}
return QP_SUCCESS;

}

1462 Quintus Prolog

19.3.76 QU_open() user-redefinable

Synopsis

#include <quintus/quintus.h>

QP_stream *QU_open(stream_option, system_option, error_number)
QP_stream *stream_option;
char *system_option;
int *error_number;

The embedding function for creating a stream opened through open/[3,4] or QP_fopen().

Creates a stream and returns the QP_stream pointer for that stream.

Description

stream option specifies the options for the stream to be created.

system option specifies the system-dependent stream option specified in the option of
system(option) in open/4. If there is no system-dependent option, the system_option
field is the empty string, "".

The functionality of QU_open() is illustrated in these steps open/4 uses to create a Prolog
stream:

1. Set up the default stream options through QU_stream_param().
2. Changes the stream options obtained in the previous step based on the options specified

in open/4.
3. Calls QU_open() with the stream options resulted in the previous two steps to create

the stream.
4. Register the stream created by QU_open() through QP_register_stream().
5. Converts the stream pointer returned by QU_open() to the Prolog representation of

the stream through stream_code/2.

The process required to implement QU_open() is similar to implementing a customized
Prolog stream. (see Section 10.5.5 [fli-ios-cps], page 445). There are only a few differences.

1. The stream options are specified as a parameter in a call to QU_open(), so QU_open()
does not need to call QU_stream_param().

2. QU_open() may need to parse system option string to recognize the option specified
in that string. Notice that the core Prolog system itself does not make use of any
information specified in system option. It simply takes the string specified in open/4
and passes it to QU_open() without any alteration.

Chapter 19: C Reference Pages 1463

3. QU_open() does not need to register the stream it creates. The caller of QU_open()
will register it.

Implementation of QU_fdopen() is similar to QU_open() except that the file stream is
already opened and the opened file descriptor is passed through the parameter file des.

Return Value

If any error occurs during the creation of the stream, QP_NULL_STREAM is returned and the
error code for the error condition is set in the third parameter, error number. The error
code could be any of the host operating system error numbers, QP error numbers or a
user-defined error number. QU_fdopen() requires an addition parameter, file des, which is
the opened file descriptor for the stream to be created.

Examples

The following is the source code for an implementation of QU_open() function and QU_
fdopen() function in C.

#include <fcntl.h>
#include <errno.h>
#include <sys/file.h>
#include <sys/types.h>
#include <sys/stat.h>

#ifndef L_SET
#define L_SET 0
#endif
#ifndef L_INCR
#define L_INCR 1
#endif
#ifndef L_XTND
#define L_XTND 2
#endif

#include <quintus/quintus.h>

extern char *ttyname();

1464 Quintus Prolog

QP_stream *
QU_fdopen(option, sys_option, error_num, file_des)

QP_stream *option;
char *sys_option;
int *error_num, file_des;
{

QP_stream *stream;
extern long lseek();
extern QP_stream *QU_tty_open(), *QU_text_open(),

*QU_raw_open();

if (sys_option && *sys_option != ’\0’) {
*error_num = QP_E_SYS_OPTION;
return QP_NULL_STREAM;

}
*error_num = 0;
if (option->format == QP_FMT_UNKNOWN) {

if (option->line_border==QP_NOLB &&
option->trim==0)
option->format = QP_VAR_LEN;

/* binary file */
else

option->format = QP_DELIM_LF;
}

Chapter 19: C Reference Pages 1465

switch (option->mode) {
case QP_READ:
case QP_WRITE:

option->magic.byteno = 0;
if (option->seek_type != QP_SEEK_ERROR) {

struct stat statbuf;

if (fstat(file_des, &statbuf) == 0 &&
(statbuf.st_mode & S_IFMT) == S_IFREG)
if ((option->magic.byteno =

lseek(file_des,0L,L_INCR))==-1) {
*error_num = errno;
return QP_NULL_STREAM;

}
}
break;

case QP_APPEND:
if ((option->magic.byteno =

lseek(file_des,0L,L_XTND)) == -1)
{

*error_num = errno;
return QP_NULL_STREAM;

}
break;

default:
*error_num = QP_E_BAD_MODE;
return QP_NULL_STREAM;

}

1466 Quintus Prolog

switch (option->format) {
case QP_DELIM_TTY:

stream = QU_tty_open(option, error_num,
file_des);

break;
case QP_DELIM_LF:

stream = QU_text_open(option, error_num,
file_des);

break;
case QP_VAR_LEN:

stream = QU_raw_open(option, error_num,
file_des);

break;
default:

*error_num = QP_E_BAD_FORMAT;
return QP_NULL_STREAM;

}
return stream;

}

Chapter 19: C Reference Pages 1467

QP_stream *
QU_open(option, sys_option, error_num)

QP_stream *option;
char *sys_option; /* not useful in this

version */
int *error_num;
{

QP_stream *stream;
int fd;
char *filename;
struct stat statbuf;

*error_num = 0;
if (! (filename = option->filename)) {

*error_num = QP_E_FILENAME;
return QP_NULL_STREAM;

}
switch (option->mode) {
case QP_READ:

fd = open(filename, O_RDONLY, 0000);
break;

case QP_WRITE:
fd = open(filename, O_WRONLY|O_CREAT|O_TRUNC,

0666);
break;

case QP_APPEND:
fd = open(filename, O_WRONLY|O_CREAT, 0666);
break;

default:
*error_num = QP_E_BAD_MODE;
return QP_NULL_STREAM;

}

1468 Quintus Prolog

if (fstat(fd, &statbuf) == 0) {
if ((statbuf.st_mode & S_IFMT) == S_IFDIR) {

(void) close(fd);
*error_num = QP_E_DIRECTORY;
return QP_NULL_STREAM;

}
}
if (fd < 0) {

*error_num = errno;
return QP_NULL_STREAM;

}
if (option->format == QP_DELIM_TTY &&

!(isatty(fd))) {
*error_num = QP_E_BAD_FORMAT;
(void) close(fd);
return QP_NULL_STREAM;

}
if ((stream=QU_fdopen(option, sys_option,

error_num, fd))
== QP_NULL_STREAM) {

(void) close(fd);
return QP_NULL_STREAM;

}
if (stream->format == QP_DELIM_TTY) {

char *tty_id;
if (! (tty_id = ttyname(fd)))

tty_id = "/PROLOG DEFAULT TTYS";
(void) QP_add_tty(stream, tty_id);

}
return stream;

}

The following is the source code for the implementation of QU_tty_open() in C. QU_tty_
open() is called in the QU_fdopen() source code listed above. (QU_text_open() and QU_
raw_open() are also called in QU_fdopen(). The source code for these two functions is not
listed here, but they are shipped with Quintus Prolog.)

Chapter 19: C Reference Pages 1469

#include <fcntl.h>
#include <errno.h>

#include <quintus/quintus.h>

extern char *QP_malloc();

#define Min_Buffer_Size 4

struct TtyStream
{

QP_stream qpinfo;
int fd;
unsigned char buffer[Min_Buffer_Size];

};

#define CoerceTtyStream(x) ((struct TtyStream *)(x))

static int
tty_read(stream, bufptr, sizeptr)

QP_stream *stream;
unsigned char **bufptr;
size_t *sizeptr;
{

int n;
extern int errno;
register struct TtyStream

*u = CoerceTtyStream(stream);

n = read(u->fd, (char*)u->buffer,
(int)u->qpinfo.max_reclen);

if (n > 0) {
*bufptr = u->buffer;
*sizeptr = n;
if (u->buffer[n-1] == ’\n’)

return QP_FULL;
else

return QP_PART;
} else if (n == 0) {

*sizeptr = 0;
return QP_EOF;

} else {
u->qpinfo.errno = errno;
return QP_ERROR;

}
}

1470 Quintus Prolog

static int
tty_write(stream, bufptr, sizeptr)

QP_stream *stream;
unsigned char **bufptr;
size_t *sizeptr;
{

struct TtyStream *u = CoerceTtyStream(stream);
int n, len=(int) *sizeptr;
char *buf = (char *) *bufptr;

if (len==0) { /* be sure to set *sizeptr
and *bufptr */

*sizeptr = u->qpinfo.max_reclen;
*bufptr = u->buffer;
return QP_SUCCESS;

}
while ((n = write(u->fd, buf, len)) > 0 && n

< len) {
buf += n;
len -= n;

}
if (n >= 0) {

*sizeptr = u->qpinfo.max_reclen;
*bufptr = u->buffer;
return QP_SUCCESS;

} else {
u->qpinfo.errno = errno;
return QP_ERROR;

}
}

static int
tty_close(stream)

QP_stream *stream;
{

struct TtyStream *u = CoerceTtyStream(stream);
int fd = u->fd;

QP_free(stream);
if (close(fd) < 0)

return QP_ERROR;
return QP_SUCCESS;

}

Chapter 19: C Reference Pages 1471

QP_stream *
QU_tty_open(option, error_num, fd)

register QP_stream *option;
int *error_num, fd;
{

struct TtyStream *stream;

if (option->seek_type != QP_SEEK_ERROR) {
*error_num = QP_E_SEEK_TYPE;
return QP_NULL_STREAM;

}
stream = (struct TtyStream *)

QP_malloc(sizeof(*stream) +
((option->max_reclen <= Min_Buffer_Size) ? 0

: option->max_reclen - Min_Buffer_Size));
stream->qpinfo = *option;
QP_prepare_stream(&stream->qpinfo, stream->buffer);
stream->fd = fd;
stream->qpinfo.close = tty_close;
if (option->mode != QP_READ) {

stream->qpinfo.write =
stream->qpinfo.flush = tty_write;

} else
stream->qpinfo.read = tty_read;

return (QP_stream *) stream;
}

See Also

open/4, QU_fdopen()

Section 10.5 [fli-ios], page 433

1472 Quintus Prolog

19.3.77 QU_stream_param() user-redefinable

Synopsis

#include <quintus/quintus.h>

void QU_stream_param(filename, mode, format, option)
char *filename;
int mode;
unsigned char format;
QP_stream *option;

Embedding function, which sets up default values of user-accessible fields in a Prolog stream
structure.

Arguments

filename name of the file to be opened. If the stream does not have a filename, the
filename is the empty string, "". If the filename is ‘/dev/tty’, the caller requests
QU_stream_param() to set the field values as a tty stream.

mode

• QP_READ for an input stream.
• QP_WRITE for an output stream.
• QP_APPEND for an output stream opened in append mode.

format format of the stream, which could have one of the following values:
• QP_DELIM_LF

•
•
•
•
• QP_VAR_LEN

• QP_DELIM_TTY

• QP_FMT_UNKNOWN

option pointer to a QP_stream structure whose fields are to be set up.

Description

The format is used in assisting QU_stream_param() to determine the best values for the
other member fields of the QP_stream structure.

Chapter 19: C Reference Pages 1473

All of the fields listed below of the QP_stream structure, described in Section 10.5.3 [fli-ios-
sst], page 437, are set by QU_stream_param(). Under UNIX, they are given the indicated
values:

field value

filename filename argument to QU_stream_param()

mode mode argument to QU_stream_param()

format format argument to QU_stream_param()

max_reclen
8192 bytes for a file, 256 bytes for a tty

line_border
QP_LF

file_border
QP_EOF

peof_act QP_PASTEOF_ERROR

prompt "" (empty string)

trim 0

seek_type
QP_SEEK_PREVIOUS for a file, QP_SEEK_ERROR for a tty

flush_type
QP_FLUSH_FLUSH

overflow QP_OV_FLUSH

errno 0

magic (byteno) 0

read bad_read — a function that returns QP_ERROR

write bad_write — a function that returns QP_ERROR

flush bad_flush — a function that returns QP_ERROR

seek bad_seek — a function that returns QP_ERROR

close bad_close — a function that returns QP_ERROR

1474 Quintus Prolog

Chapter 20: Command Reference Pages 1475

20 Command Reference Pages

20.1 Command Line Utilities

The reference pages for the Quintus supplied command line utilities follow, in alphabetical
order.

• prolog(1)

• qcon(1)

• qgetpath(1)

• qld(1)

• qnm(1)

• qpc(1)

• qplm(1)

• qsetpath(1)

• qui(1)

Once these files are installed in library(’q3.5’), you can access them on-line by typing,
for example,

% man qpc

Refer to Section 1.3 [int-dir], page 11 for the location of these reference pages in the Quintus
directory hierarchy.

1476 Quintus Prolog

20.1.1 prolog — Quintus Prolog Development System

Synopsis

prolog [+f] [+l file] [+L file]
[+p [path-name]] [+P [path-name]] [+tty]
[+z user’s-arguments | + [emacs-arguments]]

qpwin [+f] [+l file] [+L file]
[+p [path-name]] [+P [path-name]] [+tty]
[+z user’s-arguments | + [emacs-arguments]]

Description

prolog is the command to invoke the Quintus Prolog Development System. The prompt ‘|
?-’ indicates that the execution of Quintus Prolog Development System is in top-level mode.
In this mode, Prolog queries may be issued and executed interactively. A program written
in the Prolog programming language can be compiled during the execution of prolog as
additional information for subsequent execution. The Prolog command halt/[0,1] is used
to exit from prolog; under the GNU Emacs editor, exit is ^x^c.

Under Windows, prolog.exe is a console-based program that can run in a command prompt
window, whereas qpwin.exe runs in its own window and directs the Prolog standard streams
to that window. qpwin.exe is a “windowed” executable; see Section 9.1.3.1 [sap-srs-qld-iin],
page 344.

Compiled programs can be saved into a file as a saved-state. The file can be restored either
through Quintus Prolog built-in restore command or issued as a command to the command
interpreter. The UNIX command head -1 saved-state displays how the saved-state file is
restored in the latter case. The saved-state file can also be passed to qld(1) to be linked
into an executable program.

prolog depends on preset paths to locate the license files, Prolog libraries, system-
dependent foreign object files, and certain executables. There are three main paths, quintus-
directory, runtime-directory and host-type, which are set during the installation of the
Quintus Prolog Development System. The paths can be checked with qgetpath(1), and
changed with qsetpath(1). Upon startup, prolog checks the files in ‘quintus-directory
/licensequintus-version’ for authorization of execution. Under UNIX, prolog locates
its libraries under the directory ‘quintus-directory/generic/qplibquintus-version’
where quintus-version is the Quintus Prolog release number built into the executables. Un-
der Windows, prolog locates its libraries under the directory ‘quintus-directory/src’.
prolog searches the system dependent foreign object files in directories based on host-type.

Chapter 20: Command Reference Pages 1477

Quintus Prolog Development System can be linked with other Quintus products, and user’s
application programs. For more detail, see qld(1), qpc(1), and the add-on products QUI,
ProXT, and ProXL, which are shipped with Quintus Prolog.

Options

Any argument that does not match options described in this section and does not start
with a ‘+’ is regarded as a user’s argument. The user’s arguments may be obtained using
the prolog command unix(argv(ListOfArgs)). If a user’s argument needs to begin with
a ‘+’, it should be issued as ‘++’ instead or given after the ‘+z’ option. Double pluses will be
translated into a single plus, so the user’s code will not see the ‘++’. Arguments beginning
with ‘+’ are reserved for prolog, and an unrecognized argument starting with a ‘+’ is treated
as an error.

‘+ emacs-arguments’
Invoke Quintus Prolog with the Emacs interface. Any arguments following
‘+’ are taken as arguments to the Emacs editor. If the environment variable
QUINTUS_EDITOR_PATH is set then that Emacs invoked. Otherwise, by default,
GNU emacs is assumed to be in the path as emacs.

‘+f’ Fast start. The initialization file ‘prolog.ini’ will not be read upon startup.

‘+l file’ Load the specified file upon startup. file can be a Prolog or a QOF file, and
it may be specified either as a string (e.g. ‘file’, ‘~/prolog/file.pl’) or as a
file search path specification (e.g. ‘library(file)’, ‘home(language(file))’).
Note, however, that the latter needs to be quoted to escape the shell interpre-
tation of the parentheses. Giving the extension is not necessary; if both source
(‘.pl’) and QOF (‘.qof’) files exist, the more recent of the two will be loaded.

‘+L file’ Similar to ‘+l’ but the user’s environment variable PATH will be searched for
the specified file.

‘+p [path-name]’
Print the Prolog file search path definitions that begin with the string path-
name (e.g. ‘library’ if ‘+p lib’ is specified); path-name is optional, and if not
given, all file search path definitions are printed; Prolog exits after producing
the required output to stdout.

‘+P [path-name]’
Similar to ‘+p’, but the absolutized versions of the file search path definitions
are printed.

‘+tty’ Force the three standard stream associated with a Prolog process to act as tty
streams. A tty stream is usually line buffered and handles prompt automati-
cally.

‘+z user’s-arguments’
Any arguments following ‘+z’ are taken as user’s arguments. User’s arguments
can then be obtained through unix(argv(ListOfArgs)).

1478 Quintus Prolog

Environment

}

PAGER A program to use for interactively delivering the help-system’s output to the
screen. The default is either more or pg depending on the host operating system.

PATH Directories to search for the executables and saved-states.

QUINTUS_LISP_PATH
Absolute filename for the Emacs-Lisp directories. The default is: ‘quintus-
directory/editorquintus-version/gnu’.

QUINTUS_EDITOR_PATH
Absolute filename of the GNU Emacs executable. By default the command
emacs is looked for in your path.

SHELL Default shell interpreter to be used for Prolog commands unix(shell) and
unix(shell(command)).

Files

‘file.pl’ Prolog source file

‘file.qof’
Quintus Object File (QOF) files

‘prolog.ini’
Quintus Prolog initialization file, looked up in the home directory

‘/tmp/qp*’
Temporary files for loading foreign object files and for Emacs editor interface

‘quintus-directory/licensequintus-version’
Location of license files

See Also

qgetpath(1), qld(1), qpc(1), qsetpath(1), unix/1, QP_initialize()

Section 8.3 [ref-pro], page 186

Chapter 20: Command Reference Pages 1479

20.1.2 qcon — QOF consolidator

Synopsis

qcon [-wx] -o output-filename

Description

qcon consolidates the specified QOF file filename into a machine specific object file. There
is no default name for the output file. Therefore, the ‘-o’ option must be specified. qcon is
normally called from qld(1) and is not intended to be called by the user directly.

Options

‘-w’ Normally, qcon issues warning messages for undefined procedures. This option
instructs qcon to suppress such messages.

‘-x’ This option instructs qcon to issue warnings regarding procedures that are
either not called or not defined. ‘-x’ overrides the ‘-w’ option.

‘-o output-filename’
This option is used to specify a name for the object file.

See Also

qld(1), qnm(1), qpc(1), qsetpath(1)

1480 Quintus Prolog

20.1.3 qgetpath — Get parameters of Quintus utilities and
runtime applications

Synopsis

qgetpath [-abhqr] filename ...

Description

qgetpath displays preset parameters defined in the Quintus Prolog executable files, printing
the result to the standard output. The executable files specified must be Quintus Prolog
utilities, such as qpc and qld, runtime applications built using the Quintus Prolog Runtime
Generator, prolog(1), or executables generated with qld(1).

There are five paths, add-ons string, runtime-directory, quintus directory, host type and
banner message. add-ons string identifies the Quintus add-on products that are included
in the executable. runtime-directory and quintus-directory are used in the executable to
find certain files relative to those paths. host type identifies the platform of the executable.
banner message is the banner displayed upon the start-up of the executable. The paths
except banner message can be obtained through prolog command prolog_flag(path flag,
Variable) where path flag is add_ons for add-ons string , runtime_directory for runtime-
directory, quintus_directory for quintus-directory, and host_type for host type.

Options

‘-a’ Display the add-ons string in the specified executables.

‘-r’ Display the runtime-directory in the specified executables.

‘-q’ Display the quintus-directory in the specified executables.

‘-h’ Display the host type in the specified executables.

‘-b’ Display the banner message in the specified executables

See Also

prolog(1), qsetpath(1)

Chapter 20: Command Reference Pages 1481

20.1.4 qld — QOF link editor

Synopsis

qld [-cCdDEghkNqrRsSvwWxY] [-o output] [-llibrary]
[-L library-directory] [-a quintus-product]
[-f path-name:path-spec]
[-F path-name:path-spec]
[-p path-name]
[-P path-name]
filename ... [-LD ld-options]

Description

qld links the specified QOF files together with the Kernel QOF file. This results in a
single QOF file, which is then consolidated into a machine object file. Finally, the native
compiler/linker is invoked to link this object file with the Kernel object file and produce an
executable image. The default Kernel QOF file is ‘runtime-directory/qprte.qof’. Under
UNIX, the default Kernel Object file is ‘runtime-directory/qprte.o’; under Windows
it consists of ‘runtime-directory/qprte.lib’ and ‘runtime-directory/qpeng.lib’ (see
qsetpath(1) and qgetpath(1)).

If any of the specified files depends on a foreign file, then that file will be included in the
call to the C compiler or linker if the ‘-d’ option is specified. A QOF file depends on a
foreign file if its source contains an embedded load_foreign_files/2 or load_foreign_
executable/1 command for that file (the ‘-D’ option of qnm(1) shows the dependencies of
a QOF file; see qnm(1)).

A filename in the command line could be either a QOF file with ‘.qof’ suffix, an object
file, a shared object file (UNIX only), an import library (Windows only), or an archive file.
If the filename specified is a machine object file, it will be passed as an argument to the C
compiler or linker. If the command line file does not exist, the same file with a ‘.qof’ suffix
is tried.

File names may be specified either as regular paths (e.g. ‘file.qof’, ‘~/home/file.o’) or as
Prolog file search paths, such as ‘library(file)’, ‘home(system(file.o))’, etc. Note that
the file search path specifications may need to be quoted to escape the shell’s interpretation
of the parentheses.

The intermediate QOF and object files are deleted when qld exits (unless the ‘-k’ options
is specified; see below). By default, these files are stored in the directory ‘/tmp’. The
environment variable TMPDIR may be set to specify another directory to be used instead for
temporary files. If TMPDIR is set to a non-existent directory or to a directory to which the
user does not have read and write permissions then the default value of TMPDIR is used for
temporary files.

1482 Quintus Prolog

Options

‘-a quintus-product’
Specifies that the libraries for a particular Quintus product that is sold sep-
arately are to be used. These Quintus products are normally installed in the
quintus-directory. List this directory to find the valid directory names for these
products. This option is equivalent to one or more ‘-L’ switches. Note that the
libraries shipped with Quintus Prolog (qui, proxt, and proxl) are automati-
cally available in the system, and, therefore, require no ‘-a’ flag.

‘-c’ If this option is specified, qld terminates after producing a machine object
file. It does not call the C compiler or linker to produce an executable image.
If an output filename is not specified with the ‘-o’ option, the file is named
‘a.o’ under UNIX and ‘a.obj’ under Windows. No foreign files, e.g. foreign
dependencies, are included in the output file. The resulting object file may be
passed to qld again on a different command (with ‘-N’), or it may be passed
directly to the linker.

‘-d’ This flag is always used when qpc(1) calls qld. It causes all QOF files on which
any of the specified files depends to be linked in as well, and any machine object
files on which any of the linked QOF files depends to be passed to the C compiler
or linker. A QOF file depends on another QOF file if the source for the first
contains an embedded command to load the source of the second. A QOF file
depends on an object file if its source contains an embedded load_foreign_
files/2 or load_foreign_executable/1 command of the object file.
‘-f path-name:path-spec’Similar to the ‘-L’ option, but path-name:path-spec
defines a general file search path, which instructs qld to look for a file in direc-
tory path-spec whenever a file specification of the form path-name(file-spec
) is encountered in QOF file dependencies or on the command line. The path-
name and the directory, path-spec, are separated by a colon (‘:’), and, therefore,
path-name cannot contain a colon. If path-spec is given in the file search path
form (as in ‘library:mylib(library)’), then the argument must be quoted
to escape the shell’s interpretation of the parentheses. path-spec may be ‘.’ or
null, in which case ‘.’ is assumed.
There may be a list of path definitions (i.e. ‘-f’ or ‘-F’ options) for the same
path-name. qld searches the list, just like prolog and qpc, whenever it needs
to expand a file search path specification. The ‘-f’ options appends (like assertz
in prolog and qpc) the new path to the end of the list of paths for path-name,
while ‘-F’ prepends (like asserta in prolog and qpc).

‘-g’ This option is not used by qld, but is intended for the linker. If some of the
specified object files or object dependency files are compiled with the debug
flag, this option should be specified to preserve the debugging information in
the executable.

‘-h’ Hides or “locks” the predicates in the file so that they are not visible to the
debugger. Such predicates will have predicate property “locked” when they are
linked or loaded into a Prolog system.

Chapter 20: Command Reference Pages 1483

‘-k’ With this option, the intermediate files are not deleted.

‘-llibrary’
This option is not used by qld, but is intended for the linker, which is called
to link with the specified library to product the executable.

‘-o output’
The default output file names may be overridden using this option. For exe-
cutable files, the default name is ‘a.out’ under UNIX or ‘a.exe’ under Win-
dows. With the ‘-r’ or ‘-R’ options, the default name is ‘a.qof’. With the
‘-c’ or ‘-C’ options, the default name is ‘a.o’ under UNIX or ‘a.obj’ under
Windows.

‘-p path-name’
The files search path definitions for path-name are printed. If path-name is ‘*’
then all file search path definitions are printed.

‘-q’ Like the ‘-r’ option but also adds a Kernel QOF file ‘qprte.qof’ or ‘qprel.qof’.
This option should very rarely be necessary.

‘-r’
If this option is specified, qld terminates after linking together all the specified
QOF files to make a new QOF file. No Kernel QOF file is not linked in. If an
output filename is not specified with the ‘-o’ option, the file is named ‘a.qof’.
If ‘-d’ is not used in conjunction with this option, then it is recommended
that the output file, as specified by the ‘-o’ option, be in the current working
directory. This way, any dependencies of the output QOF file on other files will
be correct. Otherwise, the dependencies would only be correct when absolute,
as opposed to relative, paths had been specified in the sources. This matters
only if this file is to be used in a future call to qld with the ‘-d’ option specified.

‘-s’ This option is not used by qld, but is intended for the linker, which is called
to actually generate the executable. The ‘-s’ option instructs the linker to
strip the executable. Please note: that once the executable is stripped then the
dynamic foreign interface including the Prolog builtins load_foreign_files/2
and load_foreign_executables/1 cannot work.

‘-v’ When this option is specified, qld echoes its activities, including calls to sub-
components and ‘ld.sh’

‘-w’ This option suppresses warnings regarding undefined procedures.

‘-x’ When this option is specified, qld gives warnings about the predicates that are
not called, as well as those that are undefined. Also, a warning message will be
printed if either of the user-definable predicates (portray/1 and user_error_
handler/4) is undefined. (Such warnings are normally suppressed for these
predicates.) The ‘-x’ option overrides the ‘-w’ option.

‘-C’ UNIX only. Same as ‘-c’, except that the object dependencies of QOF files
are also linked into the created object file. The object file so produced can be
directly passed to the C compiler, linker, or qld -N to generate the executable.

1484 Quintus Prolog

‘-D’ If this option is used, qld links the specified files with the Development Kernel
rather than the Runtime Kernel. The Development Kernel QOF file, ‘runtime-
directory/qprel.qof’, is linked with the specified QOF file, and the Devel-
opment Kernel object file(s). Under UNIX, the Development Kernel Object
file is ‘runtime-directory/qprel.o’; under Windows it consists of ‘runtime-
directory/qprel.lib’ and ‘runtime-directory/qpeng.lib’. The ‘-D’ option
may not be used in conjunction with the ‘-E’ option.

‘-E’ This option tells qld to link the specified files with the Extended Runtime
Kernel rather than the Runtime Kernel (see Section 9.1 [sap-srs], page 337).
The Extended Runtime Kernel QOF file, ‘runtime-directory/qprex.qof’, is
linked with the specified QOF file, and the default Kernel object file. Un-
der UNIX, the default Kernel Object file is ‘runtime-directory/qprte.o’;
under Windows it consists of ‘runtime-directory/qprte.lib’ and ‘runtime-
directory/qpeng.lib’ The ‘-E’ option may not be used in conjuction with the
‘-D’ option.

‘-F path-name:path-spec’
Similar to ‘-f’, but the path is added at the front of the list of paths for
path-name. Note that ‘-F library:library-directory’ is identical to ‘-L
library-directory’.

‘-L library-directory’
File specifications of the form ‘library(Filespec)’ are searched for in the
library search paths when that file is linked. The initial search paths are the
same as in the Development System (see prolog(1)). Additional directories
may be prepended to the list of library search paths with this option. Note that
the command line is parsed from left to right. Also note that the ‘-L’ must be
followed by a space; otherwise, qld assumes that the option specifies a library
directory for the linker.
Library directories may also be specified with the ‘-f’ and ‘-F’ options. Note
that library-directory may be a path to a directory (e.g. ‘dir’, ‘~/dir’) or a file
search path specification of the form ‘mylib(library)’. In the latter case, the
path-name ‘mylib’ must be defined by a ‘-f’ or ‘-F’ option.

‘-Ldirectory’
UNIX only. Same as the ‘-L’ option to the C compiler and linker, and specifies
a directory in which the linker looks for library files. This option is simply
passed to the linker.

‘-LD’ All remaining options are simply passed to the linker.

‘-N’ Don’t link in any Kernel files (e.g. ‘qprel.qof’/‘qprel.o’,
‘qprex.qof’/‘qprte.o’ or ‘qprte.qof’/‘qprte.o’) from the runtime directory.
This option is only useful for producing an executable image from a machine
object file that was created from QOF files using qld (see ‘-C’).

‘-P path-name’
Similar to ‘-p’, but the absolutized versions of the file search paths are also
printed.

Chapter 20: Command Reference Pages 1485

‘-R’ Similar to ‘-r’, but it does not include the resulting dependencies. This flag
is mainly useful for clearing the dependencies from the QOF file (for example,
when they get absolutized by save_program/[1,2] or save_modules/2).

‘-S’
Use archive files instead of shared object files. Where a qof file contains a
dependency on a shared object file, if an archive file exists with the same name
but with an archive file extension, then this is substituted for the shared object
file in the call to the linker.
Note that if the shared object file that is being substituted contains dependen-
cies to other shared libraries then these have to be included in the qld command
line. Running ldd(1) on a shared object file will indicate whether it has such
dependencies.

‘-W’ Windows only. Pass the argument ‘-subsystem:windows’, instead of
‘-subsystem:console’, to the linker so that a windowed executable is built,
rather than a console-based one. The window properties of executables built
with ‘-W’ can be controlled by the environment variable CONSOLE; see below.
Other properties of the Windows component of such executables built with ‘-W’
can be controlled with resource files.
qld recognizes files with the ‘.res’ extension as resource files and treats
them like object files, passing them to the linker. Resource files are gen-
erated from ‘.rc’ files using the rc program supplied with Microsoft Visual
C++. They contain various information relating to the Windows component
of an application, such as the program name, icon and key bindings. The file
messages(system(’qpwin.res’)) contains such data for the Quintus Prolog
window. Thus, the qpwin.exe executable can be generated with the command:

C:\> qld -WDdo qpwin.exe messages(system(qpwin.res))

The Quintus Prolog resource source file is in ‘quintus-directory
\src\embed\qpwin.rc’ and this references the icon file ‘quintus-directory
\src\embed\qp.ico’, which rc also incorporates into ‘qpwin.res’.

‘-Y’ Windows only. Pass the option ‘/dll’ to the linker. See Section 9.2.6 [sap-rge-
dll], page 361 for details.

Environment

TMPDIR Directory for creating temporary files. The default is ‘/usr/tmp’.

CONSOLE

Windows only. Controls the window properties executables build with ‘-W’.
The value should be a comma separated list of:

‘sl:INT’ history buffer size (default 200)

‘cols:INT’
number of columns (default 80)

1486 Quintus Prolog

‘rows:INT’
number of rows (default 24)

‘x:INT’ X position in pixels

‘y:INT’ Y position in pixels

For example, setting CONSOLE to sl:400,rows:32 before starting qpwin yields
a window with 32 rows and a history buffer of size 400.

Files

‘file.qof’
Quintus Object File (QOF) files

‘$TMPDIR/qp*.{qof,o,obj}’
intermediate QOF and object files

‘runtime-directory/qcon’
the QOF consolidator

‘runtime-directory/qprel.{o,lib}’
Development Kernel object code

‘runtime-directory/qprte,{o,lib}’
Runtime Kernel object code

‘runtime-directory/qpeng.lib’
Windows only. Common Kernel object code, used with the two previous items

‘runtime-directory/qprel.qof’
Development Kernel QOF code

‘runtime-directory/qprte.qof’
Runtime Kernel QOF code

‘runtime-directory/qprex.qof’
Extended Runtime Kernel QOF code

‘runtime-directory/ld.sh’
Front End script to the UNIX linker

See Also

cc(1), ld(1), qcon(1), qgetpath(1), qnm(1), qpc(1), qsetpath(1)

Chapter 20: Command Reference Pages 1487

20.1.5 qnm — print QOF file information

Synopsis

qnm [-PADFMU] [[-m module] [-n name] [-a arity]]
[-p proc#] [-o] filename ...

Description

qnm prints information about each QOF file named in the argument list. The command
line options specify the information required. The default behavior, if no command line
option is given, is identical to the behavior of the ‘-P’ option. Except where noted, only
the first valid command line option is accepted per invocation of qnm; subsequent options
are ignored. Each filename must be a QOF file.

Options

‘-P’ Print information about all procedures that are defined or called in each QOF
file.

Information for a procedure is preceded by a decimal number that is unique for
that QOF file. This is followed by letter codes indicating the procedure state
and properties. The letter codes are:

U undefined

S static

D dynamic

M multifile

F foreign

V volatile

L locked

If the procedure is neither foreign nor multifile, the second letter is omitted.

The state and property information is followed by the module, name and arity
of the procedure, in the format module:name/arity. Procedure information
is sorted alphabetically by procedure name. Internal procedure names and
modules that have been made anonymous are printed as ‘$anon’.

1488 Quintus Prolog

‘-A’ Print all atoms referenced in each QOF file. Each atom is preceded by a number
that is unique for that QOF file. Atoms are sorted alphabetically. Internal
atoms that have been made anonymous are printed as ‘$anon’.

‘-D’ Print the names of all QOF or object files and library directories on which each
QOF file depends.

‘-F’ Print the number of source files contained in the QOF file.

‘-M’ Print information about modules contained in the QOF file. This information
consists of the name of each module, its export list, and its meta-predicates.

‘-U’ Print information about all procedures that are called but not defined in each
QOF file. Information about undefined procedures is in the same format as
when using the ‘-P’ flag.

‘-m module’
Print information about procedures in module module. This option may be
used in conjunction with the ‘-n’ and ‘-a’ options.

‘-n name’ Print information about procedures named name. This option may be used in
conjunction with the ‘-m’ and ‘-a’ options.

‘-a arity’ Print information about procedures with arity arity. This option may be used
in conjunction with the ‘-m’ and ‘-n’ options.

‘-p proc#’ Print information about the procedure numbered proc#. Procedure numbers
are as given by the ‘-P’ option.

‘-o’ Prepend to each output line the name of its QOF file. The ‘-o’ flag may be
used in addition to any valid combination of options.

See Also

nm(1), qpc(1), qld(1)

Chapter 20: Command Reference Pages 1489

20.1.6 qpc — Quintus Prolog compiler

Synopsis

qpc [-cvhDHMN] [-o output] [-i initialization-file]
[-L library-directory] [-a quintus-product]
[-f path-name:path-spec]
[-F path-name:path-spec]
[-p path-name]
filename ... [-QLD qld-options]

Description

qpc compiles the specified Prolog files into QOF (Quintus Object Format) files. It then
invokes qld(1) to link them together and produce an executable image (unless the ‘-c’
option is given). The QOF files are not deleted after processing terminates.

Each filename must be the name of a valid Prolog source file or a QOF file. Either absolute
or relative filenames may be specified. If filename does not name an existing file, and if
it does not already have an extension, then ‘.pl’ and ‘.qof’ extensions are sought in that
order.

File names may be specified as simple paths (e.g. ‘file.pl’, ‘~/library/file’) or as file
search paths of the form ‘library(file)’, ‘mylib(language(file))’, etc. In the latter
case, the path specification must be quoted to escape the shell’s interpretation of the paren-
theses.

Unless the ‘-o’ option is given, the name of the output file is the name of the input file with
the trailing ‘.pl’, if any, replaced by ‘.qof’. If the input filename does not have a ‘.pl’
extension, then a ‘.qof’ extension is appended. The argument to ‘-o’ may also be specified
the file search path form (see above).

Source files specified on the qpc command line are always recompiled even if the correspond-
ing QOF files are up to date (unless the ‘-M’ switch is specified). QOF files, on the other
hand, are only recompiled if they are out of date compared to the corresponding source
files.

All the “dependencies” of a file, that is all the files named in embedded load commands in
that file (or in its source if it is a QOF file), are checked to ensure that they are up-to-date,
and they are recompiled if necessary. This checking and recompiling of dependencies can
be disabled using the ‘-N’ option.

A filename of ‘-’ can be used to specify that Prolog source code is to be read from the
standard input. The corresponding QOF file will be called ‘a.qof’.

1490 Quintus Prolog

Command line options may alter the above behavior as indicated below. Unrecognized
options and their arguments, if any, are passed to qld(1). Furthermore, the arguments
following a ‘-QLD’ option are not processed by qpc but are passed to qld(1). Note also that
the command line is parsed from left to right. This will affect how the file search path or
library directory definitions are added if ‘-f’, ‘-F’, ‘-L’, or ‘-a’ options are used.

Options

‘-a quintus-product’
Specifies that the libraries for a particular Quintus product that is sold sep-
arately are to be used. These Quintus products are normally installed in the
quintus-directory. List this directory to find the valid directory names for these
products. This option is equivalent to one or more ‘-L’ switches. Note that the
libraries shipped with Quintus Prolog (qui, proxt, and proxl) are automati-
cally available in the system, and, therefore, require no ‘-a’ flag.

‘-c’ The input files are simply compiled into QOF format, and no further processing
takes place.

‘-f path-name:path-spec’
Similar to the ‘-L’ option, but path-name:path-spec defines a general file search,
which instructs qpc to look for a file in directory path-spec whenever a file
specification of the form path-name(file-spec) is encountered (in embedded load
commands, in QOF file dependencies, or on the command line). The path-name
and the directory, path-spec, are separated by ‘:’, and, therefore, path-name
cannot contain a colon. If path-spec is given in the file search path form (as in
‘library:mylib(library)’), then the argument must be quoted to escape the
shell’s interpretation of the parentheses. path-spec may be ‘.’ or null, in which
case ‘.’ is assumed.
There may be a list of path definitions (i.e. ‘-f’ or ‘-F’ options) for the same
path-name. qpc searches the list, just like Prolog, whenever it needs to expand
a file search path specification. The ‘-f’ options appends (like assertz in Prolog)
the new path to the end of the list of paths for path-name, while ‘-F’ prepends
(like asserta in Prolog).
File search paths may also be defined using asserts in the Prolog source being
compiled or in initializaiton files (see ‘-i’). The ‘-f’, ‘-F’, ‘-L’, and ‘-a’ op-
tions given on the qpc command line, and file search path and library directory
definitions asserted in source files or initialization files, are passed on to qld(1).

‘-h’ Hides or “locks” the predicates in the file so that they are not visible to the
debugger. Such predicates will have predicate property “locked” when they are
linked or loaded into a Prolog system.

‘-i initialization-file’
Specifies an initialization file. The initialization file may be a source (‘.pl’)
or QOF (‘.qof’) file. Currently, source files cannot load foreign code; in other
words, they cannot contain calls to load_foreign_files/2 or load_foreign_
executable/1. The definitions in the initialization file apply during the com-

Chapter 20: Command Reference Pages 1491

pilation of all files specified to the right of the ‘-i’ switch on the command
line. The definitions in the initialization file apply only during compile time.
Therefore, no QOF file is generated from an initialization file and its content is
not included in any of the generated QOF files. The initialization file may be
specified in the file search path form (eg. ‘-i "library(basics)"’).

‘-o output’
Specifies a name for the output file. If used with the ‘-c’ option, the qof file will
be produced into the given file. In this case, there may be several ‘-o’ options
for each qof file. If the ‘-o’ names a directory, all qof files will be placed in the
given directory. If the ‘-c’ option is not used, the ‘-o’ is passed onto qld(1).

‘-p path-name’
This option is just passed to qld(1) along with its argument, asking qld(1) to
print out the file search definition for path-name.

‘-v’ When this option is specified, qpc echoes its activities, including the call to
qld(1), to the standard output. This flag is also passed on to qld(1).

‘-D’ This option is just passed to the linker qld(1) indicating that the Quintus
Development System should be linked in.

‘-F path-name:path-spec’
Similar to ‘-f’, but the path is added at the front of the list of paths for
path-name. Note that ‘-F library:library-directory’ is identical to ‘-L
library-directory’.

‘-H’ Like ‘-h’ but in this case the hiding (locking) is done also to any files that are
compiled because of embedded load commands in the file.

‘-L library-directory’
File specifications of the form ‘library(Filespec)’ encountered in embedded
load commands are searched for in the library search paths. The initial search
paths are the same as in the Development System (see prolog(1)). Additional
directories may be prepended to the list of library search paths with this option.
Note that the command line is parsed from left to right. Also note that the ‘-L’
must be followed by a space; otherwise, qpc assumes that the option specifies
a library directory for qld.
Library directories may also be specified with the ‘-f’ and ‘-F’ options. library-
directory may be a path to a directory (e.g. ‘dir’, ‘~/dir’) or a file search path
specification of the form ‘mylib(library)’. In the latter case, the path-name
‘mylib’ must be defined either in the Prolog source code being compiled or by
‘-f’ or ‘-F’ options.

‘-M’ Specifies that files on the command line are not to be compiled if their corre-
sponding QOF files are more recent than they are.

‘-N’ Specifies that files specified in embedded load commands are not to be compiled.
(By default they would be compiled unless their QOF files are already up-to-
date.)

‘-QLD’ All remaining options are simply passed to qld(1).

1492 Quintus Prolog

Environment

TMPDIR Directory for creating temporary files. The default is ‘/usr/tmp’

Files

‘a.out’ Executable output file

‘a.qof’ Output QOF file if filename is ‘-’

‘file.pl’ Prolog source file

‘file.qof’
Quintus QOF file

‘$TMPDIR/qp*’
Compiler temporary files

‘runtime-directory/qld’
QOF link editor

‘runtime-directory/qcon’
QOF consolidator

See Also

prolog(1), qcon(1), qgetpath(1), qld(1), qnm(1)

Chapter 20: Command Reference Pages 1493

20.1.7 qplm — Quintus Prolog license manager

Synopsis

qplm -i SiteName

qplm -a Product Users [Expiration] Code

qplm -d User Product

qplm -p

Description

qplm initializes and maintains the license files for Quintus products.

A code is supplied for each Quintus product that is based on the name of the site or company
name, product name, number of users and optionally an expiration date.

Users are distinguished as either occasional users, if they have used the product less than 5
times, or else regular users. When determining whether the number of users is within that
allowed by the license, only regular users are counted.

Expiration dates are specified with the format YY-MM-DD.

Options

‘-i SiteName’
Initializes the license files for SiteName, where SiteName is a number of argu-
ments comprising the site or company name. This command must be executed
before any products are added.

‘-a Product Users Expiration Code’
Adds a products to the license file. The product is typically of the form name
/arch/version, Users is the number of users allowed to use the product. Expira-
tion is an optional argument specifying when the license will expire. The final
Code argument is a 16 character code that is based on the SiteName, Product,
Users and Expiration.

‘-d User Product’
Deletes User from the list of users who use Product. When a user no longer
uses Product, he or she can be removed from the license file with this option.

‘-p’ Print the information in the license file. This prints the site name followed by
all of the products licensed. This also prints the list of users using each product.
For occasional users, the number of times they have used the product is also
shown.

1494 Quintus Prolog

Example

To initialize the license file:

% qplm -i Hallatrow Designers Inc.

To add a 2 user license for Prolog that expires on 17 May 1994,

% qplm -a prolog/hppa/3.5 2 94-05-17 thiscodewontwork]

Files

‘license.qof’
Contains the site name and product codes

‘users.qof’
Records the users using the products

The license files are maintained in ‘quintus-directory/licenseversion’. The
‘users.qof’ file must be writable by all users, therefore if the quintus-directory is stored on
a read-only file system then the license subdirectory should be made into a symbolic link
to a writable directory.

See Also

prolog(1)

Chapter 20: Command Reference Pages 1495

20.1.8 qsetpath — Set parameters of Quintus utilities and runtime
applications

Synopsis

qsetpath [-aadd-ons] [-rruntime-directory]
[-qquintus-directory] [-hhost-type]

[-bbanner-message] filename ...

Description

qsetpath sets parameters for the executable files. The executable files specified must be
Quintus Prolog utilities, such as qpc and qld, runtime applications built using the Quin-
tus Prolog Runtime Generator, prolog(1), or executables generated with qld(1). There
are five settable paths, add-ons string, runtime-directory, quintus-directory, host-type and
banner message. add-ons string identifies the Quintus add-on products that are included
in the executable. runtime-directory and quintus-directory are used in the executable to
find certain files relative to those paths. host-type identifies the platform of the installa-
tion. banner message is the banner displayed upon the start-up of the executable. The
paths except banner message can be obtained through prolog command prolog_flag(path
flag, Variable) where path flag is add_ons for add-ons string, runtime_directory for
runtime-directory, quintus_directory for quintus-directory, and host_type for host-type.

Options

‘-aadd-ons’
Set the add-ons identification string of the specified executables to add-ons.

‘-rruntime-directory’
Set the runtime-directory of the specified executables to runtime-directory. The
specified runtime-directory must be an absolute filename.

‘-qquintus-directory’
Set the quintus-directory of the specified executables to quintus-directory. The
specified quintus-directory must be an absolute filename.

‘-h/host-type’
Set the host-type of the specified executables to host-type. There must be a
‘/’ preceding host-type. A host-type should be in the form of machine-type or
machine-type-OS-version,

‘-bbanner-message’
Set the displayed banner message for the specified executables to banner-
message.

1496 Quintus Prolog

Errors

Setting banner message has partial or no effects on certain executables.
Argument specification must following the option immediately. There is no
white space allowed between an option and its argument.

See Also:

prolog(1), qgetpath(1), qld(1)

Chapter 20: Command Reference Pages 1497

20.1.9 qui — Quintus User Interface

Synopsis

qui [+f] [+l file] [+L file]

[+p [path-name]] [+P [path-name]]
[X-window arguments]
[+z users arguments]

Description

The Quintus User Interface (QUI) is a Motif-based window interface to the Quintus Prolog
Development System. It includes a query interpreter window with history menu, a source
linked debugger, a help window for accessing the on-line manuals and an edit window as
well as an interface to the GNU Emacs editor.

Options

Any argument that does not match options described in this section and does not start
with a ‘+’ is regarded as a user’s argument. The user’s arguments may be obtained using
the prolog command unix(argv(ListOfArgs)). If a user’s argument needs to begin with a
‘+’, it should be issued as ‘++’ instead or given after the ‘+z’ option. Double pluses will be
translated into a single plus, so the user’s code will not see the ‘++’. Arguments beginning
with ‘+’ are reserved for Prolog, and an unrecognized argument starting with a ‘+’ is treated
as an error.

‘+f’ Fast start. The initialization file ‘prolog.ini’ will not be read upon startup.

‘+l file’ Load the specified file upon startup. file can be a Prolog or a QOF file, and
it may be specified either as a string (e.g. ‘file’, ‘~/prolog/file.pl’) or as a
file search path specification (e.g. ‘library(file)’, ‘home(language(file))’).
Note, however, that the latter needs to be quoted to escape the shell interpre-
tation of the parentheses. Giving the extension is not necessary; if both source
(‘.pl’) and QOF (‘.qof’) files exist, the more recent of the two will be loaded.

‘+L file’ Similar to ‘+l’ but the user’s environment variable PATH will be searched for
the specified file.

‘+p [path-name]’
Print the Prolog file search path definitions that begin with the string path-
name (e.g. library if ‘+p lib’ is specified); path-name is optional, and if not
given, all file search path definitions are printed; QUI exits after producing the
required output to stdout.

1498 Quintus Prolog

‘+P [path-name]’
Similar to ‘+p’, but the absolutized versions of the file search path definitions
are printed.

X-Window arguments
Any arguments recognized as standard X options are passed to the X-Window
system. Examples of these include ‘-display displayname’, ‘-fg color’, ‘-bg
color’.

‘+z user’s-arguments’
Any arguments following ‘+z’ are taken as user’s arguments. User’s arguments
can then be obtained through unix(argv(ListOfArgs)).

Environment

QUINTUS_EDITOR_PATH
Name of the GNU Emacs command. If set, this is invoked as the editor rather
than the standard text editor built in to QUI.

QUINTUS_LISP_PATH
Absolute filename for the Emacs-Lisp directories. The default is: ‘quintus-
directory/editor3.5/gnu’.

See Also

prolog(1)

Section 3.1 [qui-qui], page 53

Predicate Index 1499

Predicate Index

!
!/0 (built-in, ref page) 1006

,
,/2 (built-in, ref page) 1008

-
-->/2 (declaration, ref page) 1022
->/2 (built-in, ref page) 1009, 1010

.

./2 (built-in, ref page) 1167

;
;/2 (built-in, ref page) 1007, 1009

<
<-/2 (objects) . 699
<</2 (objects) . 701

=
= (built-in). 239
=.. (built-in) . 239
=.. (built-in) . 550
=../[1,2] (built-in, ref page) 1012
=/2 (built-in, ref page) 1011
=:=/2 (built-in, ref page) 1013
==/2 (built-in) . 243
==/2 (built-in, ref page) 1018
=\= (built-in) . 596
=\=/2 (built-in, ref page) 1013

>
>>/2 (objects) . 703

@
@</2 (built-in) . 243
@</2 (built-in, ref page) 1020
@=</2 (built-in) . 243
@=</2 (built-in, ref page) 1020
@>/2 (built-in) . 243
@>/2 (built-in, ref page) 1020
@>=/2 (built-in) . 243
@>=/2 (built-in, ref page) 1020

[
[]/0 (built-in, ref page) 1167

^
^ (built-in) . 297
^/2 (built-in, ref page) 1023

\
\+ (built-in) . 593
\+/1 (built-in, ref page) 1016
\= (not) . 597
\== (built-in) . 596
\==/2 (built-in) . 243
\==/2 (built-in, ref page) 1018

~
~= (not) . 597

A
abolish/[1,2] (built-in) 290
abolish/[1,2] (built-in, ref page) 1025
abort/0 (built-in) . 226, 251
abort/0 (built-in, ref page) 1027
abs/2 (math) . 633
absolute_file_name/[2,3] (built-in) 599
absolute_file_name/[2,3] (built-in, ref page)

. 1028
acos/2 (math) . 633
acosh/2 (math) . 633
active_windows/[0,1] (ProXL) 856
add_advice/3 (built-in) 357
add_advice/3 (built-in, ref page) 1036
add_element/3 (sets) . 542
add_spypoint/1 (built-in) 356
add_spypoint/1 (built-in, ref page) 1038
alloc_color/[2,3,4,5] (ProXL) 840
alloc_color_cells/5 (ProXL) 841
alloc_color_planes/[8,9] (ProXL) 842
alloc_contig_color_cells/5 (ProXL) 841
alloc_contig_color_planes/[8,9] (ProXL)

. 842
allow_events/[1,2,3] (ProXL) 875
append/[2,5] (lists) . 533
append/3 (built-in) 240, 546, 571
append/3 (built-in, ref page) 1040
ar_open/3 (aropen) . 605
arg/3 (built-in) . 239
arg/3 (built-in) . 550
arg/3 (built-in) . 551
arg/3 (built-in, ref page) 1043

1500 Quintus Prolog

arg0/3 (arg). 552
args/3 (arg). 553
args0/3 (arg) . 554
asin/2 (math) . 633
asinh/2 (math) . 633
ask/[2,3] (ask) . 624
ask_between/5 (ask) . 628
ask_chars/4 (ask) . 624
ask_file/[2,3] (ask) 605, 626
ask_number/[2,3,4,5] (ask) 625
ask_oneof/4 (ask) . 628
assert/[1,2] (built-in) 289
assert/[1,2] (built-in, ref page) 1044
asserta/[1,2] (built-in) 289
asserta/[1,2] (built-in, ref page) 1044
assertz/[1,2] (built-in) 289
assertz/[1,2] (built-in, ref page) 1044
assign/2 (built-in, ref page) 1047
at_end_of_file/[0,1] (built-in) 222
at_end_of_file/[0,1] (built-in, ref page)

. 1050
at_end_of_line/[0,1] (built-in) 222
at_end_of_line/[0,1] (built-in, ref page)

. 1052
atan/2 (math) . 633
atan2/3 (math) . 633
atanh/2 (math) . 633
atom/1 (built-in, ref page) 1053
atom_chars/2 (built-in) 240, 565, 567
atom_chars/2 (built-in, ref page) 1054
atom_chars1/2 (strings) 567
atomic/1 (built-in, ref page) 1056
atomic_type/[1,2,3] (structs) 662

B
bag_of_all_servant/3 (IPC/RPC) 508
bagof/3 (built-in) . 298
bagof/3 (built-in), vs bag_of_all_servant/3

. 508
bagof/3 (built-in, ref page) 1057
bell/[1,2] (ProXL) . 882
bitset_composition/3 (ProXL) 886
break/0 (built-in) 89, 191, 251, 357
break/0 (built-in, ref page) 1058
buttons_mask/2 (ProXL) 880, 884

C
C/3 (built-in) . 302
C/3 (built-in, ref page) 1059
call/1 (built-in) . 186
call/1 (built-in, ref page) 1060
call_servant/1 (IPC/RPC) 508
callable/1 (built-in, ref page) 1061
can_open_file/[2,3] (files) 604
case_shift/2 (readsent) 622
cast/1 (structs) . 660

ceiling/[2,3] (math) . 633
cgensym/2 (strings) . 587
change_active_pointer_grab/[3,4] (ProXL)

. 871
change_arg/[4,5] (changearg) 556
change_arg0/[4,5] (changearg) 557
change_functor/5 (changearg) 557
change_path_arg/[4,5] (changearg) 558
change_save_set/[2,3] (ProXL) 867
char_atom/2 (strings) 565, 568
character_count/2 (built-in) 228, 230
character_count/2 (built-in, ref page) . . 1062
chars_to_words/2 (readsent) 621
check_advice/[0,1] (built-in, ref page)

. 1063
check_advice/0 (built-in) 357
check_advice/1 (built-in) 357
check_mask_event/[3,4] (ProXL) 860
check_typed_event/[2,3] (ProXL) 860
check_typed_window_event/3 (ProXL) 861
check_window_event/4 (ProXL) 859
class/1 (objects) . 705
class_ancestor/2 (objects) 708
class_method/1 (objects) 709
class_of/2 (objects) . 711
class_superclass/2 (objects) 710
clause/[2,3] (built-in) 292
clause/[2,3] (built-in, ref page) 1065
clear_area/[5,6] (ProXL) 820
clear_window/1 (ProXL) . 820
close/1 (built-in) . 229, 599
close/1 (built-in, ref page) 1068
close_all_streams/0 (files) 605
close_display/1 (ProXL) 851
compare/3 (built-in) 551, 568
compare/3 (built-in, ref page) 1070
compare_strings/[3,4] (strings) 569
compile/1 (built-in) . 357
compile/1 (built-in), use with modules 273
compile/1 (built-in, ref page) 1072
compound/1 (built-in, ref page) 1074
concat/3 (strings) . 572
concat_atom/[2,3] (strings) 574
concat_chars/[2,3] (strings) 574
consult/1 (built-in, ref page) 1075
contains_term/2 (occurs) 559
contains_var/2 (occurs) 559
convert_selection/[4,5,6] (ProXL) 788
copy_area/[8,9] (ProXL) 820
copy_colormap_and_free/2 (ProXL) 844
copy_plane/[9,10] (ProXL) 820
copy_term/2 (built-in) 241, 551
copy_term/2 (built-in, ref page) 1076
correspond/4 (lists) . 534
cos/2 (math). 633
cosh/2 (math) . 633
create/2 (objects) . 712
create_colormap/[1,2,3] (ProXL) 843

Predicate Index 1501

create_colormap_and_alloc/[1,2,3] (ProXL)

. 844
create_cursor/[2,3,4,5] (ProXL) 848
create_gc/[2,3] (ProXL) 830
create_pixmap/[2,3] (ProXL) 846
create_servant/3 (IPC/RPC) 507
create_window/[2,3] (ProXL) 784
crypt_open/[3,4] (crypt) 606
current_advice/3 (built-in) 357
current_advice/3 (built-in, ref page) . . . 1078
current_atom/1 (built-in) 245
current_atom/1 (built-in, ref page) 1079
current_class/1 (objects) 714
current_dec10_stream/2 (files) 604
current_display/1 (ProXL) 852
current_font/[1,2,3,4] (ProXL) 836
current_font_attributes/[2,3,4,5] (ProXL)

. 836
current_input/1 (built-in) 228
current_input/1 (built-in, ref page) 1080
current_key/2 (built-in) 295
current_key/2 (built-in, ref page) 1081
current_module/[1,2] (built-in, ref page)

. 1082
current_op/3 (built-in) 167
current_op/3 (built-in, ref page) 1085
current_output/1 (built-in) 228
current_output/1 (built-in, ref page) . . . 1084
current_predicate/2 (built-in) 245, 280
current_predicate/2 (built-in, ref page)

. 1086
current_spypoint/1 (built-in) 356
current_spypoint/1 (built-in, ref page)

. 1088
current_stream/3 (built-in) 229, 599
current_stream/3 (built-in, ref page) . . . 1089
current_window/[1,2] (ProXL) 787

D
db_reference/1 (built-in, ref page) 1090
debug/0 (built-in) . 356
debug/0 (built-in, ref page) 1091
debug_message/0 (objects) 715
debugging/0 (built-in) . 356
debugging/0 (built-in, ref page) 1092
decode_float/4 (math) . 633
default_display/1 (ProXL) 852
default_screen/2 (ProXL) 854
define_method/3 (objects) 716
del_element/3 (sets) . 543
delete/[3,4] (lists) . 534
delete_file/1 (files) . 600
delete_window_properties/[1,2] (ProXL) . . 786
descendant_of/2 (objects) 717
destroy/1 (objects) . 718
destroy_subwindows/1 (ProXL) 785
destroy_window/1 (ProXL) 784

direct_message/4 (objects) 719
directory_member_of_directory/4 (directory)

. 610
directory_members_of_directory/3 (directory)

. 610
directory_property/[2,3] (directory) 612
discontiguous/1 (declaration, ref page)

. 1093
disjoint/2 (sets) . 543
dispatch_event/[1,2,3] (ProXL) 819
display/1 (built-in) . 219
display/1 (built-in, ref page) 1094
display_xdisplay/2 (ProXL) 855
dispose/1 (structs) . 659
dispose_event/1 (ProXL) 858
draw_arc/[7,8] (ProXL) . 824
draw_arcs/[2,3] (ProXL) 824
draw_ellipse/[5,6] (ProXL) 825
draw_ellipses/[2,3] (ProXL) 825
draw_image_string/[4,5] (ProXL) 826
draw_line/[5,6] (ProXL) 821
draw_lines/[2,3] (ProXL) 821
draw_lines_relative/[2,3] (ProXL) 822
draw_point/[3,4] (ProXL) 821
draw_points/[2,3] (ProXL) 821
draw_points_relative/[2,3] (ProXL) 821
draw_polygon/[2,3] (ProXL) 822
draw_polygon_relative/[2,3] (ProXL) 822
draw_rectangle/[5,6] (ProXL) 823
draw_rectangles/[2,3] (ProXL) 823
draw_segments/[2,3] (ProXL) 822
draw_string/[4,5] (ProXL) 826
draw_text/[4,5] (ProXL) 826
dynamic/1 (declaration, ref page) 1096

E
end_class/[0,1] (objects) 720
ensure_loaded/1 (built-in) 273, 357
ensure_loaded/1 (built-in), vs use_module/1

. 273
ensure_loaded/1 (built-in, ref page) 1097
ensure_valid_colormap/2 (ProXL) 845
ensure_valid_colormapable/3 (ProXL) 845
ensure_valid_cursor/2 (ProXL) 850
ensure_valid_display/2 (ProXL) 853
ensure_valid_displayable/3 (ProXL) 853
ensure_valid_font/2 (ProXL) 838
ensure_valid_fontable/3 (ProXL) 838
ensure_valid_gc/2 (ProXL) 832
ensure_valid_gcable/3 (ProXL) 832
ensure_valid_pixmap/2 (ProXL) 848
ensure_valid_screen/2 (ProXL) 855
ensure_valid_screenable/3 (ProXL) 855
ensure_valid_window/2 (ProXL) 789
ensure_valid_windowable/3 (ProXL) 789
erase/1 (built-in) . 290
erase/1 (built-in, ref page) 1099

1502 Quintus Prolog

error_action/[2,3] (ProXL) 865
event_list_mask/2 (ProXL) . . . 862, 868, 872, 885
events_queued/[2,3] (ProXL) 856
exp/2 (math). 633
expand_term/2 (built-in, ref page) 1100
extern/1 (declaration) 414, 415
extern/1 (declaration, ref page) 1101

F
fabs/2 (math) . 633
fail/0 (built-in) . 186
fail/0 (built-in, ref page) 1104
false/0 (built-in) . 186
false/0 (built-in, ref page) 1105
fceiling/[2,3] (math) . 633
fetch_slot/2 (objects) . 721
ffloor/[2,3] (math) . 633
fget_line/[2,3] (lineio) 618
file_exists/[1,2] (files) 602
file_member_of_directory/[2,3,4] (directory)

. 608
file_members_of_directory/3 (directory)

. 609
file_must_exist/2 (files) 604
file_property/3 (directory) 611
file_search_path/2 (built-in) 207
file_search_path/2 (built-in, ref page)

. 1106
fileerrors/0 (built-in) 226
fileerrors/0 (built-in, ref page) 1108
fill_arc/[7,8] (ProXL) . 824
fill_arcs/[2,3] (ProXL) 825
fill_ellipse/[5,6] (ProXL) 825
fill_ellipses/[2,3] (ProXL) 825
fill_polygon/[3,4] (ProXL) 822
fill_polygon_relative/[3,4] (ProXL) 823
fill_rectangle/[5,6] (ProXL) 823
fill_rectangles/[2,3] (ProXL) 824
findall/3 (built-in) . 298
findall/3 (built-in, ref page) 1109
float/1 (built-in, ref page) 1112
floor/[2,3] (math) . 633
flush/[0,1] (ProXL) . 851
flush_output/1 (built-in) 230
flush_output/1 (built-in, ref page) 1113
force_screen_saver/[1,2] (ProXL) 883
foreign/[2,3] (hook) 380, 382
foreign/[2,3] (hook), treatment by qpc 353
foreign/[2,3] (hook, ref page) 1114
foreign_file/2 (hook) . 380
foreign_file/2 (hook, ref page) 1117
foreign_type/2 (structs) 657
format/[2,3] (built-in) 223
format/[2,3] (built-in, ref page) 1119
free_colormap/1 (ProXL) 844
free_colors/[2,3] (ProXL) 841
free_cursor/1 (ProXL) . 849

free_of_term/2 (occurs) 559
free_of_var/2 (occurs) . 559
free_pixmap/1 (ProXL) . 847
fremainder/3 (math) . 633
fround/[2,3] (math) . 633
ftruncate/[2,3] (math) . 633
functor/3 (built-in) . 239
functor/3 (built-in) . 550
functor/3 (built-in, ref page) 1126

G
gamma/2 (math) . 633
garbage_collect/0 (built-in, ref page) . . 1128
garbage_collect_atoms/0 (built-in, ref page)

. 1130
gc/0 (built-in, ref page) 1131
genarg/3 (arg) . 552
genarg0/3 (arg) . 553
generate_message/3 (built-in, ref page)

. 1132
generate_message_hook/3 (hook) 335
generate_message_hook/3 (hook, ref page)

. 1135
gensym/[1,2] (strings) 572, 587
geometry/[12,13] (ProXL) 889
get/1 (built-in) . 221
get/1 (built-in, ref page) 1137
get_address/3 (structs) 659
get_color/[2,3] (ProXL) 843
get_colors/[1,2] (ProXL) 843
get_contents/3 (structs) 659
get_default/[3,4] (ProXL) 889
get_display_attributes/[1,2] (ProXL) 851
get_event_values/2 (ProXL) 862
get_font_attributes/2 (ProXL) 835
get_font_path/[1,2] (ProXL) 835
get_graphics_attributes/2 (ProXL) 829
get_input_focus/[2,3] (ProXL) 878
get_keyboard_attributes/[1,2] (ProXL) 881
get_line/[1,2] (lineio) 617
get_motion_events/4 (ProXL) 863
get_pixmap_attributes/[2,3] (ProXL) 846
get_pointer_attributes/[1,2] (ProXL) 879
get_profile_results/4 (built-in, ref page)

. 1140
get_screen_attributes/[1,2] (ProXL) 854
get_screen_saver/[4,5] (ProXL) 883
get_selection_owner/[2,3] (ProXL) 788
get_standard_colormap/[2,3] (ProXL) 841
get_window_attributes/[2,3] (ProXL) 785
get0/[1,2] (built-in, ref page) 1139
get0/1 (built-in) . 221
grab_button/9 (ProXL) . 869
grab_key/6 (ProXL) . 874
grab_keyboard/6 (ProXL) 873
grab_pointer/9 (ProXL) . 868
grab_server/[0,1] (ProXL) 876

Predicate Index 1503

ground/1 (built-in, ref page) 1142

H
halt/[0,1] (built-in) . 251
halt/[0,1] (built-in, ref page) 1143
handle_events/[0,1,2,3] (ProXL) 818
hash_term/2 (built-in, ref page) 1144
help/[0,1] (built-in) . 306
help/[0,1] (built-in, ref page) 1146
help/0 (built-in) . 356
help/1 (built-in) . 356
hypot/3 (math) . 633

I
index/3 (strings) . 583
inherit/1 (objects) . 722
initialization/1 (declaration) 199
initialization/1 (declaration, ref page)

. 1147
install_colormap/1 (ProXL) 844
installed_colormap/[1,2] (ProXL) 845
instance/2 (built-in) . 292
instance/2 (built-in, ref page) 1149
instance_method/1 (objects) 724
integer/1 (built-in, ref page) 1151
intersect/[2,3] (sets) . 544
intersection/3 (sets) . 545
is/2 (built-in) . 154, 234
is/2 (built-in, ref page) 1152
is_alnum/1 (ctypes) . 614
is_alpha/1 (ctypes) . 614
is_ascii/1 (ctypes) . 614
is_char/1 (ctypes) . 614
is_cntrl/1 (ctypes) . 614
is_csym/1 (ctypes) . 615
is_csymf/1 (ctypes) . 615
is_digit/[1,2,3] (ctypes) 615
is_endfile/1 (ctypes) 613, 617
is_endline/1 (ctypes) . 614
is_endline/1 (ctypes) . 617
is_graph/1 (ctypes). 615, 616
is_key/[2,3] (ProXL) . 887
is_list/1 (lists) . 533
is_lower/1 (ctypes) . 615
is_newline/1 (ctypes) 613, 617
is_newpage/1 (ctypes) . 614
is_newpage/1 (ctypes) . 617
is_ordset/1 (ordsets) . 547
is_paren/2 (ctypes) . 615
is_period/1 (ctypes) . 615
is_print/1 (ctypes) . 616
is_punct/1 (ctypes) . 616
is_quote/1 (ctypes) . 616
is_set/1 (sets) . 543
is_space/1 (ctypes) . 616
is_upper/1 (ctypes) . 616

is_white/1 (ctypes) . 616

J
j0/2 (math) . 633
j1/2 (math) . 633
jn/3 (math) . 633

K
key_auto_repeat/[3,4] (ProXL) 888
key_keycode/[3,4] (ProXL) 887
key_state/[2,3,4] (ProXL) 810
key_state/[3,4] (ProXL) 888
keys_and_values/3 (lists) 535
keysort/2 (built-in) . 243
keysort/2 (built-in, ref page) 1155
keysym/[1,2] (ProXL) . 887
kill_client/[0,1,2] (ProXL) 879

L
last/2 (lists) . 535
leash/1 (built-in) . 356
leash/1 (built-in, ref page) 1157
length/2 (built-in). 240, 546
length/2 (built-in, ref page) 1159
library/1 (built-in) . 209
library_directory/1 (built-in) . . 209, 214, 599
library_directory/1 (built-in, ref page)

. 1161
line_count/2 (built-in) 228, 230
line_count/2 (built-in, ref page) 1163
line_position/2 (built-in) 228, 230
line_position/2 (built-in, ref page) 1164
list_to_ord_set/2 (ordsets) 547
list_to_set/2 (sets) 542, 545
listing/[0,1] (built-in) 245
listing/[0,1] (built-in, ref page) 1165
listing/1 (built-in), with module system

. 282
load_files/[1,2] (built-in) 198, 354
load_files/[1,2] (built-in, ref page) . . . 1167
load_font/[2,3] (ProXL) 835
load_foreign_executable/1 (built-in) 354,

375, 378, 380
load_foreign_executable/1 (built-in),

embedded . 379
load_foreign_executable/1 (built-in, ref

page) . 1171
load_foreign_files/2 (built-in) 194, 354,

357, 375, 380
load_foreign_files/2 (built-in, ref page)

. 1173
log/2 (math) . 633
log10/2 (math) . 633
lower/[1,2] (ctypes) . 588

1504 Quintus Prolog

M
manual/[0,1] (built-in) 307
manual/[0,1] (built-in, ref page) 1175
manual/0 (built-in) . 356
manual/1 (built-in) . 356
map_subwindows/1 (ProXL) 786
mask_event/[3,4] (ProXL) 859
max/3 (math). 633
member/2 (basics) . 530, 546
memberchk/2 (basics) 532, 546
message/4 (objects) . 725
message_hook/3 (hook) 331, 335
message_hook/3 (hook, ref page) 1177
meta_predicate/1 (declaration) 284
meta_predicate/1 (declaration, ref page)

. 1179
midstring/[3,4,5,6] (strings) 579
min/3 (math). 633
mixed/[1,2] (ctypes) . 588
mode/1 (declaration, ref page) 1181
modifiers_mask/2 (ProXL) 874, 875, 880, 885
module/1 (built-in) . 273
module/1 (built-in, ref page) 1182
module/2 (declaration) . 272
module/2 (declaration, ref page) 1183
msg_trace/2 (IPC/RPC) . 519
multifile/1 (declaration, ref page) 1184
multifile_assertz/1 (built-in) 357
multifile_assertz/1 (built-in, ref page)

. 1186

N
name/1 (strings) . 565
name/2 (built-in) 240, 565, 566
name/2 (built-in, ref page) 1187
name1/2 (strings) . 567
new/[2,3] (structs) . 659
new_event/[1,2] (ProXL) 857
next_event/[2,3] (ProXL) 858
nextto/3 (lists) . 535
nl/[0,1] (built-in) . 222
nl/[0,1] (built-in, ref page) 1189
no_style_check/1 (built-in) 26
no_style_check/1 (built-in, ref page) . . . 1191
nocheck_advice/[0,1] (built-in, ref page)

. 1193
nocheck_advice/0 (built-in) 357
nocheck_advice/1 (built-in) 357
nodebug/0 (built-in) . 356
nodebug/0 (built-in, ref page) 1195
nodebug_message/0 (objects) 726
nofileerrors/0 (built-in) 226
nofileerrors/0 (built-in, ref page) 1196
nogc/0 (built-in, ref page) 1197
nonmember/2 (basics) . 532
nonvar/1 (built-in, ref page) 1198
noprofile/0 (built-in, ref page) 1199

nospy/1 (built-in) . 356

nospy/1 (built-in, ref page) 1200

nospyall/0 (built-in) . 356

nospyall/0 (built-in, ref page) 1201

not/1 (not) . 595

notrace/0 (built-in) . 356

notrace/0 (built-in, ref page) 1202

nth_char/2 (strings) . 575

nth0/[3,4] (lists) . 535

nth1/[3,4] (lists) . 536

null_foreign_term/2 (structs) 660

number/1 (built-in, ref page) 1203

number_chars/2 (built-in) 240, 565, 567

number_chars/2 (built-in, ref page) 1204

number_chars1/2 (strings) 567

numbervars/[2,3] (built-in) 241

numbervars/3 (built-in, ref page) 1206

O

occurrences_of_term/3 (occurs) 559

occurrences_of_var/3 (occurs) 559

on_exception/3 (built-in) 312

on_exception/3 (built-in, ref page) 1208

once/1 (not) . 1259

op/3 (built-in) . 167

op/3 (built-in, ref page) 1210

open/[3,4] (built-in) 226, 227, 228, 599

open/[3,4] (built-in, ref page) 1212

open_display/2 (ProXL) . 851

open_file/3 (files) . 604

open_null_stream/1 (built-in) 228

open_null_stream/1 (built-in, ref page)

. 1218

ord_add_element/3 (ordsets) 547

ord_del_element/3 (ordsets) 547

ord_disjoint/2 (ordsets) 547

ord_intersect/[2,3] (ordsets) 547

ord_intersection/[2,3] (ordsets) 547

ord_seteq/2 (ordsets) . 548

ord_setproduct/3 (ordsets) 548

ord_subset/2 (ordsets) . 548

ord_subtract/3 (ordsets) 548

ord_symdiff/3 (ordsets) 548

ord_union/[2,3,4] (ordsets) 548

otherwise/0 (built-in) . 186

otherwise/0 (built-in, ref page) 1219

Predicate Index 1505

P
pairfrom/4 (sets) . 544
parse_color/[2,3] (ProXL) 841
parse_geometry/5 (ProXL) 889
path_arg/3 (arg) . 555
peek_char/[1,2] (built-in) 221
peek_char/[1,2] (built-in, ref page) 1220
peek_event/[2,3] (ProXL) 858
pending/[1,2] (ProXL) . 857
perm/2 (lists) . 537
perm2/4 (lists) . 537
phrase/[2,3] (built-in, ref page) 1222
pointer_object/2 (objects) 727
portray/1 (hook) . 219, 527
portray/1 (hook, ref page) 1224
portray_clause/1 (built-in, ref page) . . . 1225
portray_clause/1 (hook) 220
pow/3 (math). 633
power_set/2 (sets) . 546
predicate_property/2 (built-in) 245, 281
predicate_property/2 (built-in, ref page)

. 1227
print/1 (built-in) . 219, 527
print/1 (built-in, ref page) 1230
print_length/[2,3] (printlength) 577
print_lines/2 (printlength) 577
print_message/2 (built-in) 328
print_message/2 (built-in, ref page) 1232
print_message_lines/3 (built-in, ref page)

. 1234
profile/[0,1,2,3] (built-in, ref page) . . 1236
project/3 (arg) . 554
prolog_flag/[2,3] (built-in) 217, 245, 247
prolog_flag/[2,3] (built-in, ref page) . . 1237
prolog_load_context/2 (built-in) 245
prolog_load_context/2 (built-in, ref page)

. 1240
prompt/[2,3] (built-in) 217
prompt/[2,3] (built-in, ref page) 1242
prompt/1 (prompt) . 629
prompted_char/2 (prompt) 629
prompted_constant/2 (readconst) 632
prompted_constants/2 (readconst) 632
prompted_line/[2,3] (prompt) 629
proxl_xlib/[3,4] (ProXL) 855
public/1 (declaration, ref page) 1244
put/[1,2] (built-in) . 222
put/[1,2] (built-in, ref page) 1245
put_back_event/[1,2] (ProXL) 861
put_chars/1 (lineio) . 618
put_color/[2,3] (ProXL) 842
put_colors/[1,2] (ProXL) 843
put_contents/3 (structs) 659
put_event_values/2 (ProXL) 862
put_graphics_attributes/2 (ProXL) 830
put_keyboard_attributes/[1,2] (ProXL) 881
put_line/1 (lineio) . 618
put_pixmap_attributes/[2,3] (ProXL) 846

put_pointer_attributes/[1,2] (ProXL) 880
put_window_attributes/[2,3] (ProXL) 785

Q
query_abbreviation/3 (built-in) 331, 335
query_abbreviation/3 (built-in, ref page)

. 1247
query_best_cursor/[4,5] (ProXL) 849
query_hook/6 (hook) . 335
query_hook/6 (hook, ref page) 1248
query_text_extents/[7,8] (ProXL) 837

R
raise_exception/1 (built-in) 311
raise_exception/1 (built-in) 330
raise_exception/1 (built-in, ref page) . . 1251
read/[1,2] (built-in) . 216
read/[1,2] (built-in, ref page) 1252
read_bitmap_file/[2,3,4,5] (ProXL) 847
read_constant/[1,2] (readconst) 631
read_constants/[1,2] (readconst) 632
read_in/1 (readin) . 621
read_line/1 (readsent) . 622
read_oper_continued_line/1 (continued) . . 619
read_sent/1 (readsent) . 622
read_term/[2,3] (built-in) 216
read_term/[2,3] (built-in, ref page) 1254
read_unix_continued_line/1 (continued) . . 619
read_until/2 (readsent) 621
rebind_key/[3,4] (ProXL) 886
recolor_cursor/3 (ProXL) 849
reconsult/1 (built-in, ref page) 1257
recorda/3 (built-in) . 295
recorda/3 (built-in, ref page) 1258
recorded/3 (built-in, ref page) 1259
recordz/3 (built-in) . 295
recordz/3 (built-in, ref page) 1261
register_event_listener/[2,3] (prologbeans)

. 744
register_query/[2,3] (prologbeans) 743
register_query/1 . 743
release_font/1 (ProXL) . 835
release_gc/1 (ProXL) . 830
remove_advice/3 (built-in) 357
remove_advice/3 (built-in, ref page) 1262
remove_dups/2 (lists) . 537
remove_spypoint/1 (built-in) 356
remove_spypoint/1 (built-in, ref page) . . 1263
rename/2 (files) . 601
rename_file/2 (files) . 601
repeat/0 (built-in) . 186
repeat/0 (built-in, ref page) 1264
reset_servant/0 (IPC/RPC) 509
restack_window/2 (ProXL) 787
restore/1 (built-in) 196, 354
restore/1 (built-in, ref page) 1266

1506 Quintus Prolog

retract/1 (built-in) . 290
retract/1 (built-in, ref page) 1268
retractall/1 (built-in) 290
retractall/1 (built-in, ref page) 1270
rev/2 (lists) . 538
rotate_window_properties/[2,3] (ProXL) . . 786
round/[2,3] (math) . 633
runtime_entry/1 (hook) . 357
runtime_entry/1 (hook, ref page) 1272

S
same_functor/[2,3,4] (samefunctor) 561
same_length/[2,3] (lists) 538
save/[1,2] (built-in) . 193
save_ipc_servant/1 (IPC/RPC) 511
save_modules/2 (built-in) 198
save_modules/2 (built-in, ref page) 1273
save_predicates/2 (built-in) 198
save_predicates/2 (built-in, ref page) . . 1275
save_program/[1,2] (built-in) 196, 354
save_program/[1,2] (built-in, ref page)

. 1277
save_servant/1 (IPC/RPC) 507
scale/3 (math) . 633
screen_xscreen/2 (ProXL) 856
see/1 (built-in) 226, 227, 228, 599
see/1 (built-in, ref page) 1279
seeing/1 (built-in) . 228
seeing/1 (built-in, ref page) 1281
seek/4 (built-in, ref page) 1283
seen/0 (built-in) . 230
seen/0 (built-in, ref page) 1285
select/3 (sets) . 543
select/4 (lists) . 539
selectchk/3 (sets) . 544
selectchk/4 (lists) . 539
send/[4,5] (ProXL) . 862
send_event/[4,5] (ProXL) 861
session_get/4 (prologbeans) 743
session_put/3 (prologbeans) 744
set_close_down_mode/[1,2] (ProXL) 878
set_font_path/[1,2] (ProXL) 836
set_input/1 (built-in) . 227
set_input/1 (built-in, ref page) 1286
set_input_focus/3 (ProXL) 877
set_of_all_servant/3 (IPC/RPC) 509
set_output/1 (built-in) 227
set_output/1 (built-in, ref page) 1287
set_screen_saver/[4,5] (ProXL) 882
set_selection_owner/[2,3,4] (ProXL) 788
seteq/2 (sets) . 544
setof/3 (built-in) . 296
setof/3 (built-in, ref page) 1288
setproduct/3 (sets) . 545
shorter_list/2 (lists) . 539
show_module/1 (showmodule) 281

show_profile_results/[0,1,2] (built-in, ref

page) . 1290
shutdown/[0,1] (prologbeans) 743
shutdown_servant/0 (IPC/RPC) 509
sign/[2,3] (math) . 633
simple/1 (built-in, ref page) 1292
sin/2 (math) . 633
sinh/2 (math) . 633
skip/[1,2] (built-in, ref page) 1293
skip/1 (built-in) . 221
skip_constant/[0,1] (readconst) 632
skip_constants/[1,2] (readconst) 632
skip_line/[0,1] (built-in) 221
skip_line/[0,1] (built-in, ref page) 1295
sort/2 (built-in) . 243
sort/2 (built-in, ref page) 1296
source_file/[1,2,3] (built-in) 246
source_file/[1,2,3] (built-in, ref page)

. 1297
span_left/[3,4,5] (strings) 584
span_right/[3,4,5] (strings) 585
span_trim/[2,3,5] (strings) 585
spy/1 (built-in) . 356
spy/1 (built-in), use with modules 278
spy/1 (built-in, ref page) 1299
sqrt/2 (math) . 633
start/[0,1] (prologbeans) 742
state_mask/2 (ProXL) 880, 884
statistics/[0,2] (built-in) 257
statistics/[0,2] (built-in), garbage

collection . 259
statistics/[0,2] (built-in, ref page) . . . 1301
store_slot/2 (objects) . 728
stream_code/2 (built-in) 226
stream_code/2 (built-in, ref page) 1304
stream_position/[2,3] (built-in) 231
stream_position/[2,3] (built-in, ref page)

. 1306
string_append/3 (strings) 572
string_char/3 (strings) 575
string_length/2 (strings) 575
string_search/3 (strings) 583
string_size/2 (strings) 575
style_check/1 (built-in) 26
style_check/1 (built-in, ref page) 1308
sub_term/2 (occurs) . 559
subchars/[4,5] (strings) 583
subseq/3 (lists) . 539
subseq0/2 (lists) . 541
subseq0/2 (sets) . 546
subseq1/2 (lists) . 541
subseq1/2 (sets) . 546
subset/2 (sets) . 544
substring/[4,5] (strings) 582
subsumes/2 (subsumes) . 562
subsumes_chk/2 (built-in) 239
subsumes_chk/2 (built-in, ref page) 1309
subtract/3 (sets) . 545

Predicate Index 1507

sumlist/2 (lists) . 542
swap_args/[4,6] (changearg) 557
symdiff/3 (sets) . 545
sync/[0,1] (ProXL) . 852
sync_discard/[0,1] (ProXL) 852
synchronize/[1,2] (ProXL) 866

T
tab/[1,2] (built-in, ref page) 1310
tab/1 (built-in) . 223
tab_to/1 (printlength) . 577
tan/2 (math). 633
tanh/2 (math) . 633
tcp_accept/2 (IPC/TCP) . 500
tcp_address_from_file/2 (IPC/TCP) 489
tcp_address_from_shell/3 (IPC/TCP) 489
tcp_address_from_shell/4 (IPC/TCP) 489
tcp_address_to_file/2 (IPC/TCP) 489
tcp_cancel_wakeup/2 (IPC/TCP) 495
tcp_cancel_wakeups/0 (IPC/TCP) 495
tcp_connect/2 (IPC/TCP) 490
tcp_connected/1 (IPC/TCP) 490
tcp_connected/2 (IPC/TCP) 490
tcp_create_input_callback/2 (IPC/TCP) 498
tcp_create_listener/2 (IPC/TCP) 488
tcp_create_timer_callback/3 (IPC/TCP) 499
tcp_daily/4 (IPC/TCP) . 495
tcp_date_timeval/2 (IPC/TCP) 496
tcp_destroy_input_callback/1 (IPC/TCP) . . 499
tcp_destroy_listener/1 (IPC/TCP) 488
tcp_destroy_timer_callback/1 (IPC/TCP) . . 499
tcp_input_callback/2 (IPC/TCP) 499
tcp_input_stream/2 (IPC/TCP) 497
tcp_listener/1 (IPC/TCP) 489
tcp_now/1 (IPC/TCP) . 494
tcp_output_stream/2 (IPC/TCP) 498
tcp_reset/0 (IPC/TCP) . 488
tcp_schedule_wakeup/2 (IPC/TCP) 494
tcp_scheduled_wakeup/2 (IPC/TCP) 495
tcp_select/1 (IPC/TCP) . 491
tcp_select/2 (IPC/TCP) . 492
tcp_select_from/1 (IPC/TCP) 497
tcp_select_from/2 (IPC/TCP) 497
tcp_send/2 (IPC/TCP) . 493
tcp_shutdown/1 (IPC/TCP) 490
tcp_time_plus/3 (IPC/TCP) 494
tcp_timer_callback/2 (IPC/TCP) 500
tcp_trace/2 (IPC/TCP) . 487
tcp_watch_user/2 (IPC/TCP) 488
tell/1 (built-in) 226, 227, 228, 599
tell/1 (built-in, ref page) 1311
telling/1 (built-in) . 228
telling/1 (built-in, ref page) 1313
term_expansion/2 (hook) 191, 350
term_expansion/2 (hook, ref page) 1315
text_extents/[7,8] (ProXL) 837
text_width/3 (ProXL) . 836

to_lower/2 (ctypes) 569, 588, 616
to_upper/2 (ctypes) 569, 588, 617
told/0 (built-in) . 230
told/0 (built-in, ref page) 1316
trace/0 (built-in) . 356
trace/0 (built-in, ref page) 1317
transpose/2 (lists) . 542
trim_blanks/2 (readsent) 621
trimcore/0 (built-in) . 257
trimcore/0 (built-in, ref page) 1318
true/0 (built-in) . 186
true/0 (built-in, ref page) 1319
truncate/[2,3] (math) . 633
ttyflush/0 (built-in) . 230
ttyflush/0 (built-in, ref page) 1320
ttyget/1 (built-in) . 221
ttyget/1 (built-in, ref page) 1320
ttyget0/1 (built-in) . 221
ttyget0/1 (built-in, ref page) 1320
ttynl/0 (built-in) . 222
ttynl/0 (built-in, ref page) 1320
ttyput/1 (built-in) . 222
ttyput/1 (built-in, ref page) 1320
ttyskip/1 (built-in) . 221
ttyskip/1 (built-in, ref page) 1320
ttytab/1 (built-in, ref page) 1320
type_definition/[2,3] (structs) 661

U
undefine_method/3 (objects) 729
ungrab_button/3 (ProXL) 871
ungrab_key/3 (ProXL) . 875
ungrab_keyboard/[0,1,2] (ProXL) 874
ungrab_pointer/[0,1,2] (ProXL) 871
ungrab_server/[0,1] (ProXL) 876
unify/2 (unify) . 562
uninherit/1 (objects) . 730
uninstall_colormap/1 (ProXL) 844
uninterruptible_call/1 (critical) 324
uninterruptible_on_exception/3 (critical)

. 324
union/[3,4] (sets) . 545
unix/1 (built-in) 307, 308, 599
unix/1 (built-in, ref page) 1321
unknown/2 (built-in) . 120
unknown/2 (built-in, ref page) 1324
unknown_predicate_handler/3 (hook) . . 120, 313
unknown_predicate_handler/3 (hook, ref page)

. 1325
unmap_subwindows/1 (ProXL) 786
unregister_event_listener/1 (prologbeans)

. 744
upper/[1,2] (ctypes) . 588
use_module/[1,2,3] (built-in) 273
use_module/[1,2,3] (built-in, ref page)

. 1327
use_module/[1-3] (built-in) 357

1508 Quintus Prolog

use_module/1 (built-in), vs ensure_loaded/1

. 273
user_help/0 (hook) . 1146
user_help/0 (hook, ref page) 1330

V
valid_colormap/1 (ProXL) 845
valid_colormapable/2 (ProXL) 845
valid_cursor/1 (ProXL) . 849
valid_display/1 (ProXL) 852
valid_displayable/2 (ProXL) 852
valid_font/1 (ProXL) . 838
valid_fontable/2 (ProXL) 838
valid_gc/1 (ProXL) . 832
valid_gcable/2 (ProXL) . 832
valid_pixmap/1 (ProXL) . 847
valid_screen/1 (ProXL) . 854
valid_screenable/2 (ProXL) 855
valid_window/1 (ProXL) . 789
valid_windowable/2 (ProXL) 789
var/1 (built-in, ref page) 1332
variant/2 (subsumes) . 562
version/[0,1] (built-in, ref page) 1333
visual_id/[2,3] (ProXL) 856
vms/[1,2] (built-in, ref page) 1334
volatile/1 (declaration) 199
volatile/1 (declaration, ref page) 1335

W
warp_pointer/8 (ProXL) . 877
window_children/[1,2] (ProXL) 787
window_event/4 (ProXL) . 859
write/[1,2] (built-in) . 217
write/[1,2] (built-in, ref page) 1337
write_bitmap_file/[2,4] (ProXL) 847
write_canonical/[1,2] (built-in) 217
write_canonical/[1,2] (built-in, ref page)

. 1338
write_term/[2,3] (built-in) 217
write_term/[2,3] (built-in, ref page) . . . 1340
writeq/[1,2] (built-in) 217
writeq/[1,2] (built-in, ref page) 1343

X
xml_parse/[2,3] (xml) . 592
xml_pp/1 (xml) . 592
xml_subterm/2 (xml) . 592

Y
y0/2 (math) . 633
y1/2 (math) . 633
yesno/[1,2] (ask) . 623
yn/3 (math) . 633

Keystroke Index 1509

Keystroke Index

+
+ (debugger command) 82, 137

,
, (debugger command) . 137

-
- (debugger command) 82, 137

.

. (debugger command) 82, 137

<
< (debugger command) 136, 137

=
= (debugger command) 82, 137

?
? (debugger command) 82, 137

@
@ (debugger command) . 137

[
[(debugger command) . 82

]
] (debugger command) . 82

^
^A (QUI command) . 58, 65
^B (QUI command) . 58, 65
^C (QUI command) . 58
^D (QUI command) . 58, 64
^E (QUI command) . 58, 65
^F (QUI command) . 58, 65
^H (QUI command) . 65
^J (QUI command) . 65
^K (QUI command) . 58, 64
^L (QUI command) . 65
^M (QUI command) . 65
^N (QUI command) . 58, 65

^O (QUI command) . 65
^P (QUI command) . 58, 65
^T (QUI command) . 65
^U (QUI command) . 58, 65
^V (QUI command) . 65
^W (QUI command) . 65
^X (QUI command) . 65
^Y (QUI command) . 65

|
| (debugger command) . 82

A
a (debugger command) 82, 137
a (interruption command) 19, 28, 250

B
b (debugger command) 82, 137

C
c (debugger command) 82, 137
c (interruption command) 28, 250
C-c C-c (emacs command) 28, 89
C-c C-d (emacs command) . 89
C-x C-c (emacs command) 81, 90
C-x C-e (emacs command) 86, 89
C-x C-y (emacs command) 86, 89
C-x C-z (emacs command) 82, 89, 90

D
d (debugger command) . 137
d (interruption command) 28, 250
DEL (QUI command) . 58, 64

E
e (debugger command) . 137
e (interruption command) 18, 28, 250

F
f (debugger command) 82, 137

G
g (debugger command) 135, 137

1510 Quintus Prolog

H
h (debugger command) 82, 137
h (interruption command) 28, 250

L
l (debugger command) 82, 137

M
M-, (emacs command) . 87, 90
M-. (emacs command) . 87, 90
M-ESC (emacs command) . 92
M-i (emacs command) . 91
M-k (emacs command) . 90
M-n (emacs command) . 86, 89
M-p (emacs command) . 86, 89
M-x cd (emacs command) . 90
M-x disable-prolog-source-debugger (emacs

command) . 90
M-x enable-prolog-source-debugger (emacs

command) . 90
M-x library (emacs command) 90
M-x prolog-mode (emacs command) 90
M-x run-prolog (emacs command) 89

N
n (debugger command) 82, 137

P
p (debugger command) . 137

Q
q (debugger command) 82, 137

q (interruption command) 28, 250

R
r (debugger command) 82, 137

RET (debugger command) 82, 137

S
s (debugger command) 82, 137

SPC (debugger command) . 82

T
t (interruption command) 28, 250

W
w (debugger command) 82, 137

X
x (debugger command) . 82

Z
z (debugger command) 82, 137

Book Index 1511

Book Index

!
!, cut . 184, 186
!/0 (built-in, ref page) 1006

’
’$VAR’ terms . 218, 219

*
*, mode annotation . 986
*, multiplication . 235

+
+ (debugger option) . 140
+*, mode annotation . 986
+, addition . 235
+, mode annotation . 986
+-, mode annotation . 986

,
, (debugger option) . 140
, atom . 160
,, conjunction . 186
,/2 (built-in, ref page) 1008

-
- (debugger option) . 140
-, mode annotation . 986
-, negation . 235
-, subtraction . 235
-->, grammar rules . 299
-->/2 (declaration, ref page) 1022
->, followed by ; . 186
->, if-then-else . 186
->/2 (built-in, ref page) 1009, 1010
-ables . 755

.

. (debugger option) . 140

., functor . 162

., period character . 182

./2 (built-in, ref page) 1167

/
/, bitwise xor . 237
/, floating-point division 235
//, integer division . 235
/\, bitwise conjunction 237

:
:, use in meta predicate declaration 284
:, use in Module:Goal . 274

;
;, disjunction . 182, 186
;/2 (built-in, ref page) 1007, 1009

<
< (debugger option) . 139
<, arithmetic less than 234
<-/2 (objects) . 699
<<, left shift . 237
<</2 (objects) . 701

=
= (built-in) . 239
= (debugger option) . 141
=.. (built-in) . 239
=.. (built-in) . 550
=../[1,2] (built-in, ref page) 1012
=/2 (built-in, ref page) 1011
=:=, arithmetic equal . 234
=:=/2 (built-in, ref page) 1013
=<, arithmetic less or equal 234
==, identity of terms . 568
==/2 (built-in) . 243
==/2 (built-in, ref page) 1018
=\=, arithmetic not equal 234
=\= (built-in) . 596
=\=/2 (built-in, ref page) 1013

>
>, arithmetic greater than 234
>=, arithmetic greater or equal 235
>>, right shift . 237
>>/2 (objects) . 703

?
? (debugger option) . 141

@
@ (debugger option) . 140
@<, term lexicographically less than 568
@</2 (built-in) . 243
@</2 (built-in, ref page) 1020
@=<, term not greater than 568
@=</2 (built-in) . 243

1512 Quintus Prolog

@=</2 (built-in, ref page) 1020
@>, term lexicographically greater than. . . 568
@>/2 (built-in) . 243
@>/2 (built-in, ref page) 1020
@>=, term not less than . 568
@>=/2 (built-in) . 243
@>=/2 (built-in, ref page) 1020

[
[], empty list . 162, 299, 574
[]/0 (built-in, ref page) 1167

^
^ (built-in). 297
^/2 (built-in, ref page) 1023
^C. 358
^c interrupts . 250

_, anonymous variable . 161

\
\+, not-provable . 186
\, bitwise complement . 237
\/, bitwise disjunction 237
\==, non-identity of terms 568

\
\+ (built-in) . 593
\+/1 (built-in, ref page) 1016
\= (not) . 597
\== (built-in) . 596
\==/2 (built-in) . 243
\==/2 (built-in, ref page) 1018

|
|, disjunction . 182, 186
|, list separator . 162
|, rest of list . 153

~
~= (not) . 597

0
0’ notation for character conversion 159

A
abolish (definition) . 149
abolish/[1,2] (built-in) 290
abolish/[1,2] (built-in, ref page) 1025
abolishing procedures attached to foreign functions

. 381
abort (debugger command) 140
abort/0 (built-in) . 226, 251
abort/0 (built-in, ref page) 1027
abs, absolute value . 235
abs/2 (math) . 633
absolute filename (definition) 149
absolute value . 235
absolute_file_name/[2,3] (built-in) 599
absolute_file_name/[2,3] (built-in, ref page)

. 1028
accepted_hosts/1 (start/1 option) 742
access to streams, random 231
access/1, absolute_file_name/3 option . . . 1030
accumulating parameters (definition) 45
acos/2 (math) . 633
acosh/2 (math) . 633
Activating the callback mechanism 818
active_windows/[0,1] (ProXL) 856
activeread (library package) 638
add-on products . 1482, 1490
add_advice/3 (built-in) 357
add_advice/3 (built-in, ref page) 1036
add_element/3 (sets) . 542
add_ons (Prolog flag) . 1238
add_spypoint/1 (built-in) 356
add_spypoint/1 (built-in, ref page) 1038
adding elements to a set . 542
addition . 235
addportray (library package) 639
address_at, arithmetic functor 236
addresses, passing to/from foreign code 397
advice, a program debugging tool 141
aggregate (library package) 641
alarms . 494
all, no_style_check/1 option 1191
all, style_check/1 option 26, 1308
all_dynamic/1, load_files/2 option 1168
alloc_color/[2,3,4,5] (ProXL) 840
alloc_color_cells/5 (ProXL) 841
alloc_color_planes/[8,9] (ProXL) 842
alloc_contig_color_cells/5 (ProXL) 841
alloc_contig_color_planes/[8,9] (ProXL)

. 842
allow_events/[1,2,3] (ProXL) 875
alpha character, recognizing 614
alphabetic variants . 562
alphanumeric (definition) . 149
alphanumeric characters, recognizing 614
ancestor (definition) . 149
ancestors (debugger command) 139
ancestors window (definition) 133
and . 182, 186

Book Index 1513

and, bitwise . 237
anonymous (definition) . 149
anonymous variables . 161
anonymous, variables . 161
antiunify (library package) 641
app, file search path . 101
append, avoiding . 46
append, can_open_file/[2,3] option 604
append/[2,5] (lists) . 533
append/3 (built-in) 240, 546, 571
append/3 (built-in, ref page) 1040
appending elements of sets 546
appending, to existing files 227
ar_open/3 (aropen) . 605
archive file (definition) . 149
archive, opening stream for reading 605
archives . 642
arg (library package) . 551
arg/3 (built-in) . 239
arg/3 (built-in) . 550
arg/3 (built-in) . 551
arg/3 (built-in, ref page) 1043
arg0/3 (arg). 552
args/1, unix/1 option . 1321
args/3 (arg). 553
args0/3 (arg) . 554
argument (definition) 149, 161
Argument, specification for the foreign interface

. 382
arguments. 161
arguments, accessing . 551
arguments, altering . 556
arguments, exchanging 557, 558
arguments, finding by path 554
arguments, inferring . 755
arguments, order for selector predicates. 555
arguments, reference page field 985
arguments, testing corresponding 553, 554
arguments, types of . 985, 988
argv/1, unix/1 option . 1321
arithmetic expression (definition) 235
arithmetic expressions, inequality of 596
arithmetic, evaluation . 1152
arithmetic, functors . 235
Arithmetic, limits . 233
Arithmetic, predicates for 990
arities, limits on . 32
arity (argument type) . 988
arity (definition) . 149
arity (library package) 642
arity, of a functor . 161
aritystrings (library package) 642
aropen (library package) 605, 642
arrays (library package) 642
arrays, implementing using terms 556
arrays, library(logarr) . 556
arrays, passing to/from foreign code 401
ASCII characters, lists of . 163

ASCII characters, recognizing 614, 616
ASCII, recognizing . 617
asin/2 (math) . 633
asinh/2 (math) . 633
ask (library package) . 605
ask/[2,3] (ask) . 624
ask_between/5 (ask) . 628
ask_chars/4 (ask) . 624
ask_file/[2,3] (ask) 605, 626
ask_number/[2,3,4,5] (ask) 625
ask_oneof/4 (ask) . 628
asking questions . 623
assert/[1,2] (built-in) 289
assert/[1,2] (built-in, ref page) 1044
asserta/[1,2] (built-in) 289
asserta/[1,2] (built-in, ref page) 1044
asserted code, semantics of 286, 287
assertion and retraction predicates 286
assertz/[1,2] (built-in) 289
assertz/[1,2] (built-in, ref page) 1044
assign/2 (built-in, ref page) 1047
assoc (library package) 642
associativity of operators . 165
at_end_of_file/[0,1] (built-in) 222
at_end_of_file/[0,1] (built-in, ref page)

. 1050
at_end_of_line/[0,1] (built-in) 222
at_end_of_line/[0,1] (built-in, ref page)

. 1052
atan/2 (math) . 633
atan2/3 (math) . 633
atanh/2 (math) . 633
atom (definition) . 149
atom/1 (built-in, ref page) 1053
atom_chars/2 (built-in) 240, 565, 567
atom_chars/2 (built-in, ref page) 1054
atom_chars1/2 (strings) 567
atom_garbage_collection, statistics/2 option

. 259, 1302
atomic term (definition) . 149
atomic/1 (built-in, ref page) 1056
atomic_type/[1,2,3] (structs) 662
atoms . 160
atoms, as constants . 565
atoms, converting to/from strings 393
atoms, garbage collection . 266
atoms, generating . 587
atoms, maximum size of . 32
atoms, names of . 564
atoms, passing to/from foreign code 389, 390,

419
atoms, passing to/from Prolog 418
atoms, statistics/2 option 259, 1302
attributes, definition . 755
attributes, graphics . 753, 785
attributes, of a display . 850
attributes, of a font . 832, 835
attributes, of a pixmap . 845

1514 Quintus Prolog

attributes, of a screen . 853
attributes, of current font 836
attributes, of the keyboard 881
attributes, of the pointer . 879
attributes, of windows . 775
avl (library package) . 642

B
backtracking . 183
backtracking (definition) . 150
backtracking, into foreign functions 376
backtracking, problem solving by. 115
backtracking, terminating a loop 35
backward compatibility . 193
backward compatibility I/O issues 481
bag_of_all_servant/3 (IPC/RPC) 508
bagof/3 (built-in) . 298
bagof/3 (built-in), vs bag_of_all_servant/3

. 508
bagof/3 (built-in, ref page) 1057
bags (library package) . 642
basics (library package) 530, 571
bell/[1,2] (ProXL) . 882
benchmark (library package) 642
between (library package) 642
bibliography . 3
bidirectional code, writing 561
big_text (library package) 605, 642
binary/0, open/4 option 1212
binding variables to values (definition). 150
bit-vector operations . 237
bitmap, reading and writing files 847
Bitmaps . 845
Bitmask Handling . 884
bitset_composition/3 (ProXL) 886
bitsets (library package) 642
body of a clause . 179
body of rule (definition) . 150
bof, seek/4 method . 1283
boolean on PrologSession 740
boolean on QueryAnswer . 740
boolean on Term . 741
bottom layer functions for user-defined stream

. 451
break (debugger command) 140
break (library package) 642
break/0 (built-in) 89, 191, 251, 357
break/0 (built-in, ref page) 1058
buffer (definition) . 150
buffers, flushing output . 230
built-in C functions, listed by function 1346
built-in operators . 166
built-in operators, list of . 169
built-in predicate (definition) 150
built-in predicates, categories 987
built-in predicates, debugging 136

built-in predicates, disallowed in Runtime Kernel
. 356

built-in predicates, extended by the library . . . 271
built-in predicates, grammar-related 303
built-in predicates, list of . 990
built_in (predicate property) 1227
buttons(B1, B2, B3, B4, B5) . . . 799, 806, 811, 814
buttons_mask/2 (ProXL) 880, 884
by_calls, get_profile_results/4 option . . 1140
by_calls, show_profile_results/[1,2] option

. 1290
by_choice_points, get_profile_results/4

option . 1140
by_choice_points, show_profile_results/[1,2]

option . 1290
by_redos, get_profile_results/4 option . . 1140
by_redos, show_profile_results/[1,2] option

. 1290
by_time, get_profile_results/4 option . . . 1140
by_time, show_profile_results/[1,2] option

. 1290

C
C Compiler, compared with qpc 341
C errors, functions for . 1346
C functions, return values, errors 1345
C header file, quintus.h . 525
C interface . 375
C interface, example of . 402
C process calling Prolog process, examples 514
C Process calling Prolog Process, external/3 facts

. 510
C/3 (built-in) . 302
C/3 (built-in, ref page) 1059
Caching . 893
call (library package) 560, 643
call port of a procedure box 114
call to procedure . 179
call/1 (built-in) . 186
call/1 (built-in, ref page) 1060
call_servant/1 (IPC/RPC) 508
callable/1 (built-in, ref page) 1061
Callback . 789
callback, activation . 818
callback, bypassing activation 856
callback, event field selectors 798
callback/[3,4,5], window attribute . . . 778, 790
callbacks, definition . 756
can_open_file/[2,3] (files) 604
case conversion . 588
case conversion, in nonstandard character sets

. 588
case_shift/2 (readsent) 622
caseconv (library package) 588, 643
cast/1 (structs) . 660
Casting . 660
cd/1, unix/1 option . 1321

Book Index 1515

ceiling/[2,3] (math) . 633
cgensym/2 (strings) . 587
change_active_pointer_grab/[3,4] (ProXL)

. 871
change_arg/[4,5] (changearg) 556
change_arg0/[4,5] (changearg) 557
change_functor/5 (changearg) 557
change_path_arg/[4,5] (changearg) 558
change_save_set/[2,3] (ProXL) 867
changearg (library package) 556
changing default directory 599
changing directory from Prolog 30
Changing graphics attributes 829
changing term arguments . 556
changing term arguments, by path 557, 558
Changing Window Attributes 785
char . 564
char (argument type) . 988
char_atom/2 (strings) 565, 568
character codes, arithmetic and 237
character escaping . 163
Character escaping, example 1123
Character I/O, C functions for 1346
Character I/O, predicates for 991
character sequence, converting to table 591
character_count/2 (built-in) 228, 230
character_count/2 (built-in, ref page) . . 1062
character_escapes (Prolog flag) 163, 247,

1237
character_escapes/1, write_term/[2,3] option

. 1340
characters that begin identifiers, recognizing . . 615
characters, classification . 613
characters, conversion to ASCII code 159
characters, conversion to integers 237
characters, end-of-file . 613
characters, end-of-line . 613
characters, extracting from text objects 575
characters, input and output of 220
characters, strings of . 163
chars . 564, 565
chars (argument type) . 988
chars (definition) . 240
chars, taking apart . 583
chars_to_words/2 (readsent) 621
charsio (library package) 643
check_advice/[0,1] (built-in, ref page)

. 1063
check_advice/0 (built-in) 357
check_advice/1 (built-in) 357
check_mask_event/[3,4] (ProXL) 860
check_typed_event/[2,3] (ProXL) 860
check_typed_window_event/3 (ProXL) 861
check_window_event/4 (ProXL) 859
checking for disjoint ordered sets 547
checking for existence of file names . . 602, 603, 604
checking for intersecting ordered sets 547, 548
checking for set equality . 544

checking for subsets of ordered sets 548
checking for term subsumption 562
checking permissions of files 603
checking terms for subterms 558
Checking terms for subterms , —, library(occurs)

. 558
Checking validity of Graphics Contexts 832
checking validity, of colormap 845
checking validity, of graphic contexts 832
checking validity, of windows 788
Checking Window Validity 788
checking_advice (predicate property) 1228
choice points . 115
circular terms . 185
class/1 (objects) . 705
class_ancestor/2 (objects) 708
class_method/1 (objects) 709
class_of/2 (objects) . 711
class_superclass/2 (objects) 710
classes of file and directory properties 610
clause (definition) . 150
clause/[2,3] (built-in) 292
clause/[2,3] (built-in, ref page) 1065
clauses . 179
clauses, database references to 288
clauses, declarative interpretation of 183
clauses, instances of . 183
clauses, maximum size of compiled 32
clauses, procedural interpretation of 183
clauses, unit . 179
Clear area . 820
clear_area/[5,6] (ProXL) 820
clear_window/1 (ProXL) . 820
client . 486
Cloning Graphics Contexts 831
close/1 (built-in) . 229, 599
close/1 (built-in, ref page) 1068
close_all_streams/0 (files) 605
close_display/1 (ProXL) 851
Closed World Assumption 595
closing a stream, input . 230
closing a stream, input or output 229
closing a stream, output . 230
closing files . 599
clump (library package) 643
code comments , —, library 526
code, unreachable . 51
color, allocation 839, 840, 841
color, cells . 840
color, changing . 842
color, finding . 842
color, freeing . 840
Colormap . 838
colormap, checking validity 845
colormap, copying . 844
colormap, creation . 843
colormap, definition . 754
colormap, freeing . 843

1516 Quintus Prolog

colormap, installation . 844
colormap, standard . 841
colormap, use . 840
colormapable, definition . 755
colormapable, using . 840
column boundaries in output 1123
command (debugger command) 140
command (definition) . 150
command line arguments, accessing from C . . . 310
command line arguments, invoking Prolog 186
Command line arguments, unix(args(ArgList))

. 308
Command line arguments, unix(argv(ArgList))

. 308
commands, executing from Prolog 29
commands, UNIX-like . 606
comments, in input stream 631
committing to first solution to query 598
commutative operators, writing pattern matchers

over . 537
compare/3 (built-in) 551, 568
compare/3 (built-in, ref page) 1070
compare_strings/[3,4] (strings) 569
comparing padded strings 569
comparison, of arbitrary terms 242
comparison, of numbers . 234
Compatibility, of Save/Restore 193
compatibility, syntax errors 322
compile-time vs. runtime 1335
Compile-time vs. Runtime. 349
compile/1 (built-in) . 357
compile/1 (built-in), use with modules 273
compile/1 (built-in, ref page) 1072
compiled (predicate property) 1227
compiled procedures, debugging 251
compiler (definition) . 150
compiling programs, during program execution

. 191
compiling, from GNU Emacs 90
compiling, Prolog into QOF 341
compiling, with the Runtime Generator 341
complement of an integer . 237
compound query (definition) 155
compound term (definition) 150
compound, terms . 161
compound/1 (built-in, ref page) 1074
concat/3 (strings) . 572
concat_atom/[2,3] (strings) 574
concat_chars/[2,3] (strings) 574
concatenating text objects 571
conditionals . 49, 186
conjunction . 182, 186
conjunction, bitwise . 237
connect . 486
connected/1, tcp_select/1 output 491
connective (definition) . 150
consistency errors . 321
CONSOLE (environment variable) 344, 1485

constant (definition) . 150
constant-to-character conversion 566
constants . 159
constants, kinds of . 565
constants, reading . 631, 632
constants, reading from the terminal 628, 632
consult (definition) . 150
consult/1 (built-in, ref page) 1075
contains_term/2 (occurs) 559
contains_var/2 (occurs) 559
context errors . 320
context, specification . 790
context, using . 818
continued lines, prolog . 164
continued lines, UNIX format 619
control character, recognizing 614
control flow, changing Prolog’s 251
control predicates, in grammar rules 300
Control, predicates for . 992
Control-c . 358
Control-c Control-c, interrupt-Prolog 89
Control-c Control-d, end-of-file 89
Control-c, handling . 252
Control-x Control-c, exit-prolog 90
Control-x Control-e, yank-query 89
Control-x Control-y, yank-query-matching-regexp

. 89
Control-x Control-z, end-of-file 89
controlling, the keyboard . 881
conversion predicates. 565
conversion predicates, naming 565
convert_selection/[4,5,6] (ProXL) 788
converting lists to sets 545, 547
Copy area . 820
copy_area/[8,9] (ProXL) 820
copy_colormap_and_free/2 (ProXL) 844
copy_plane/[9,10] (ProXL) 820
copy_term/2 (built-in) 241, 551
copy_term/2 (built-in, ref page) 1076
core, statistics/2 option 259, 1302
correspond/4 (lists) . 534
cos/2 (math) . 633
cosh/2 (math) . 633
count (library package) 643
counting subterms, identical 559
counting subterms, unifiable 559
create/2 (objects) . 712
create_colormap/[1,2,3] (ProXL) 843
create_colormap_and_alloc/[1,2,3] (ProXL)

. 844
create_cursor/[2,3,4,5] (ProXL) 848
create_gc/[2,3] (ProXL) 830
create_pixmap/[2,3] (ProXL) 846
create_servant/3 (IPC/RPC) 507
create_window/[2,3] (ProXL) 784
Creating Graphics Contexts 830
creating new files . 227
Creating Windows . 784

Book Index 1517

creep (debugger command) 116, 138
creep (definition) . 150
creeping . 118
critical (library package) 643
critical regions . 255
critical regions, and exceptions 324
cross-reference (definition) 150
cross-referencer. 51, 285
cross-references in on-line manuals 305
cross-referencing Prolog programs 640
crypt (library package) 606, 643
crypt_open/[3,4] (crypt) 606
ctr (library package) . 635
ctypes (library package) 588, 643
current input and output streams . . . 215, 227, 228
current input stream, reading lines from 618
Current operators, determining 167
current output stream, writing characters to . . 618
current output stream, writing lines to 618
current working directory 599
current, seek/4 method 1283
current_advice/3 (built-in) 357
current_advice/3 (built-in, ref page) . . . 1078
current_atom/1 (built-in) 245
current_atom/1 (built-in, ref page) 1079
current_class/1 (objects) 714
current_dec10_stream/2 (files) 604
current_display/1 (ProXL) 852
current_font/[1,2,3,4] (ProXL) 836
current_font_attributes/[2,3,4,5] (ProXL)

. 836
current_input/1 (built-in) 228
current_input/1 (built-in, ref page) 1080
current_key/2 (built-in) 295
current_key/2 (built-in, ref page) 1081
current_module/[1,2] (built-in, ref page)

. 1082
current_op/3 (built-in) 167
current_op/3 (built-in, ref page) 1085
current_output/1 (built-in) 228
current_output/1 (built-in, ref page) . . . 1084
current_predicate/2 (built-in) 245, 280
current_predicate/2 (built-in, ref page)

. 1086
current_spypoint/1 (built-in) 356
current_spypoint/1 (built-in, ref page)

. 1088
current_stream/3 (built-in) 229, 599
current_stream/3 (built-in, ref page) . . . 1089
current_window/[1,2] (ProXL) 787
cursor (definition) . 150
cursor, definition . 754
customized prolog stream 445
Customizing QUI . 73
customizing, interaction with the user . . 331, 1247,

1248
Customizing, messages . 329
cut . 33, 115, 186

cut (definition) . 151
cut, garbage collection and 1128
cut, local cut (->) . 186
cut, placement of . 35, 644
cut, use with generate-and-test paradigm 35

D
data conversion predicates 565
data conversion predicates, naming 565
data tables . 37
data types, foreign . 655
data types, prolog . 159
data, areas used by Prolog. 256
data, size limit . 263
Database . 192
database (definition) . 151
database reference (definition) 288
Database, loading and saving 192
Database, modification . 286
Database, predicates for . 993
date (library package) . 637
db reference, passing to/from foreign code 383
db_reference/1 (built-in, ref page) 1090
DCG . 299
debug (definition) . 151
debug mode . 118
debug/0 (built-in) . 356
debug/0 (built-in, ref page) 1091
debug_message/0 (objects) 715
debugger command, creep 116
debugger command, fail . 118
debugger command, leap . 117
debugger command, nonstop 117
debugger command, quasi-skip 118
debugger command, retry 118
debugger command, skip . 117
debugger command, zip . 118
debugger history window . 133
debugger, source linked . 82
Debugger, turning on and off from QUI 56
debugging . 85
debugging (debugger command) 141
debugging (Prolog flag) 1237
debugging foreign code, when using QUI. 354
debugging, basics . 113
debugging, compiled procedures 250
debugging, Control c interrupts 250
debugging, current state of 120
debugging, debugging flag 247
debugging, during compilation 190
debugging, flag . 1237
debugging, foreign code using gdb 400
debugging, help . 137
debugging, messages . 135
debugging, mode . 118
debugging, modules . 278

1518 Quintus Prolog

debugging, options when prompted by debugger
. 137

Debugging, predicates for 994
debugging, trace mode . 118
debugging, trapping calls to undefined predicates

. 120
debugging, turning off . 140
debugging, unknown flag . 247
debugging, use with compiled procedures 251
debugging, zip mode . 118
debugging/0 (built-in) . 356
debugging/0 (built-in, ref page) 1092
decimal digit, recognizing. 615
declaration (definition) . 987
declaration, module 273, 1183
declarative semantics. 183
decode_float/4 (math) . 633
decons (library package) 643
default arguments . 628
default directory, changing 599
default_display/1 (ProXL) 852
default_screen/2 (ProXL) 854
defaults, finding . 214
define_method/3 (objects) 716
definite clause grammars . 299
del_element/3 (sets) . 543
delete/[3,4] (lists) . 534
delete_file/1 (files) . 600
delete_window_properties/[1,2] (ProXL) . . 786
deleting common elements of sets 545
deleting elements from a list 534
deleting files . 600, 601
delimiter pairs, recognizing 615
demo (library package) . 644
demo, file search path . 212
dependencies between QOF files 345
depth of procedure invocation 135, 139
descendant_of/2 (objects) 717
destroy/1 (objects) . 718
destroy_subwindows/1 (ProXL) 785
destroy_window/1 (ProXL) 784
Destroying Graphics Contexts 830
Destroying Windows . 784
det (library package) 641, 644
determinacy . 115
determinacy detection, last clause 38
determinacy detection, via indexing 38
determinacy of goals, forcing 598
determinate (definition) . 151
determinate, making predicates 34
Development Kernel . 341, 342
difference of ordered sets . 548
digit recognition, arbitrary base 615
digit recognition, decimal . 615
direct_message/4 (objects) 719
directive (definition) . 151
directives . 180
directives, in files being compiled 190

directories . 607
directories, changing default 599
directories, finding files in 608
directories, finding properties of 610, 612
directories, scanning for a file in 608, 609
directories, scanning for in a directory 610
directories, scanning for subdirectories in 610
directories, searching . 214
directory (library package) 607
directory, current working 599
directory, default . 599
directory, prolog_load_context/2 option

. 1240
directory, specifications . 206
directory_member_of_directory/4 (directory)

. 610
directory_members_of_directory/3 (directory)

. 610
directory_property/[2,3] (directory) 612
Discarding events . 852
discontiguous (Prolog flag) 1238
discontiguous, no_style_check/1 option . . 1191
discontiguous, style_check/1 option . . 26, 1308
discontiguous/1 (declaration, ref page)

. 1093
disjoint sets, checking for . 543
disjoint/2 (sets) . 543
disjunction . 49, 182, 186
disjunction (definition) . 151
disjunction, bitwise . 237
dispatch_event/[1,2,3] (ProXL) 819
Display . 850
display (debugger command) 139
DISPLAY (environment variable) 65, 80
display, attributes . 850
display, checking validity . 852
display, connection . 757
display, conversion to an X dispplay 855
display, default . 852, 893
display, definition . 757
display, finding currently open 852
display, flushing and synchronizing 851
display, opening and closing 851
display/1 (built-in) . 219
display/1 (built-in, ref page) 1094
display_xdisplay/2 (ProXL) 855
displayable, definition . 755
dispose/1 (structs) . 659
dispose_event/1 (ProXL) 858
div, integer division . 235
division, floating-point . 235
division, integer . 235
domain errors . 316
done port of a procedure box 116
double on Term . 741
double_at, arithmetic functor 236
draw_arc/[7,8] (ProXL) . 824
draw_arcs/[2,3] (ProXL) 824

Book Index 1519

draw_ellipse/[5,6] (ProXL) 825
draw_ellipses/[2,3] (ProXL) 825
draw_image_string/[4,5] (ProXL) 826
draw_line/[5,6] (ProXL) 821
draw_lines/[2,3] (ProXL) 821
draw_lines_relative/[2,3] (ProXL) 822
draw_point/[3,4] (ProXL) 821
draw_points/[2,3] (ProXL) 821
draw_points_relative/[2,3] (ProXL) 821
draw_polygon/[2,3] (ProXL) 822
draw_polygon_relative/[2,3] (ProXL) 822
draw_rectangle/[5,6] (ProXL) 823
draw_rectangles/[2,3] (ProXL) 823
draw_segments/[2,3] (ProXL) 822
draw_string/[4,5] (ProXL) 826
draw_text/[4,5] (ProXL) 826
drawables . 753
Drawing primitives . 820
duplication, removing from a list 537
dynamic (predicate property) 1227
dynamic code, semantics of 286
dynamic predicate (definition) 151
dynamic predicates, and qpc 338
dynamic, declarations and the editor interface

. 288
dynamic, predicates, importing 281
dynamic, procedures and declarations 287
dynamic/1 (declaration, ref page) 1096

E
Editing a file from QUI . 56
efficiency, and database references 288
efficiency, increasing . 32
efficiency, specifying streams 216
elements of a list, deleting 534
elements of a list, finding 532, 535, 536
elements of a list, permutations 537
elements of a list, removing duplicates 537
elements of a list, reversing 538
elements of a list, selecting 535, 536
elements of a list, summing 542
elements of a list, transposing. 542
elements of a set, adding . 542
elements of a set, appending 546
elements of a set, deleting 543
elements of a set, deleting common 545
elements of a set, finding . 546
elements of a set, removing 543
elements of a set, selecting. 543
elements of a set, selecting pairs 544
elements of ordered sets, adding 547
elements of ordered sets, checking for intersecting

. 547
elements of ordered sets, deleting 547
elements of ordered sets, product 548
Emacs interface . 79
emacs interface, commands for help system . . . 306

Emacs interface, environment variables 79
Emacs interface, exiting from 81
Emacs interface, finding procedure definitions . . 87
Emacs interface, loading programs through 84
Emacs interface, on-line access to Prolog manual

. 83
Emacs interface, repeating a query 86
Emacs interface, source linked debugger 82
Emacs interface, suspending a session 82
Emacs interface, terminal requirements 80
Emacs interface, using with QUI 65
Emacs, loading modules . 278
EmacsLisp . 88, 93
EmacsLisp, invoking from Prolog 94
embedded , load_foreign_executable/1,

commands . 379
embedded commands . 349
embedded commands, qpc 345, 349
Embedding . 365
embedding layer (definition) 366
Embedding, and Memory Management 373
embedding, i/o initialization 1458
embedding, old and new models contrasted . . . 367
embedding, outline of process 371
encrypted files, streams to 465
end of file . 439
end of line . 439
end of page, detecting . 614
end-of-file, characters 613, 1058
End-of-file, characters . 188
end-of-file, detecting . 613
end-of-file, on character input 220
end-of-file, to Prolog from GNU Emacs 89
end-of-line, characters 613, 630
end-of-line, detecting . 614
end_class/[0,1] (objects) 720
end of file atom . 217, 1252
end_of_file/1, open/4 option 1213
end_of_file/1, tcp_select/1 output 492
end_of_line/1, open/4 option 1212
ensure_loaded/1 (built-in) 273, 357
ensure_loaded/1 (built-in), vs use_module/1

. 273
ensure_loaded/1 (built-in, ref page) 1097
ensure_valid_colormap/2 (ProXL) 845
ensure_valid_colormapable/3 (ProXL) 845
ensure_valid_cursor/2 (ProXL) 850
ensure_valid_display/2 (ProXL) 853
ensure_valid_displayable/3 (ProXL) 853
ensure_valid_font/2 (ProXL) 838
ensure_valid_fontable/3 (ProXL) 838
ensure_valid_gc/2 (ProXL) 832
ensure_valid_gcable/3 (ProXL) 832
ensure_valid_pixmap/2 (ProXL) 848
ensure_valid_screen/2 (ProXL) 855
ensure_valid_screenable/3 (ProXL) 855
ensure_valid_window/2 (ProXL) 789
ensure_valid_windowable/3 (ProXL) 789

1520 Quintus Prolog

entry point to a runtime system 357
enumerating elements of lists 530
enumerating solutions to a goal 298
enumerating subterms of a term 559
enumerating, solutions to a goal 296
environ (library package) 644
environment (library package) 644
environment variable (definition) 151
environment variables, and memory management

. 373
environment variables, Emacs interface 79
environment variables, for invoking Prolog . . . 1478
environment variables, for QUI 1498
environment variables, for using Kanji characters

. 335
environment variables, language 334
eof, seek/4 method . 1283
eof_action/1, open/4 option 1213
equality of ordered sets . 548
equality, arithmetic . 234
equality, floating-point . 234
equality, unification . 239
erase/1 (built-in) . 290
erase/1 (built-in, ref page) 1099
Error display under QUI . 59
Error Handling . 863
error, default error handler 865
error, fatal . 864
error, message severity 326
error, recoverable . 863
error, setting error handing options 865
error, types of . 757
error, unknown/1 option 1324
error_action/[2,3] (ProXL) 865
errors, and exceptions . 310
errors, classes . 313
errors, consistency . 321
errors, context . 320
errors, domain . 316
errors, existence . 318
errors, instantiation . 314
errors, permission . 319
errors, range . 317
errors, representation . 318
errors, resource . 322
errors, streams . 226
errors, syntax . 23, 322
errors, system . 323
errors, type . 315
Escape , find-more-definition. 90
Escape ., find-definition . 90
Escape i, compile . 91
Escape k, compile . 90
Escape x library . 90
Escape x prolog-mode . 90
escaping, character . 163
Evaluating Arithmetic Expressions 234
evaluation of arithmetic expressions 1152

Event . 789
Event Handling Functions 856
event, button press . 791, 798
event, button release 791, 798
event, circulate notify. 794, 799
event, circulate request 794, 800
event, client message 797, 800
event, colormap notify 792, 801
event, configure notify 795, 802
event, configure request 794, 802
event, create notify . 796, 804
event, default . 818
event, destroy notify . 795, 805
event, discarding . 852
event, dispatching on . 818
event, enter notify . 792, 805
event, expose . 792, 806
event, field selectors . 798
event, focus in . 793, 807
event, focus out . 793, 807
event, graphics . 793
event, graphics expose 808, 820, 828
event, gravity notify . 795, 809
event, handling directly . 856
event, handling events . 818
event, key press . 791, 810
event, key release . 791, 810
event, keymap notify 792, 809
event, leave notify . 792, 805
event, map notify . 795, 811
event, map request . 794, 813
event, mapping notify 797, 812
event, motion notify . 796, 813
event, motion notify hint . 813
event, no expose 809, 820, 828
event, property notify 792, 814
event, reparent notify 796, 815
event, resize request . 793, 815
event, selection clear . 798, 816
event, selection notify 798, 816
event, selection request 798, 817
event, specification . 790
event, unmap notify . 796, 812
event, visibility notify 792, 817
event_list_mask/2 (ProXL) . . . 862, 868, 872, 885
events_queued/[2,3] (ProXL) 856
examples of foreign code, UNIX 402
exception code . 311
exception port of a procedure box 116
exceptions . 310
Exceptions, C functions for 1347
exceptions, classes . 313
exceptions, global handler 313
exceptions, module name expansion 987
exceptions, stream-related 226
exceptions, streams . 226
exchanging arguments of terms 557, 558
exclamation point, recognizing 615

Book Index 1521

exclusive disjunction, bitwise 237
Executables and QOF-Saving, predicates for . . 995
executables directory . 13, 15
executables, and shared libraries 338
Execution State, predicates for. 995
execution, interrupting . 28
existence errors . 318
existence of files, checking for 602, 603, 604
existential quantifier 297, 1023
exists, file_exists/2 option 603
exit port of a procedure box 114
exit variable, specification 790
exit variable, using . 818, 819
exiting Emacs . 81
exiting Prolog . 18, 90, 188
exp/2 (math). 633
expand_term/2 (built-in, ref page) 1100
expansion (library package) 644
explicit unification . 239
export (definition) . 151
exported (predicate property) 1227
exporting predicates, from a module 272
expr (argument type) . 988
expressions, arithmetic . 235
expressions, arithmetic, inequality of 596
extended_characters/1 (xml_parse/3 option)

. 592
extendible (definition) . 987
extensions/1, absolute_file_name/3 option

. 1028
extern/1 (declaration) 414, 415
extern/1 (declaration, ref page) 1101
extern arg (argument type) 988
extern spec (argument type) 988
external/3 facts , —, C calling Prolog 510
extracting characters from text objects 575

F
fabs/2 (math) . 633
fact (definition) . 151
fail (debugger command) 118, 139
fail port of a procedure box 114
fail, unknown/1 option 1324
fail/0 (built-in) . 186
fail/0 (built-in, ref page) 1104
false/0 (built-in) . 186
false/0 (built-in, ref page) 1105
fceiling/[2,3] (math) . 633
fetch_slot/2 (objects) . 721
ffloor/[2,3] (math) . 633
fft (library package) . 644
fget_line/[2,3] (lineio) 618
Field Selectors on Events . 798
File and Stream Handling, C functions for . . . 1347
File and Stream Handling, predicates for 996
file border code . 439
file descriptor (definition) 151

file names, .pl suffix . 209
file names, Defaults . 209
file names, reading from terminal 626
file pointer address . 443
file properties, finding 610, 611
file search paths, and qld . 348
file specifications. 206
file, prolog_load_context/2 option 1240
file_errors/1, absolute_file_name/3 option

. 1031
file_exists/[1,2] (files) 602
file_member_of_directory/[2,3,4] (directory)

. 608
file_members_of_directory/3 (directory)

. 609
file_must_exist/2 (files) 604
file_property/3 (directory) 611
file_search_path/2 (built-in) 207
file_search_path/2 (built-in, ref page)

. 1106
file spec (argument type) . 988
file_type/1, absolute_file_name/3 option

. 1028
fileerrors (Prolog flag) 1237
fileerrors flag . 226, 245, 247
fileerrors/0 (built-in) 226
fileerrors/0 (built-in, ref page) 1108
filename (library package) 644
Filename Manipulation, predicates for 996
files . 607
files (library package) 599
files and directories, distinction between 607
files, appending to existing 227
files, checking for existence 602, 604
files, checking permissions of 603
files, checking whether openable. 604
files, closing . 229, 599
files, creating new . 227
files, DEC-10 Prolog compatible handling of . . 224
files, deleting . 600, 601
files, finding absolute name 599
files, finding in directories 608
files, finding properties of . 610
files, I/O after renaming . 601
files, loading foreign . 378, 380
files, opening . 227, 604
files, opening for input . 599
files, opening for input and output 599
files, opening for output . 599
files, opening with encryption 606
files, reading names from terminal 605
files, renaming . 601
files, scanning for in a directory 608, 609
files, searching for in a library 205, 209
files, searching for library . 599
Filespec predicates . 208
fill_arc/[7,8] (ProXL) . 824
fill_arcs/[2,3] (ProXL) 825

1522 Quintus Prolog

fill_ellipse/[5,6] (ProXL) 825
fill_ellipses/[2,3] (ProXL) 825
fill_polygon/[3,4] (ProXL) 822
fill_polygon_relative/[3,4] (ProXL) 823
fill_rectangle/[5,6] (ProXL) 823
fill_rectangles/[2,3] (ProXL) 824
find-definition . 87
find-definition (Emacs function) 140
find-definition, in QUI. 66
find-more-definition . 87, 90
find-more-definition (Emacs function) 140
findall/3 (built-in) . 298
findall/3 (built-in, ref page) 1109
finding corresponding elements of lists 534
finding elements of lists . 530
finding files in directories . 608
Finding graphics attributes 829
finding intersection of ordered sets 547
finding known elements in a list 532
finding length of text objects 575
finding members of sets . 546
finding permutations of a list 537
finding position of list element. 535, 536
finding procedure definitions, under Emacs 87
finding properties, of directories 612
finding properties, of files . 611
finding properties, of files and directories 610
finding single differences between lists 539
finding subsequences of a list 539, 541
finding subtree of a tree . 555
finding successive pairs in a list 535
finding sum of list elements 542
finding the last element in a list 535
finding the shorter of two lists 539
Finding Window Attributes 785
finding, the source code for a procedure 140
first-order logic (definition) 152
flag, character escaping . 247
flag, debugging . 247
flag, fileerrors. 247
flag, gc . 247
flag, gc margin . 247
flag, gc trace . 247
flag, type-in module . 247
flag, unknown procedure . 247
flatten (library package) 644
float on Term . 741
float, arithmetic functor 236
float/1 (built-in, ref page) 1112
floating-point numbers, passing to/from foreign

code . 385
floating-point numbers, passing to/from Prolog

. 417
Floating-point numbers, precision of 385, 417
floating-point numbers, range of 233
floats, as constants . 565
floats, coercion of integers to 236
floats, comparison of . 234

floats, equality of . 234
floats, printing . 1120
floats, syntax of . 160
floor/[2,3] (math) . 633
Flow of control, changing Prolog’s. 251
flow, control . 113
flush output . 441
flush/[0,1] (ProXL) . 851
flush/1, open/4 option 1214
flush_output/1 (built-in) 230
flush_output/1 (built-in, ref page) 1113
flushing, necessity. 756
focus, control input . 876
focus, hint to the WIndow Manager 781
font, attributes . 832, 835
font, attributes of current 836
font, checking validity . 837
font, definition . 753
font, finding available . 836
font, loading . 834
font, search path . 835
font, unloading . 834
fontable, definition . 755
fontable, use . 835
Fonts . 832
force_screen_saver/[1,2] (ProXL) 883
forcing determinacy of goals 598
foreach (library package) 644
foreign (predicate property) 1227
foreign code . 194
foreign code, debugging with gdb 400
foreign code, interfacing with 855
foreign code, loading of 378, 380
foreign code, qpc and . 353
foreign data types . 655
foreign functions, abolishing 381
foreign functions, linking to Prolog procedures

. 380, 382
foreign functions, redefining attached procedures

. 381
Foreign Interface, C functions for 1349
Foreign Interface, predicates for 997
foreign language interface 375
foreign language interface (definition) 365
foreign language interface, examples 402
foreign terms (definition) . 655
foreign, interfacing to . 895
foreign/[2,3] (hook) 380, 382
foreign/[2,3] (hook), treatment by qpc 353
foreign/[2,3] (hook, ref page) 1114
foreign arg (argument type) 988
foreign_file/2 (hook) . 380
foreign_file/2 (hook, ref page) 1117
foreign spec (argument type) 988
foreign_type/2 (structs) 657
formal syntax . 171
format/[2,3] (built-in) 223
format/[2,3] (built-in, ref page) 1119

Book Index 1523

format/1 (xml_parse/3 option) 592
format/1, open/4 option 1214
formatted printing . 223
Fortran . 1359
FORTRAN . 1440
FORTRAN interface . 375
FORTRAN interface, example of 407
free_colormap/1 (ProXL) 844
free_colors/[2,3] (ProXL) 841
free_cursor/1 (ProXL) . 849
free_of_term/2 (occurs) 559
free_of_var/2 (occurs) . 559
free_pixmap/1 (ProXL) . 847
freevars (library package) 645
fremainder/3 (math) . 633
fromonto (library package) 606, 645
fround/[2,3] (math) . 633
ftruncate/[2,3] (math) . 633
full-stop . 177, 183
full-stop, use of 216, 218, 1252
functor (definition) . 152
functor/3 (built-in) . 239
functor/3 (built-in) . 550
functor/3 (built-in, ref page) 1126
functors . 161
functors of terms, matching 561
functors, changing . 557
functors, maximum arity of 32

G
g (debugger option) . 139
gamma/2 (math) . 633
garbage collection . 1025, 1269
Garbage collection . 256
garbage collection (definition). 152
garbage collection, atoms . 266
garbage collection, enabling and disabling 261
garbage collection, flags . 247
garbage collection, invoking directly 263
garbage collection, margin flag 247
garbage collection, monitoring 262
garbage collection, on/off flag 247
garbage collection, statistics/[0,2] 259
garbage collection, trace flag 247
garbage_collect/0 (built-in, ref page) . . 1128
garbage_collect_atoms/0 (built-in, ref page)

. 1130
garbage_collection, statistics/2 option

. 259, 1302
gauss (library package) 645
gc (Prolog flag) . 1237
gc flag . 247
gc, caching . 893
gc, default . 893
gc, definition . 754
gc, modifying . 894
gc, sharing and cloning . 894

gc/0 (built-in, ref page) 1131
gc_margin (Prolog flag). 247, 1237
gc_trace (Prolog flag) 247, 1237
gcable, checking validity . 832
gcable, definition . 755
gcable, using . 829
GCs . 827
gdb(1), debugging foreign code using 338
gdb(1), use with QUI . 354
gdb, debugging foreign code using 400
gen pred spec (argument type) 988
gen pred spec tree (argument type) 988
gen pred spec tree var (argument type) 988
genarg/3 (arg) . 552
genarg0/3 (arg) . 553
generate-and-test, use with cut 35
generate_message/3 (built-in, ref page)

. 1132
generate_message_hook/3 (hook) 335
generate_message_hook/3 (hook, ref page)

. 1135
generating atoms . 587
generating lists . 530
generating lists, of identical length 538
generating subsets of a set 539, 541, 546
gensym/[1,2] (strings) 572, 587
geometry/[12,13] (ProXL) 889
get/1 (built-in) . 221
get/1 (built-in, ref page) 1137
get_address/3 (structs) 659
get_color/[2,3] (ProXL) 843
get_colors/[1,2] (ProXL) 843
get_contents/3 (structs) 659
get_default/[3,4] (ProXL) 889
get_display_attributes/[1,2] (ProXL) 851
get_event_values/2 (ProXL) 862
get_font_attributes/2 (ProXL) 835
get_font_path/[1,2] (ProXL) 835
get_graphics_attributes/2 (ProXL) 829
get_input_focus/[2,3] (ProXL) 878
get_keyboard_attributes/[1,2] (ProXL) 881
get_line/[1,2] (lineio) 617
get_motion_events/4 (ProXL) 863
get_pixmap_attributes/[2,3] (ProXL) 846
get_pointer_attributes/[1,2] (ProXL) 879
get_profile_results/4 (built-in, ref page)

. 1140
get_screen_attributes/[1,2] (ProXL) 854
get_screen_saver/[4,5] (ProXL) 883
get_selection_owner/[2,3] (ProXL) 788
get_standard_colormap/[2,3] (ProXL) 841
get_window_attributes/[2,3] (ProXL) 785
get0/[1,2] (built-in, ref page) 1139
get0/1 (built-in) . 221
getfile (library package) 645
global stack . 256
global_stack, statistics/2 option . . . 259, 1302
GNU Emacs interface, starting with Prolog 80

1524 Quintus Prolog

GNU Emacs interface, using with QUI 65
GNU Emacs key bindings, compile-procedures . . 90
GNU Emacs key bindings, edit-query 89
GNU Emacs key bindings,

edit-query-matching-regexp 89
GNU Emacs key bindings, end-of-file 89
GNU Emacs key bindings, exit-prolog 90
GNU Emacs key bindings, find-more-definition

. 90
GNU Emacs key bindings, interrupt-prolog 89
GNU Emacs key bindings, locate-prolog-procedure

. 90
GNU Emacs key bindings, prolog-mode 90
goal (definition) . 152
goal templates . 2
goals. 179
goals, enumerating solutions 296, 298
goals, forcing determinacy of 598
grab_button/9 (ProXL) . 869
grab_key/6 (ProXL) . 874
grab_keyboard/6 (ProXL) 873
grab_pointer/9 (ProXL) . 868
grab_server/[0,1] (ProXL) 876
grabbing . 805
grabbing, the keyboard 807, 872
grabbing, the pointer . 867
grabbing, the server . 876
grammar rules . 564
grammar rules, –>/2 . 1022
grammar rules, control predicates in 300
Grammar Rules, predicates for 998
grammars, context-free . 299
grammars, definite clause . 299
grammars, translation into clauses 301
graphic character, recognizing 615, 616
Graphics Attributes . 827
graphics attributes, changing the value of 829
graphics attributes, finding the value of 829
graphics attributes, of a pixmap 846
Graphics Contexts . 827
graphics contexts, definition 754
Graphics Events . 793
graphics, attributes . 785
graphs (library package) 645
ground/1 (built-in, ref page) 1142

H
h (debugger option) . 141
halt/[0,1] (built-in) . 251
halt/[0,1] (built-in, ref page) 1143
handle_events/[0,1,2,3] (ProXL) 818
has_advice (predicate property) 1228
hash_term/2 (built-in, ref page) 1144
head of a clause . 179
head of rule (definition) . 152
head port of a procedure box 116
heap, expansion . 256

heap, statistics/2 option 259, 1302
heaps (library package) 645
help . 304
help (debugger command) 141
help, during debugging . 137
Help, Emacs commands for 306
help, files . 304
Help, menus . 305
help, message severity . 326
Help, predicates for . 998
help/[0,1] (built-in) . 306
help/[0,1] (built-in, ref page) 1146
help/0 (built-in) . 356
help/1 (built-in) . 356
helpsys, file search path 212
highlights of this release . 4
HOME (environment variable) 152
home directory (definition) 152
HOMEDRIVE (environment variable) 152
HOMEPATH (environment variable) 152
hook (definition) . 987
hook predicate (definition) 181
Hook Predicates . 998
hookable (definition) . 987
Horn clause (definition) . 152
host_type (Prolog flag) 1238
hypot/3 (math) . 633

I
I/O, and Memory Management 374
Icon Hints . 782
icon, setting the bitmap . 782
icon, setting the position . 782
icon, setting the size . 782
icon, supported sizes . 783
identifier, query . 98
identifier, recognizing . 615
if-then-else construct 115, 186
if/1, load_files/2 option 1167
ignore_ops/1, write_term/[2,3] option . . . 1340
ignore_underscores/1, absolute_file_name/3

option . 1028
ignore_version/1, absolute_file_name/3

option . 1029
import (definition) . 152
importation . 273
importation, predicates from another module

. 271, 273
imported_from(Module (predicate property)

. 1227
imports/1, load_files/2 option 1168
index/3 (strings) . 583
indexing . 36, 115
indexing, of dynamic code 288
Inequality . 596
inequality, of arithmetic expressions 596
inequality, of terms . 596, 597

Book Index 1525

inequality, sound . 597
inference, arguments . 755
infix operators . 162, 165
information, message severity 326
inherit/1 (objects) . 722
Initialization, .emacs files . 92
initialization, files for qpc 349
initialization, of saved states 197, 199
initialization, prolog.ini files 188
initialization/1 (declaration) 199
initialization/1 (declaration, ref page)

. 1147
input and output . 214
input and output, DEC-10 Prolog compatible

handling of . 221
input and output, initialization 1458
input and output, of characters 220
input and output, of terms 215
input and output, streams 215, 224, 227
Input and output, using renamed files 601
Input Services, C functions for 1350
input stream, reading constants from 631
input stream, reading lines from 617
input stream, reading lists from 632
input stream, reading sentences from 620, 622
input, arbitrary expressions 638
input, notification . 488
input, Pascal-like . 630
input, prompted . 629
input, reading file names from terminal 626
input/output embedding functions 374
input/output mode . 437
input/output model . 434
input/output system . 433
install_colormap/1 (ProXL) 844
Installation, directories 13, 15
Installation, hierarchy . 11
installed_colormap/[1,2] (ProXL) 845
Installing an application program 363
instance/2 (built-in) . 292
instance/2 (built-in, ref page) 1149
instance_method/1 (objects) 724
instantiated . 1332
instantiation (definition) . 152
instantiation errors . 314
int on PrologSession . 739
int on Term . 741, 742
integer, arithmetic functor 236
integer/1 (built-in, ref page) 1151
integer_16_at, arithmetic functor 236
integer_8_at, arithmetic functor 236
integer_at, arithmetic functor 236
integers as terms. 551
integers, as constants . 565
integers, coercion of floats to 236
integers, comparison of . 234
integers, passing to/from foreign code 384
integers, passing to/from Prolog 416

integers, printing . 1121
integers, range of . 233
integers, syntax of . 159
interaction with the user 331, 1247, 1248
interactive unix shell . 1321
interf arg type (argument type) 988
interface to other languages 375
interface, Java . 735
Interfacing with Foreign Code 855
internal database . 294
Internationalization . 332
interpretation of clauses, declarative 183
interpretation of clauses, procedural 183
interpreted (predicate property) 1227
interpreted predicates, importing 281
interpreter (definition) . 152
interrupt handling . 252
interrupting Prolog execution 58
interrupting, program execution 28
interrupting, Prolog . 89, 250
Interrupts . 358
intersect/[2,3] (sets) . 544
intersection of sets . 544, 545
intersection/3 (sets) . 545
invocation, box. 114, 116
invocation, identifier . 135
ipc, Interprocess Communication 505
ipc, Transmission Control Protocol 485
is-not-provable — operator 593
is/2 (built-in) . 154, 234
is/2 (built-in, ref page) 1152
is_alnum/1 (ctypes) . 614
is_alpha/1 (ctypes) . 614
is_ascii/1 (ctypes) . 614
is_char/1 (ctypes) . 614
is_cntrl/1 (ctypes) . 614
is_csym/1 (ctypes) . 615
is_csymf/1 (ctypes) . 615
is_digit/[1,2,3] (ctypes) 615
is_endfile/1 (ctypes) 613, 617
is_endline/1 (ctypes) . 614
is_endline/1 (ctypes) . 617
is_graph/1 (ctypes). 615, 616
is_key/[2,3] (ProXL) . 887
is_list/1 (lists) . 533
is_lower/1 (ctypes) . 615
is_newline/1 (ctypes) 613, 617
is_newpage/1 (ctypes) . 614
is_newpage/1 (ctypes) . 617
is_ordset/1 (ordsets) . 547
is_paren/2 (ctypes) . 615
is_period/1 (ctypes) . 615
is_print/1 (ctypes) . 616
is_punct/1 (ctypes) . 616
is_quote/1 (ctypes) . 616
is_set/1 (sets) . 543
is_space/1 (ctypes) . 616
is_upper/1 (ctypes) . 616

1526 Quintus Prolog

is_white/1 (ctypes) . 616
ISO 8859/1 . 614
iteration . 186

J
j0/2 (math) . 633
j1/2 (math) . 633
Java interface . 735
jn/3 (math) . 633
JNDI . 736

K
Kanji characters . 335
kernel, development . 341
kernel, runtime . 341
Key bindings in QUI editor 64
Key bindings in QUI main windows 58
key bindings, under the GNU Emacs interface . . 89
key_auto_repeat/[3,4] (ProXL) 888
key_keycode/[3,4] (ProXL) 887
key_state/[2,3,4] (ProXL) 810
key_state/[3,4] (ProXL) 888
keyboard, attributes . 881
keyboard, grabbing . 872
keycode, mapping change . 797
keycode, server-dependent integer value 811
keys, recorded . 295
keys_and_values/3 (lists) 535
keysort/2 (built-in) . 243
keysort/2 (built-in, ref page) 1155
keysym, mapping change . 797
keysym, server-independent value 811
keysym/[1,2] (ProXL) . 887
kill, clients . 876
kill_client/[0,1,2] (ProXL) 879
knuth_b_1 (library package) 645

L
language, file search path 212
last call optimization . 44
last clause determinacy detection 38
last/2 (lists) . 535
layout characters . 631
layout restrictions, Prolog source code 91
LD_LIBRARY_PATH (environment variable) . . . 359
leap (debugger command) 117, 138
leap (definition) . 152
leaping . 118
leash/1 (built-in) . 356
leash/1 (built-in, ref page) 1157
leashing (definition) . 152
length of lists, checking for same 538
length/2 (built-in). 240, 546
length/2 (built-in, ref page) 1159
letter, conversion to lowercase 616

letter, conversion to uppercase 617
letter, recognizing . 614
letter, recognizing lowercase 615
letter, recognizing uppercase 616
lexical scope of variables . 180
LIB (environment variable) 212, 346
libpl .so and .a versions . 359
library directories, and qld 344, 348
library directories, finding 13, 525
library files, and QOF dependencies 345
library files, searching for in a directory 599
library(’quintus.dec’) — abstract 647
library(’quintus.mac’) — abstract 647
library(activeread) . 638
library(addportray) . 639
library(aggregate) — abstract 641
library(antiunify) — abstract 641
library(arg) — abstract . 551
library(arity) — abstract . 642
library(aritystrings) — abstract 642
library(aropen) — abstract 605, 642
library(arrays) — abstract 642
library(ask) . 623
library(ask) — abstract . 605
library(assoc) — abstract 642
library(avl) — abstract . 642
library(bags) — abstract . 642
library(basics) — abstract 530, 571
library(benchmark) — abstract 642
library(between) — abstract 642
library(big text) — abstract 605, 642
library(bitsets) — abstract 642
library(break) — abstract 642
library(call) — abstract 560, 643
library(caseconv) — abstract 588, 643
library(changearg) — abstract 556
library(charsio) — abstract 643
library(clump) — abstract 643
library(continued) . 619
library(count) — abstract 643
library(critical) — abstract 643
library(crypt) — abstract 606, 643
library(ctr) . 635
library(ctypes) . 613, 643
library(ctypes) — abstract 588
library(date) . 637
library(date), example of use 359
library(decons) — abstract 643
library(demo) — abstract 644
library(det) — abstract . 644
library(directory) — abstract 607
library(environ) — abstract 644
library(environment) — abstract 644
library(expansion) — abstract 644
library(fft) — abstract . 644
library(filename) — abstract 644
library(files) . 606
library(files) — abstract . 599

Book Index 1527

library(flatten) — abstract 644
library(foreach) — abstract 644
library(freevars) — abstract 645
library(fromonto) — abstract 606, 645
library(gauss) — abstract 645
library(getfile) — abstract 645
library(graphs) — abstract 645
library(heaps) — abstract 645
library(knuth b 1) — abstract 645
library(lineio) . 617
library(listparts) . 549
library(listparts) — abstract 645
library(lists) — abstract . 533
library(logarr) — abstract 646
library(lpa) — abstract . 646
library(mapand) — abstract 646
library(maplist) — abstract 560, 646
library(maps) — abstract 646
library(math) — abstract 633
library(menu) — abstract 646
library(mst) — abstract . 646
library(multil) — abstract 647
library(newqueues) — abstract 647
library(nlist) — abstract . 647
library(not) — abstract . 595
library(note) — abstract . 647
library(order) — abstract 647
library(ordered) — abstract 647
library(ordprefix) — abstract 647
library(ordset) — abstract 547
library(pipe) — abstract . 647
library(plot) — abstract . 648
library(pptree) — abstract 648
library(printchars) — abstract 648
library(printlength) — abstract 577, 649
library(prompt) . 629
library(putfile) — abstract 649
library(qerrno) — abstract 649
library(qsort) — abstract . 649
library(queues) — abstract 649
library(random) — abstract 649
library(ranstk) — abstract 649
library(read) — abstract . 649
library(readconst) . 630, 631
library(readin) . 620
library(readsent) . 620, 621
library(retract) — abstract 650
library(samefunctor) — abstract 561
library(samsort) — abstract 650
library(setof) — abstract . 650
library(sets) — abstract . 542
library(show) — abstract . 650
library(showmodule) — abstract 650
library(statistics) — abstract 651
library(stchk) — abstract 651
library(strings) — abstract 569
library(subsumes) — abstract. 562
library(termdepth) — abstract 652

library(terms) — abstract 651
library(tokens) — abstract 652
library(trees) — abstract . 652
library(types) — abstract 652
library(unify) — abstract . 562
library(unix) — abstract . 606
library(update) — abstract 652
library(vectors) — abstract 652
library(writetokens) — abstract 653
library(xml) — abstract . 653
library, (xref) . 285
library, as extension of built-in predicates 271
library, file search path 212
library, finding code comments 526
library, predicates linking to functions 381
library, searching for a file in 205, 209
library/1 (built-in) . 209
library_directory/1 (built-in) . . 209, 214, 599
library_directory/1 (built-in, ref page)

. 1161
limit, UNIX csh command 264
limits . 264
limits, in Quintus Prolog . 32
line border code . 439
line_count/2 (built-in) 228, 230
line_count/2 (built-in, ref page) 1163
line_position/2 (built-in) 228, 230
line_position/2 (built-in, ref page) 1164
linefeed, definition in Prolog mode 91
lines . 617
lines, reading . 618
lines, reading and writing 617
lines, reading continued . 619
lines, reading continued, UNIX format 619
lines, reading from the terminal 629, 630
Linking QOF files . 343
list (argument type) . 988
list (definition) . 153
list of Type (argument type) 988
List Processing, predicates for 999
list separator, ’|’ . 162
list_to_ord_set/2 (ordsets) 547
list_to_set/2 (sets) 542, 545
listen . 486
listing open streams . 599
listing/[0,1] (built-in) 245
listing/[0,1] (built-in, ref page) 1165
listing/1 (built-in), with module system

. 282
listparts (library package) 549, 645
lists (library package) 533
lists, appending common prefix to 534
lists, as ordered sets . 547
lists, as sets . 542
lists, checking for proper . 533
lists, converting to ordered sets 547
lists, converting to sets . 545
lists, deleting elements from 534

1528 Quintus Prolog

lists, determining nonmembership in 532
lists, finding corresponding elements in 534
lists, finding elements of . 530
lists, finding known elements 532
lists, finding position of element in 535, 536
lists, finding proper subsequences of 541
lists, finding subsequences of 539, 541
lists, finding successive pairs in 535
lists, finding the last element of 535
lists, finding the shorter of two 539
lists, generating . 530, 531
lists, keys and values . 535
lists, of identical length . 538
lists, packages for processing 529
lists, permutations of. 537
Lists, predicates for processing 240
lists, proper . 529
lists, reading . 632
lists, reading from the terminal 632
lists, removing duplicated elements 537
lists, reversing . 538
lists, selecting element of 535, 536
lists, single differences between. 539
lists, summing elements of 542
lists, syntax of . 162
lists, transposing elements of 542
load (definition) . 153
load context . 250
load_files/[1,2] (built-in) 198, 354
load_files/[1,2] (built-in, ref page) . . . 1167
load_font/[2,3] (ProXL) 835
load foreign executable, use in building runtime

systems . 359
load_foreign_executable/1 (built-in) 354,

375, 378, 380
load_foreign_executable/1 (built-in),

embedded . 379
load_foreign_executable/1 (built-in, ref

page) . 1171
load_foreign_files/2 (built-in) 194, 354,

357, 375, 380
load_foreign_files/2 (built-in, ref page)

. 1173
load_type/1, load_files/2 option 1167
Loading a file from QUI . 56
loading a program into Prolog, by file 85
loading a program into Prolog, by procedure . . . 85
loading a program into Prolog, by region 85
loading a program into Prolog, with Emacs 84
Loading Programs, predicates for 999
loading, module-files . 273
loading, programs . 189
loading, QOF files . 198
loading, saved-states . 196
local cut . 186, 1009, 1010
local stack . 256
local_stack, statistics/2 option 259, 1302
locating source code automatically 90

locked (predicate property) 1227
locked predicate (definition) 119
locked, option to qld . 1482
locked, option to qpc . 1490
log/2 (math) . 633
log10/2 (math) . 633
logarr (library package) 646
Logging a QUI session . 56
long on Term . 741
loops, terminating backtracking 35
lower/[1,2] (ctypes) . 588
lowercase letter, recognizing 615
lpa (library package) . 646

M
main(), C functions for . 1351
main(), defining your own 372
make(1), use with qpc . 348
malloc() pointers . 398
man pages . 1475
manual, on-line . 83
manual, on-line access to . 304
Manual, on-line access to . 307
manual/[0,1] (built-in) 307
manual/[0,1] (built-in, ref page) 1175
manual/0 (built-in) . 356
manual/1 (built-in) . 356
map_subwindows/1 (ProXL) 786
mapand (library package) 646
maplist (library package) 560, 646
mapped . 751
maps (library package) . 646
mask_event/[3,4] (ProXL) 859
master . 506
matching principal functors of terms 561
math (library package) . 633
max, maximum --- arithmetic functor 236
max/3 (math) . 633
max_depth/1, write_term/[2,3] option 1341
member/2 (basics) . 530, 546
memberchk/2 (basics) 532, 546
membership in a list . 532
Memory Management . 894
Memory, C functions for 1351
memory, general description 256
memory, limits on . 264
memory, management . 373
memory, predicates for . 1000
memory, reclamation 1025, 1269
memory, statistics . 257
memory, statistics/2 option 259, 1302
menu (library package) . 646
menu-help . 306
menus, description of . 305
menus, Emacs commands for 306
message generator (definition) 327
Message terms . 327

Book Index 1529

message tracing. 518
Message, customization . 329
message/4 (objects) . 725
message_hook/3 (hook) 331, 335
message_hook/3 (hook, ref page) 1177
message hook/3 in QUI . 76
messages, file search path 212
Messages, predicates for . 1001
meta-logical (definition) . 238
meta-logical, predicates . 238
meta-predicate (definition) 153
meta-predicate, built-ins using 283
Meta-predicates (definition) 987
meta-variables . 2, 528
meta_predicate(Term) (predicate property)

. 1227
meta_predicate/1 (declaration) 284
meta_predicate/1 (declaration, ref page)

. 1179
midstring/[3,4,5,6] (strings) 579
min, minimum --- arithmetic functor 236
min/3 (math). 633
minus, subtraction . 235
minus, unary minus . 235
Miscellaneous Window Primitives 787
miscellaneous, control functions 876
Mixed Language Programming. 895
mixed/[1,2] (ctypes) . 588
MOD . 985
mod, remainder after integer division 236
mode annotations . 2, 986
mode declarations . 285
Mode declarations . 2
mode line (definition) . 153
mode/1 (declaration, ref page) 1181
modifier keys, mapping change 797
modifiers(S, C, L, M1, M2, M3, M4, M5) 799,

806, 811, 814
modifiers_mask/2 (ProXL) 874, 875, 880, 885
module . 525
module (definition) . 153, 271
module name expansion 284, 1179
module name expansion, exceptions 987
module name expansion, predicates using 283
module of runtime entry/1 358
module prefixes, and visibility rules 274
Module prefixes, on clauses 277
module, declaration 272, 273, 1183
module, prolog_load_context/2 option 1240
module-file (definition) . 153
module-files . 272
module-files, converting into 272
module-files, loading . 273
module/1 (built-in) . 273
module/1 (built-in, ref page) 1182
module/2 (declaration) . 272
module/2 (declaration, ref page) 1183
modules. 271

modules, assert/retract on imported predicates
. 281

modules, currently loaded 278, 280
modules, debugging . 278
modules, defining . 272
modules, dynamic creation of 276
modules, exporting predicates from 272
Modules, Foreign Code . 381
modules, importation . 273
modules, importing predicates into 273
modules, loading . 273
modules, loading code via Emacs 278
modules, name clashes . 279
modules, name expansion 282
modules, name expansion, meta predicate

declaration . 284
modules, predicates defined in 280
modules, predicates exported from 281
Modules, predicates for . 1001
modules, predicates imported into 281
modules, source . 282
Modules, source . 275
modules, type-in 247, 275, 276
modules, visibility rules . 274
motion notify hint . 797
mouse buttons, mapping change 797
msg_trace/2 (IPC/RPC) . 519
mst (library package) . 646
multifile (predicate property) 1227
multifile predicate (definition) 153
multifile, style_check/1 option 26
multifile/1 (declaration, ref page) 1184
multifile_assertz/1 (built-in) 357
multifile_assertz/1 (built-in, ref page)

. 1186
multil (library package) 647
multiple (Prolog flag) 1238
multiple, no_style_check/1 option 1191
multiple, style_check/1 option 1308
multiplication . 235
must_be_module/1, load_files/2 option . . . 1168

N
name clash . 279
name clash (definition) . 154
Name expansion, module . 282
name, of a functor . 161
name/1 (strings) . 565
name/2 (built-in) 240, 565, 566
name/2 (built-in, ref page) 1187
Name/Arity form . 170
name1/2 (strings) . 567
naming a Window . 779
Naming Conventions . 890
naming data conversion predicates 565
negation . 592, 594
negation, bitwise . 237

1530 Quintus Prolog

negation, by failure . 186
negation, simulating with not-provable 595
negation, sound, simulating 595
new/[2,3] (structs) . 659
new_event/[1,2] (ProXL) 857
newline character, recognizing 614
newqueues (library package) 647
next_event/[2,3] (ProXL) 858
nextto/3 (lists) . 535
NIL . 574
nl/[0,1] (built-in) . 222
nl/[0,1] (built-in, ref page) 1189
nlist (library package) 647
no_style_check/1 (built-in) 26
no_style_check/1 (built-in, ref page) . . . 1191
nocheck_advice/[0,1] (built-in, ref page)

. 1193
nocheck_advice/0 (built-in) 357
nocheck_advice/1 (built-in) 357
nodebug/0 (built-in) . 356
nodebug/0 (built-in, ref page) 1195
nodebug_message/0 (objects) 726
nofileerrors/0 (built-in) 226
nofileerrors/0 (built-in, ref page) 1196
nogc/0 (built-in, ref page) 1197
nondeterminacy . 115
nondeterminacy, declaring . 40
nondeterminacy, finding . 39
nonmember/2 (basics) . 532
nonmembership in a list . 532
nonstop (debugger command) 117, 140
nonvar/1 (built-in, ref page) 1198
noprofile/0 (built-in, ref page) 1199
Normal Hints . 779
nospy (debugger command) 140
nospy/1 (built-in) . 356
nospy/1 (built-in, ref page) 1200
nospyall/0 (built-in) . 356
nospyall/0 (built-in, ref page) 1201
not (library package) . 595
not-provable . 593
not-provable (\+) . 186
not-provable, simulating negation with 595
not/1 (not) . 595
notation . 171
note (library package) . 647
notrace/0 (built-in) . 356
notrace/0 (built-in, ref page) 1202
nth_char/2 (strings) . 575
nth0/[3,4] (lists) . 535
nth1/[3,4] (lists) . 536
null streams . 228
null_foreign_term/2 (structs) 660
number/1 (built-in, ref page) 1203
number_chars/2 (built-in) 240, 565, 567
number_chars/2 (built-in, ref page) 1204
number_chars1/2 (strings) 567
numbers, comparison of . 234

numbers, range of . 233
numbers, syntax for . 566
numbervars/[2,3] (built-in) 241
numbervars/1, write_term/[2,3] option . . . 1340
numbervars/3 (built-in, ref page) 1206
numerical calculations . 1152
numerical input, prompting for 625, 626, 628

O
object code (definition). 154
object file (definition) . 154
object file dependencies . 194
object files, shared vs. static 359
objects (library package) 665
occlude . 751
occur check . 185, 563
occurrences_of_term/3 (occurs) 559
occurrences_of_var/3 (occurs) 559
on-line help system . 304
on-line help system, TTY interface to 19
on-line help system, using under Emacs. 83
On-line manual, access to 304, 307
On-line manual, cross-references 305
on_exception/3 (built-in) 312
on_exception/3 (built-in, ref page) 1208
once/1 (not) . 1259
one of List (argument type) 988
op/3 (built-in) . 167
op/3 (built-in, ref page) 1210
open/[3,4] (built-in) 226, 227, 228, 599
open/[3,4] (built-in, ref page) 1212
open_display/2 (ProXL) . 851
open_file/3 (files) . 604
open_null_stream/1 (built-in) 228
open_null_stream/1 (built-in, ref page)

. 1218
opening a file for input or output 227
opening files . 604
opening files, with encryption 606
opening streams, for input 599
opening streams, for input and output 599
opening streams, for output 599
opening streams, for reading UNIX archive . . . 605
operating system, access to 307, 1321
Operating system, accessing from Prolog 565
operating systems, portability between 617
operator (definition) . 154
Operators . 353
operators, associativity of 165
operators, built-in . 166, 169
operators, built-in predicates for handling 167
operators, current. 167
operators, declaring . 167
operators, infix . 162, 165
operators, list of . 169
operators, postfix . 162, 165
operators, precedence of . 165

Book Index 1531

operators, prefix . 162, 165
operators, reference page convention 988
operators, syntax restrictions on 167
operators, type of . 165
optimization, last call . 44
or . 182, 186
or, bitwise. 237
ord_add_element/3 (ordsets) 547
ord_del_element/3 (ordsets) 547
ord_disjoint/2 (ordsets) 547
ord_intersect/[2,3] (ordsets) 547
ord_intersection/[2,3] (ordsets) 547
ord_seteq/2 (ordsets) . 548
ord_setproduct/3 (ordsets) 548
ord_subset/2 (ordsets) . 548
ord_subtract/3 (ordsets) 548
ord_symdiff/3 (ordsets) 548
ord_union/[2,3,4] (ordsets) 548
order (library package) 647
order on terms, standard . 242
ordered (library package) 647
ordered sets, adding elements to 547
ordered sets, checking for . 547
ordered sets, checking for disjoint 547
ordered sets, checking for equality 548
ordered sets, checking for intersecting 547, 548
ordered sets, checking for subsets of 548
ordered sets, creating from lists 547
ordered sets, deleting elements 547
ordered sets, difference of . 548
ordered sets, intersection of 547
ordered sets, product of . 548
ordered sets, symmetric difference of 548
ordered sets, union of multiple 548
ordered sets, union of two 548
ordering of sets . 547
ordprefix (library package) 647
ordset (library package) 547
otherwise/0 (built-in) . 186
otherwise/0 (built-in, ref page) 1219
output . 214
overflow output buffer . 442
overflow/1, open/4 option 1213

P
package, file search path 212
padded string arguments in the foreign interface

. 392
padded strings, comparing 569
PAGER (environment variable) 21, 304, 306,

1478
pair (argument type) . 988
pairfrom/4 (sets) . 544
parent (definition) . 154
parentheses, recognizing . 615
parse_color/[2,3] (ProXL) 841
parse_geometry/5 (ProXL) 889

parsing phrases . 1222
Pascal . 1359, 1440
Pascal interface . 375
Pascal interface, example of 404
Pascal-like input . 630
past end of file . 440
PATH (environment variable) . . 17, 101, 187, 212,

361, 511, 1478, 1497
path, changing term arguments by 558
path, through a term . 554
path_arg/3 (arg) . 555
pattern matchers, writing 537
pattern-matching . 564
peek-operations . 236
peek_char/[1,2] (built-in) 221
peek_char/[1,2] (built-in, ref page) 1220
peek_event/[2,3] (ProXL) 858
pending/[1,2] (ProXL) . 857
period character (, ‘.’,) . 182
period, recognizing . 615
perm/2 (lists) . 537
perm2/4 (lists) . 537
permission errors . 319
phrase/[2,3] (built-in, ref page) 1222
pipe (library package) . 647
pixel, definition . 838
pixmap . 753
pixmap, attributes . 845
pixmap, checking validity . 847
pixmap, creation . 846
pixmap, finding and changing attributes 846
pixmap, freeing . 846
Pixmaps . 845
plane, allocation . 841
platform-independent files 13, 15
plot (library package) . 648
pointer, attributes . 879
pointer, grabbing . 867
pointer, warp . 876
pointer_object/2 (objects) 727
pointers, passing to/from foreign code . . . 397, 410
port (definition) . 154
port of a procedure box 113, 116
port of a procedure box, Call 114
port of a procedure box, Done 116
port of a procedure box, Exception 116
port of a procedure box, Exit 114
port of a procedure box, Fail 114
port of a procedure box, Head 116
port of a procedure box, Redo 114
port/1 (start/1 option) 742
portability between operating systems 617
portray/1 (hook) . 219, 527
portray/1 (hook, ref page) 1224
portray_clause/1 (built-in, ref page) . . . 1225
portray_clause/1 (hook) 220
portrayed/1, write_term/[2,3] option 1340
position in a stream, character_count/2 230

1532 Quintus Prolog

position in a stream, line_count/2 230
position in a stream, line_position/2 230
position in a stream, seek/4 231
position in a stream, stream_position/2 231
position in a stream, stream_position/3 231
postfix operators . 162, 165
pow/3 (math). 633
power_set/2 (sets) . 546
pptree (library package) 648
precedence (definition) . 154
precedence, of operators . 165
Precision of numbers, on I/O 1120
pred spec (argument type) 988
pred spec forest (argument type) 988
pred spec tree (argument type) 988
predicate (definition) . 155
predicate properties . 245
predicate_property/2 (built-in) 245, 281
predicate_property/2 (built-in, ref page)

. 1227
predicates . 179
predicates, asking about properties 245
predicates, assertion and retraction. 281
Predicates, assertion and retraction 286
predicates, categories . 987
predicates, exported from modules 280
predicates, imported into modules 281
predicates, importing dynamic 281
predicates, making determinate using cut 34
predicates, specifications . 169
predicates, user-defined . 1079
Predicates, user-defined . 245
predicates, using module name expansion 283
prefix operators . 162, 165
principal functor (definition) 161
principal functor of a term 161, 550
print (debugger command) 138
print/1 (built-in) . 219, 527
print/1 (built-in, ref page) 1230
print_length/[2,3] (printlength) 577
print_lines/2 (printlength) 577
print_message/2 (built-in) 328
print_message/2 (built-in, ref page) 1232
print_message_lines/3 (built-in, ref page)

. 1234
printchars (library package) 648
printing characters, recognizing 616
printing, clauses . 220
printing, formatted . 223
printing, print depth limit in debugger 139
printlength (library package) 577, 649
private, predicates . 271
privileges . 264
procedural semantics . 183
procedural, modularity . 271
procedure (definition) . 155
procedure box . 113, 116
procedures . 180

procedures, calls to . 179
procedures, depth of invocation 135
procedures, dynamic and static 287
procedures, finding definition 140
procedures, listing all . 245
procedures, listing selected 245
procedures, redefining during execution 191
procedures, removing properties 1025
procedures, self-modifying 286, 292
procedures, undefined . 120
process . 486
product of ordered sets . 548
product of two sets . 545
profile/[0,1,2,3] (built-in, ref page) . . 1236
profiler, a program performance analysis tool . . 144
program (definition) . 155
program debugging, advice package 141
program debugging, profiler 144
Program State, predicates for 1002
program, interrupting execution of 28
program, loading . 189
program, space . 259, 1302
program, statistics/2 option 259, 1302
project/3 (arg) . 554
Prolog stream . 437
prolog(1) (command line tool) 17, 1476
Prolog, compiling procedures from GNU Emacs

. 90
prolog, exiting . 18
Prolog, exiting from GNU Emacs 90
Prolog, interrupting from GNU Emacs 89
Prolog, locating source code automatically 90
Prolog, Prolog mode . 91
Prolog, Prolog mode editor command 90
prolog, prompts . 31
Prolog, source code layout restrictions 91
Prolog, using with GNU Emacs interface 80
prolog.ini files . 188, 209
prolog_flag/[2,3] (built-in) 217, 245, 247
prolog_flag/[2,3] (built-in, ref page) . . 1237
prolog_load_context/2 (built-in) 245
prolog_load_context/2 (built-in, ref page)

. 1240
prologbeans (library package) 735
PrologCloseQuery (VB function) 111
PrologDeInit (VB function) 112
PrologGetException (VB function) 112
PrologGetLong (VB function) 112
PrologGetString (VB function) 112
PrologGetStringQuoted (VB function) 112
PROLOGGLOBALMIN (environment variable) . . . 265
PROLOGINCSIZE (environment variable) 265,

373, 1453
PrologInit (VB function) 112
PROLOGINITSIZE (environment variable) . . . 264,

1453
PROLOGKEEPSIZE (environment variable) . . . 265,

1453

Book Index 1533

PROLOGLOCALMIN (environment variable) 265
PROLOGMAXSIZE (environment variable) 265,

373, 1453
PrologNextSolution (VB function) 111
PrologOpenQuery (VB function) 111
PrologQueryCutFail (VB function) 112
PrologSession on PrologSession 739
Prompt, changing . 217
prompt, field in stream record 440
prompt, handling for tty streams 444
prompt/[2,3] (built-in) 217
prompt/[2,3] (built-in, ref page) 1242
prompt/1 (prompt) . 629
prompted_char/2 (prompt) 629
prompted_constant/2 (readconst) 632
prompted_constants/2 (readconst) 632
prompted_line/[2,3] (prompt) 629
prompting for user input 629, 632
prompting for user input, numerical 625, 626,

628
prompting for user input, textual 624
prompts. 31
proper list (definition) . 529
proper lists, checking for . 533
properties of predicates . 245
proxl (library package) 749
proxl_xlib/[3,4] (ProXL) 855
ProXT . 897
proxt (library package) 897
public (definition) . 155
public, predicates . 271, 272
public/1 (declaration, ref page) 1244
punctuation, recognizing . 616
put/[1,2] (built-in) . 222
put/[1,2] (built-in, ref page) 1245
put_back_event/[1,2] (ProXL) 861
put_chars/1 (lineio) . 618
put_color/[2,3] (ProXL) 842
put_colors/[1,2] (ProXL) 843
put_contents/3 (structs) 659
put_event_values/2 (ProXL) 862
put_graphics_attributes/2 (ProXL) 830
put_keyboard_attributes/[1,2] (ProXL) 881
put_line/1 (lineio) . 618
put_pixmap_attributes/[2,3] (ProXL) 846
put_pointer_attributes/[1,2] (ProXL) 880
put_window_attributes/[2,3] (ProXL) 785
putfile (library package) 649

Q
qcon(1) (command line tool) 345, 356, 1479
qerrno (library package) 649
qgetpath(1) (command line tool) 363, 1480
qld(1) (command line tool) . . 192, 212, 334, 339,

343, 355, 372, 1481
qld, and library path . 213
qnm(1) (command line tool) 195, 1487

QOF file (definition) . 155
QOF files . 192
QOF files, dependencies . 194
QOF files, saving . 196
QP_action (C function, ref page) 1354
QP_action(), flow of control 251
QP_add_* (C function, ref page) 1356
QP_add_absolute_timer (C function, ref page)

. 1356
QP_add_exception (C function, ref page)

. 1356
QP_add_input (C function, ref page) 1356
QP_add_output (C function, ref page) 1356
QP_add_timer (C function, ref page) 1356
QP_add_tty (C function, ref page) 1358
QP_argc (C variable) . 310
QP_argv (C variable) . 310
QP_atom_from_padded_string (C function) . . 394
QP_atom_from_padded_string (C function, ref

page) . 1359
QP_atom_from_string (C function) 393
QP_atom_from_string (C function, ref page)

. 1359
QP_char_count (C function, ref page) 1361
QP_clearerr (C function, ref page) 1362
QP_close_query (C function, ref page) 1363
QP_compare (C function, ref page) 1364
QP_cons_* (C function, ref page) 1366
QP_cons_functor (C function, ref page). . . 1366
QP_cons_list (C function, ref page) 1366
QP_curin (C variable) . 481
QP_curout (C variable) . 481
QP_cut_query (C function, ref page) 1368
QP_errno (C variable) . 1345
QP_ERROR (C macro) . 423
QP_ERROR, code example 1371
QP_error_message (C function, ref page)

. 1369
QP_exception_term (C function, ref page)

. 1371
QP_FAILURE (C macro) . 423
QP_fclose (C function, ref page) 1373
QP_fdopen (C function, ref page) 1374
QP_ferror (C function, ref page) 1375
QP_fgetc (C function, ref page) 1376
QP_fgets (C function, ref page) 1377
QP_flush (C function, ref page) 1378
QP_fnewln (C function, ref page) 1379
QP_fopen (C function, ref page) 1380
QP_fpeekc (C function, ref page) 1381
QP_fprintf (C function, ref page) 1382
QP_fputc (C function, ref page) 1383
QP_fputs (C function, ref page) 1384
QP_fread (C function, ref page) 1385
QP_free (C function, ref page) 1404
QP_fskipln (C function, ref page) 1386
QP_fwrite (C function, ref page) 1387
QP_get_* (C function, ref page) 1388

1534 Quintus Prolog

QP_get_arg (C function, ref page) 1388
QP_get_atom (C function, ref page) 1388
QP_get_db_reference (C function, ref page)

. 1388
QP_get_float (C function, ref page) 1388
QP_get_functor (C function, ref page) 1388
QP_get_head (C function, ref page) 1388
QP_get_integer (C function, ref page) 1388
QP_get_list (C function, ref page) 1388
QP_get_nil (C function, ref page) 1388
QP_get_tail (C function, ref page) 1388
QP_getchar (C function, ref page) 1393
QP_getpos (C function, ref page) 1394
QP_initialize (C function, ref page) 1395
QP_ipc_atom_from_string() (C function) . . . 513
QP_ipc_close() (C function) 513
QP_ipc_create_servant() (C function) 511
QP_ipc_lookup() (C function) 512
QP_ipc_next() (C function) 512
QP_ipc_prepare() (C function) 512
QP_ipc_shutdown_servant() (C function) . . . 513
QP_ipc_string_from_atom() (C function) . . . 514
QP_is_* (C function, ref page) 1399
QP_is_atom (C function, ref page) 1399
QP_is_atomic (C function, ref page) 1399
QP_is_compound (C function, ref page) 1399
QP_is_float (C function, ref page) 1399
QP_is_integer (C function, ref page) 1399
QP_is_list (C function, ref page) 1399
QP_is_number (C function, ref page) 1399
QP_is_variable (C function, ref page) 1399
QP_line_count (C function, ref page) 1402
QP_line_position (C function, ref page)

. 1403
QP_malloc (C function, ref page) 1404
QP_new_term_ref (C function, ref page). . . 1405
QP_newline (C function, ref page) 1407
QP_newln (C function, ref page) 1408
QP_next_solution (C function, ref page)

. 1409
QP_open_query (C function, ref page) 1411
QP_padded_string_from_atom (C function) . . 394
QP_padded_string_from_atom (C function, ref

page) . 1440
QP_peekc (C function, ref page) 1413
QP_peekchar (C function, ref page) 1414
QP_perror (C function, ref page) 1415
QP_pred (C function, ref page) 1416
QP_pred_ref (C type) . 422
QP_predicate (C function, ref page) 1417
QP_prepare_stream (C function, ref page)

. 1419
QP_printf (C function, ref page) 1420
QP_put_* (C function, ref page) 1421
QP_put_atom (C function, ref page) 1421
QP_put_db_reference (C function, ref page)

. 1421
QP_put_float (C function, ref page) 1421

QP_put_functor (C function, ref page) 1421
QP_put_integer (C function, ref page) 1421
QP_put_list (C function, ref page) 1421
QP_put_nil (C function, ref page) 1421
QP_put_term (C function, ref page) 1421
QP_put_variable (C function, ref page). . . 1421
QP_puts (C function, ref page) 1424
QP_qid (C type) . 424
QP_query (C function, ref page) 1425
QP_register_atom (C function, ref page)

. 1427
QP_register_stream (C function, ref page)

. 1428
QP_remove_* (C function, ref page) 1429
QP_remove_exception (C function, ref page)

. 1429
QP_remove_input (C function, ref page). . . 1429
QP_remove_output (C function, ref page)

. 1429
QP_remove_timer (C function, ref page). . . 1429
QP_rewind (C function, ref page) 1430
QP_seek (C function, ref page) 1431
QP_select (C function, ref page) 1433
QP_setinput (C function, ref page) 1435
QP_setoutput (C function, ref page) 1436
QP_setpos (C function, ref page) 1437
QP_skipline (C function, ref page) 1438
QP_skipln (C function, ref page) 1439
QP_stderr (C variable) 481, 1458
QP_stdin (C variable) 481, 1458
QP_stdout (C variable) 481, 1407, 1458
QP_string_* (C function, ref page) 1440
QP_string_from_atom (C function) 393
QP_string_from_atom (C function, ref page)

. 1440
QP_SUCCESS (C macro) . 423
QP_tab (C function, ref page) 1442
QP_tabto (C function, ref page) 1443
QP_term_ref (C type) . 395
QP_term_type (C function, ref page) 1444
QP_toplevel (C function, ref page) 1446
QP_trimcore (C function, ref page) 1447
QP_ungetc (C function, ref page) 1448
QP_unify (C function, ref page) 1449
QP_unregister_atom (C function, ref page)

. 1427
QP_vfprintf (C function, ref page) 1450
QP_wait_input (C function, ref page) 1451
qpc(1) (command line tool) 5, 40, 120, 158,

191, 192, 213, 334, 339, 341, 355, 657, 1489
qpc, and library path . 213
qpc, foreign code and . 353
qpc, handling of embedded commands . . . 345, 349
qpc, overview . 339
qpdet, determinacy checker 641
qpdet, the determinacy checker 39
qplib . 525
qplib, file search path 212

Book Index 1535

qplm(1) (command line tool) 1493
qpxref, cross-referencer . 640
qpxref, the cross-referencer 51
qsetpath(1) (command line tool) 248, 363,

1495
qsort (library package) 649
QU_*_mem (C function, ref page) 1452
QU_alloc_init_mem (C function, ref page)

. 1452
QU_alloc_mem (C function, ref page) 1452
QU_fdopen (C function, ref page) 1456
QU_free_mem (C function, ref page) 1452,

1457
QU_initio (C function, ref page) 1458
QU_initio() under QUI (C function) 77
QU messages.pl . 327
QU messages.pl, translation and 332
QU_open (C function, ref page) 1462
QU_stream_param (C function, ref page). . . 1472
quantifying variables for , not/1 595
quasi-skip (debugger command) 118, 138
queries . 180
queries, committing to first solution 598
queries, to Prolog from GNU Emacs 93
query (definition) . 155
query identifier . 98
query_abbreviation/3 (built-in) 331, 335
query_abbreviation/3 (built-in, ref page)

. 1247
query_best_cursor/[4,5] (ProXL) 849
query_hook/6 (hook) . 335
query_hook/6 (hook, ref page) 1248
query_text_extents/[7,8] (ProXL) 837
QueryAnswer on PrologSession 740
question mark, recognizing 615
questions, asking . 623, 624
questions, default answers to 623, 624
questions, line of bounded length 624
questions, numerical answers between two values

. 626, 628
questions, unrestricted numerical answers 625
queues (library package) 649
QUI - Quintus User Interface 53
QUI All . 53
QUI Debugger Ancestors Window 133
QUI Debugger Bindings Window. 132
QUI Debugger Source Window 121
QUI Debugger Standard Debugger Window . . . 133
QUI Editor . 59
QUI Emacs interface . 65
QUI Help Window . 68
QUI Help Window, searching for strings 71
QUI Main Window . 55
QUI Programming Notes . 76
QUI Resource File . 72
qui(1) (command line tool) 1497
QUI, linking into an application 354
Quintus Object Format (definition) 192

Quintus Object Format (QOF) 341
Quintus Prolog style conventions 24
quintus, file search path 211
quintus-directory . 11
quintus-directory (definition) 156
quintus.dec (library package) 647
quintus.h, C header file 251, 525
quintus.mac (library package) 647
quintus_directory (Prolog flag) 11, 1238
QUINTUS_EDITOR_PATH (environment variable)

. 65, 79, 1478, 1498
QUINTUS_KANJI_FLAG (environment variable)

. 335
QUINTUS_LANGUAGE (environment variable) . . 334
QUINTUS_LISP_PATH (environment variable)

. 65, 79, 1478, 1498
QUINTUS_PROLOG_PATH (environment variable)

. 79
Quitting QUI . 56
quotas . 264
quotation mark . 616, 631
quote characters, in atoms 160, 178
quoted token . 631
quoted/1, write_term/[2,3] option . . . 218, 1340

R
radix, printing in . 1121
raise_exception/1 (built-in) 311
raise_exception/1 (built-in) 330
raise_exception/1 (built-in, ref page) . . 1251
random (library package) 649
random access to streams 231
range errors . 317
Range, of floats . 233
Range, of integers. 233
range, prompting for a number in a given 626,

628
ranstk (library package) 649
read (library package) . 649
Read Predicates . 216
read, can_open_file/[2,3] option 604
read, file_exists/2 option 603
read, popen/3 option . 648
read/[1,2] (built-in) . 216
read/[1,2] (built-in, ref page) 1252
read_bitmap_file/[2,3,4,5] (ProXL) 847
read_constant/[1,2] (readconst) 631
read_constants/[1,2] (readconst) 632
read_in/1 (readin) . 621
read_line/1 (readsent) . 622
read_oper_continued_line/1 (continued) . . 619
read_sent/1 (readsent) . 622
read_term/[2,3] (built-in) 216
read_term/[2,3] (built-in, ref page) 1254
read_unix_continued_line/1 (continued) . . 619
read_until/2 (readsent) 621
reading and evaluating arbitrary expressions . . 638

1536 Quintus Prolog

reading constants . 631, 632
reading constants, from the input stream 631
reading constants, from the terminal 628, 632
reading file names from the terminal 605
reading, continued lines . 619
reading, continued lines, UNIX format 619
reading, English sentences 620
reading, file names from the terminal 605, 626
reading, lines from the current input stream . . 618
reading, lines from the terminal 629
reading, lists . 632
reading, lists from the terminal 632
reading, sentences . 622
real_time, statistics/2 option 259, 1302
rebind_key/[3,4] (ProXL) 886
recolor_cursor/3 (ProXL) 849
reconsult/1 (built-in, ref page) 1257
record/1, open/4 option 1212
recorda/3 (built-in) . 295
recorda/3 (built-in, ref page) 1258
recorded keys . 295
recorded/3 (built-in, ref page) 1259
recordz/3 (built-in) . 295
recordz/3 (built-in, ref page) 1261
recursion (definition) . 156
redefinable predicates (definition) 181
redefining procedures attached to foreign functions

. 381
redefining procedures during execution 191
redefining procedures, during execution 191
redirecting output, example of 305
redo port of a procedure box 114
reference page conventions 985
region (definition) . 156
register_event_listener/[2,3] (prologbeans)

. 744
register_query/[2,3] (prologbeans) 743
register_query/1 . 743
relative filename (definition) 156
Release 3, summary of features 4
release_font/1 (ProXL) . 835
release_gc/1 (ProXL) . 830
remainder (mod) . 236
remove_advice/3 (built-in) 357
remove_advice/3 (built-in, ref page) 1262
remove_attribute_prefixes/1 (xml_parse/3

option) . 592
remove_dups/2 (lists) . 537
remove_spypoint/1 (built-in) 356
remove_spypoint/1 (built-in, ref page) . . 1263
removing an element from a set 543
removing duplicated parts from a list 537
removing, layout characters 621
rename/2 (files) . 601
rename_file/2 (files) . 601
renaming files . 601
repeat/0 (built-in) . 186
repeat/0 (built-in, ref page) 1264

repeating a query using Emacs 86
representation errors . 318
reset_servant/0 (IPC/RPC) 509
resource errors . 322
resource, access default value 889
resources for QUI . 72
rest of list, ’|’ . 162
restack_window/2 (ProXL) 787
restarting Prolog. 89
restore/1 (built-in) 196, 354
restore/1 (built-in, ref page) 1266
restrictions, operator syntax 167
retract (library package) 650
retract/1 (built-in) . 290
retract/1 (built-in, ref page) 1268
retractall/1 (built-in) 290
retractall/1 (built-in, ref page) 1270
retry (debugger command) 118, 139
rev/2 (lists) . 538
rewriting terms . 556
root window . 751
rotate_window_properties/[2,3] (ProXL) . . 786
round/[2,3] (math) . 633
rpc, Remote Predicate Calling 505
rule of inference (definition) 156
runtime generator . 355
Runtime Generator . 338
Runtime Kernel . 341
runtime system, example using library(date) . . 359
runtime systems, built-in predicates not supported

in . 356
runtime systems, use of shared object files in . . 359
runtime(File) . 363
runtime, file search path 211
runtime, statistics/2 option 259, 1302
runtime-directory . 13, 15
runtime-directory (definition) 156
runtime_directory (Prolog flag). . . 13, 15, 1238
runtime_entry/1 (hook) . 357
runtime_entry/1 (hook, ref page) 1272

S
same_functor/[2,3,4] (samefunctor) 561
same_length/[2,3] (lists) 538
samefunctor (library package) 561
samsort (library package) 650
save/[1,2] (built-in) . 193
Save/Restore, Compatibility 193
Save/Restore, in runtime systems 354
Save/Restore, in stand-alone programs 354
save_ipc_servant/1 (IPC/RPC) 511
save_modules/2 (built-in) 198
save_modules/2 (built-in, ref page) 1273
save_predicates/2 (built-in) 198
save_predicates/2 (built-in, ref page) . . 1275
save_program/[1,2] (built-in) 196, 354

Book Index 1537

save_program/[1,2] (built-in, ref page)

. 1277
save_servant/1 (IPC/RPC) 507
saved-state (definition) . 156
saved-states . 196
Saved-states . 354
saved-states, in runtime systems 354
saved-states, in stand-alone programs 354
saving, foreign code . 194
saving, QOF files . 196, 198
saving, the Prolog database 196
scale/3 (math) . 633
Screen . 850
screen, attributes . 853
screen, checking validity . 854
screen, conversion to an X screen 856
screen, default . 854, 893
screen, definition . 757
screen, saver. 882
screen_xscreen/2 (ProXL) 856
screenable, definition . 755
searching, for a file in a library 205, 209
searching, for a file in directories 214
searching, for library files . 599
searching, for strings in QUI 71
section numbering in the on-line help system . . 305
see/1 (built-in) 226, 227, 228, 599
see/1 (built-in, ref page) 1279
seeing/1 (built-in) . 228
seeing/1 (built-in, ref page) 1281
seek type. 441
seek/1, open/4 option . 1213
seek/4 (built-in, ref page) 1283
seen/0 (built-in) . 230
seen/0 (built-in, ref page) 1285
select/3 (sets) . 543
select/4 (lists) . 539
selectchk/3 (sets) . 544
selectchk/4 (lists) . 539
selecting element of . 535, 536
Selections . 788
selector predicates, argument order 555
self-modifying procedures 286, 292
semantics . 179
semantics (definition) . 156
semantics, declarative . 183
semantics, of dynamic code 286
semantics, procedural . 183
send/[4,5] (ProXL) . 862
send_event/[4,5] (ProXL) 861
sentence terminator, recognizing 615
sentences . 171
sentences, clauses and directives 179
sentences, reading . 620, 622
servant. 506
server . 486
server, grabbing . 876
servlet . 736

session_gc_timeout/1 (start/1 option) 743
session_get/4 (prologbeans) 743
session_put/3 (prologbeans) 744
session_timeout/1 (start/1 option) 743
set-depth (debugger command) 139
set_close_down_mode/[1,2] (ProXL) 878
set_font_path/[1,2] (ProXL) 836
set_input/1 (built-in) . 227
set_input/1 (built-in, ref page) 1286
set_input_focus/3 (ProXL) 877
set_of_all_servant/3 (IPC/RPC) 509
set_output/1 (built-in) 227
set_output/1 (built-in, ref page) 1287
set_screen_saver/[4,5] (ProXL) 882
set_selection_owner/[2,3,4] (ProXL) 788
seteq/2 (sets) . 544
setof (library package) 650
setof/3 (built-in) . 296
setof/3 (built-in, ref page) 1288
setproduct/3 (sets) . 545
sets (library package) . 542
sets, — collecting solutions to a goal 295
sets, adding elements to . 542
sets, appending . 546
sets, building . 532
sets, checking for . 543
sets, checking for disjoint . 543
sets, checking for equality 544
sets, checking for subset . 544
sets, converting lists to . 545
sets, deleting common elements 545
sets, deleting elements from 543
sets, finding members of . 546
sets, generating proper subsets of 541
sets, generating subsets of 539, 541, 546
sets, intersection of . 544, 545
sets, length of . 546
sets, lists as . 542
sets, ordered . 547
sets, power set of . 546
sets, product of . 545
sets, removing an element from 543
sets, removing duplicate elements 545
sets, selecting an element of 543
sets, selecting pairs of elements from 544
sets, symmetric difference of 545
sets, union of multiple . 545
sets, union of two . 545
Setting Window Attributes 785
sh, access from Prolog . 308
shared libraries, and executables 338
shared libraries, warning . 338
shared object file (definition) 156
shared objects . 376
shared vs. static object files 359
Sharing Graphics Contexts 831
SHELL (environment variable) 30, 308, 1478
shell, unix(shell(Command)) 308

1538 Quintus Prolog

shell, unix(shell) . 308
shell, unix(system(command)) 308
shell/1, unix/1 option 1321
shifting . 237
shorter_list/2 (lists) . 539
show (library package) . 650
show_module/1 (showmodule) 281
show_profile_results/[0,1,2] (built-in, ref

page) . 1290
showmodule (library package) 650
shutdown/[0,1] (prologbeans) 743
shutdown_servant/0 (IPC/RPC) 509
side-effect (definition) . 157
side-effects, in repeat loops 1264
SIGIO signal under QUI . 77
sign/[2,3] (math) . 633
signal . 252
Signal Handling, C functions for 1352
SIGPIPE signal under QUI 77
silent, message severity 326
silent/1, load_files/2 option 1168
simple query (definition) . 155
simple term (definition) . 157
simple/1 (built-in, ref page) 1292
simple pred spec (argument type) 988
simulating negation with not-provable 595
sin/2 (math). 633
single-stepping . 118
single_at, arithmetic functor 236
single_var (Prolog flag) 1237
single_var, no_style_check/1 option 1191
single_var, style_check/1 option 26, 1308
singletons/1, read_term/[2,3] option 1254
sinh/2 (math) . 633
Size Hints . 779
skeletal predicate specification 169
skip (debugger command) 117, 138
skip/[1,2] (built-in, ref page) 1293
skip/1 (built-in) . 221
skip_constant/[0,1] (readconst) 632
skip_constants/[1,2] (readconst) 632
skip_line/[0,1] (built-in) 221
skip_line/[0,1] (built-in, ref page) 1295
skipping . 117
socket . 486
solutions/1, absolute_file_name/3 option

. 1031
sort/2 (built-in) . 243
sort/2 (built-in, ref page) 1296
sound, inequality . 597
sound, negation simulation 595
source code (definition) . 157
source code, finding . 90
source linked debugger, using under Emacs 82
source module . 275, 282
source_file/[1,2,3] (built-in) 246
source_file/[1,2,3] (built-in, ref page)

. 1297

space . 616
space, reclamation 257, 1025, 1269
space, recognizing . 616
space, running out of . 264
span_left/[3,4,5] (strings) 584
span_right/[3,4,5] (strings) 585
span_trim/[2,3,5] (strings) 585
specifications, predicate . 169
specifying streams, effiency and 216
spy (debugger command) . 140
spy/1 (built-in) . 356
spy/1 (built-in), use with modules 278
spy/1 (built-in, ref page) 1299
spypoint (definition) . 157
spypoints, removing . 140
spypoints, setting . 140
sqrt/2 (math) . 633
stack, global . 256
stack, local . 256
stack_shifts, statistics/2 option . . . 259, 1302
stacking order . 751
stand-alone, programs . 337
stand-alone, vs. saved-state 338
standard debugger window 133
standard, input and output streams 32, 215
standard, order on terms . 242
start/[0,1] (prologbeans) 742
starting point for a runtime system 357
state_mask/2 (ProXL) 880, 884
static library (definition) 156, 157
static predicate (definition) 157
static procedures . 287
static-linking . 337
statistics (library package) 651
statistics, displaying . 257
statistics/[0,2] (built-in) 257
statistics/[0,2] (built-in), garbage

collection . 259
statistics/[0,2] (built-in, ref page) . . . 1301
stchk (library package) 651
stdin (C variable) . 488
store_slot/2 (objects) . 728
stream (definition) . 157
stream bottom layer close function 457
stream bottom layer flush function 453
stream bottom layer read function 451
stream bottom layer seek function 454
stream bottom layer write function 452
stream buffer size . 439
stream errno . 443
stream errors . 226
stream format . 438
stream functions . 479
stream macros . 479
stream position . 443, 444
stream position, objects . 231
stream record size . 439
stream structure . 437

Book Index 1539

stream, bottom layer function 443
stream, objects . 226
stream, parameters . 1472
stream, position objects . 1306
stream, prolog_load_context/2 option 1240
stream_code/2 (built-in) 226
stream_code/2 (built-in, ref page) 1304
stream object . 226
stream object (argument type) 988
stream_position/[2,3] (built-in) 231
stream_position/[2,3] (built-in, ref page)

. 1306
streams . 224
streams, closing . 229, 599
streams, closing all . 605
streams, current input and output. . . 214, 227, 228
streams, Dec-10-compatible 604
streams, exceptions . 226
streams, finding out what streams are open . . . 229
streams, listing open . 599
streams, maximum number of 32
streams, null . 228
streams, opening . 227, 599
streams, opening for reading UNIX archive . . . 605
streams, position information for terminal I/O

. 230
streams, random access to 231
streams, reading from . 632
streams, reading the state of 230
streams, specifying . 215
streams, standard input and output 215
streams, to encrypted files 465
string (definition) . 163
string arguments in the foreign interface 390,

392, 419
String on PrologSession 739
String on QueryAnswer . 740
String on Term . 741
string, finding the size of . 836
string_append/3 (strings) 572
string_char/3 (strings) 575
string_length/2 (strings) 575
string_search/3 (strings) 583
string_size/2 (strings) 575
strings (library package) 569
strings, comparing . 569
strings, comparing padded 569
strings, continuation . 164
strings, converting to/from atoms 393
strings, lists of ASCII characters 163
structs (library package) 655
structs, peeking into memory 236, 1047
structure (definition) . 157
structures, passing to/from foreign code 401
style conventions. 24
style, conventions . 24
style, warning facility . 24
style_check/1 (built-in) 26

style_check/1 (built-in, ref page) 1308
sub_term/2 (occurs) . 559
subchars/[4,5] (strings) 583
subdirectories, searching for in a directory 610
subseq/3 (lists) . 539
subseq0/2 (lists) . 541
subseq0/2 (sets) . 546
subseq1/2 (lists) . 541
subseq1/2 (sets) . 546
subset, checking for . 544
subset/2 (sets) . 544
subsets of a set, generating 546
substring/[4,5] (strings) 582
substrings, searching for . 582
subsumes (library package) 562
subsumes/2 (subsumes) . 562
subsumes_chk/2 (built-in) 239
subsumes_chk/2 (built-in, ref page) 1309
subsuming terms . 562
subsuming terms, checking for 562
subterm_positions/1, read_term/[2,3] option

. 1255
subterms, checking for in terms 558
subterms, counting identical occurrences 559
subterms, counting unifiable occurrences 559
subterms, enumerating . 559
subterms, identity with . 559
subterms, proper . 559
subterms, unification with 559
subtract/3 (sets) . 545
subtraction . 235
sum of list elements . 542
sumlist/2 (lists) . 542
Suspending a Prolog/Emacs session 82
swap_args/[4,6] (changearg) 557
swapping arguments of terms 557, 558
symdiff/3 (sets) . 545
symmetric difference of ordered sets 548
symmetric difference of sets. 545
sync/[0,1] (ProXL) . 852
sync_discard/[0,1] (ProXL) 852
synchronize/[1,2] (ProXL) 866
synopsis, reference page field. 985
syntax (definition) . 157
syntax errors . 322
syntax for numbers . 566
syntax, errors. 23
syntax, formal . 171
syntax, of atoms . 160
syntax, of compound terms 161
syntax, of floats . 160
syntax, of integers . 159
syntax, of lists . 162
syntax, of sentences as terms 172
syntax, of terms as tokens 173
syntax, of tokens as character strings 175
syntax, of variables . 161
syntax, restrictions. 167

1540 Quintus Prolog

syntax, rule notation . 171
syntax_errors (Prolog flag) 1237
syntax_errors/1, read_term/[2,3] option

. 1254
system errors . 323
system messages, translation of 332
system, file search path 211
system/1, open/4 option 1214
system/1, unix/1 option 1321
system/2, unix/1 option 1321
system_time, statistics/2 option 259, 1302
system_type (Prolog flag) 1238

T
tab . 616
tab/[1,2] (built-in, ref page) 1310
tab/1 (built-in) . 223
tab_to/1 (printlength) . 577
table . 591
taking apart text objects . 579
tan/2 (math). 633
tanh/2 (math) . 633
tcp . 485
tcp_accept() (C function) 503
tcp_accept/2 (IPC/TCP) . 500
tcp_address_from_file() (C function) 502
tcp_address_from_file/2 (IPC/TCP) 489
tcp_address_from_shell() (C function) 502
tcp_address_from_shell/3 (IPC/TCP) 489
tcp_address_from_shell/4 (IPC/TCP) 489
tcp_address_to_file() (C function) 501
tcp_address_to_file/2 (IPC/TCP) 489
tcp_cancel_wakeup/2 (IPC/TCP) 495
tcp_cancel_wakeups/0 (IPC/TCP) 495
tcp_connect() (C function) 503
tcp_connect/2 (IPC/TCP) 490
tcp_connected/1 (IPC/TCP) 490
tcp_connected/2 (IPC/TCP) 490
tcp_create_input_callback/2 (IPC/TCP) 498
tcp_create_listener() (C function) 501
tcp_create_listener/2 (IPC/TCP) 488
tcp_create_timer_callback/3 (IPC/TCP) 499
tcp_daily/4 (IPC/TCP) . 495
tcp_date_timeval/2 (IPC/TCP) 496
tcp_destroy_input_callback/1 (IPC/TCP) . . 499
tcp_destroy_listener/1 (IPC/TCP) 488
tcp_destroy_timer_callback/1 (IPC/TCP) . . 499
tcp_ERROR, tcp_select() value 504
tcp_input_callback/2 (IPC/TCP) 499
tcp_input_stream/2 (IPC/TCP) 497
tcp_listener/1 (IPC/TCP) 489
tcp_now/1 (IPC/TCP) . 494
tcp_output_stream/2 (IPC/TCP) 498
tcp_reset/0 (IPC/TCP) . 488
tcp_schedule_wakeup/2 (IPC/TCP) 494
tcp_scheduled_wakeup/2 (IPC/TCP) 495
tcp_select() (C function) 504

tcp_select/1 (IPC/TCP) . 491
tcp_select/2 (IPC/TCP) . 492
tcp_select_from/1 (IPC/TCP) 497
tcp_select_from/2 (IPC/TCP) 497
tcp_send/2 (IPC/TCP) . 493
tcp_shutdown() (C function) 504
tcp_shutdown/1 (IPC/TCP) 490
tcp_SUCCESS, tcp_select() value 504
tcp_time_plus/3 (IPC/TCP) 494
tcp_TIMEOUT, tcp_select() value 504
tcp_timer_callback/2 (IPC/TCP) 500
tcp_trace/2 (IPC/TCP) . 487
tcp_watch_user/2 (IPC/TCP) 488
tell/1 (built-in) 226, 227, 228, 599
tell/1 (built-in, ref page) 1311
telling/1 (built-in) . 228
telling/1 (built-in, ref page) 1313
term (argument type) . 988
term (definition) . 157
term comparison . 551
Term Comparison, predicates for 1002
Term Handling, predicates for 1003
Term I/O, C functions for 1352
Term I/O, predicates for 1003
Term on QueryAnswer . 740
Term on Term . 742
term subsumption (definition) 239
Term, input . 216
Term, output . 217
term/2, tcp_select/1 output 492
term_expansion/2 (hook) 191, 350
term_expansion/2 (hook, ref page) 1315
term_position, prolog_load_context/2 option

. 1240
term_position/1, read_term/[2,3] option

. 1255
TERMCAP (environment variable). 80
termdepth (library package) 652
terminal I/O, stream position information for

. 230
terminal requirements for running Emacs 80
terminal, reading file names from 626
terminal, reading lines from 630
terms (library package) 651
Terms in C, C functions for 1352
terms, alphabetic variants 562
terms, arguments of . 239
terms, as arrays . 556
terms, as sentences. 171
terms, built-in predicates for 550
terms, changing arguments by path 558
terms, changing arguments to 556, 557
terms, changing symbol in 557
terms, checking for subterms. 558
terms, circular . 185
terms, comparison of . 242
terms, compound . 161
terms, enumerating subterms 559

Book Index 1541

terms, exchanging arguments of 557, 558
terms, finding arguments by path 554
terms, finding arguments of 551, 552, 553
terms, finding principal functor of 552, 553
terms, identity with subterms 559
terms, inequality of . 596, 597
Terms, input and output of 215
terms, integers as . 551, 552
terms, matching principal functors of 561
terms, ordering on . 242
terms, passing to/from foreign code 395
Terms, passing to/from foreign code 383
terms, passing to/from Prolog 420
terms, predicates for looking at 238
terms, principal functor of 239
terms, rewriting . 556
terms, sound inequality of 597
terms, subsumption . 239, 562
terms, subsumption, checking for. 562
terms, testing elements of two 553, 554
terms, testing unifiability of 597
terms, unification . 562
terms, unification with subterms 559
terms, width of . 577
text objects . 564, 565
text objects, concatenating 571
text objects, extracting characters from 575
text objects, finding length of 575
text objects, searching for substrings 582
text objects, taking apart. 579, 582, 584
text, Emacs commands for 306
text, reading and writing . 617
text/0, open/4 option . 1212
text_extents/[7,8] (ProXL) 837
text_width/3 (ProXL) . 836
textual input, prompting for 624
The Quintus Directory . 11
time arithmetic . 494
timer alarms . 494
TMPDIR (environment variable) 1173, 1485,

1492
to_lower/2 (ctypes) 569, 588, 616
to_upper/2 (ctypes) 569, 588, 617
token, quoted . 631
token, unquoted . 631
tokens . 171
tokens (library package) 652
told/0 (built-in) . 230
told/0 (built-in, ref page) 1316
toplevel . 252
trace (definition) . 157
trace mode . 118
trace/0 (built-in) . 356
trace/0 (built-in, ref page) 1317
tracing . 118
tracing messages in interprocess communication

. 518
tracing, trace flag . 247

trail, statistics/2 option 259, 1302
Transient Windows . 782
translation of system messages 332
transpose/2 (lists) . 542
tree, finding subtree of . 555
trees (library package) 652
trim/0, open/4 option . 1214
trim_blanks/2 (readsent) 621
trimcore/0 (built-in) . 257
trimcore/0 (built-in, ref page) 1318
trimming an input record 441
true/0 (built-in) . 186
true/0 (built-in, ref page) 1319
truncate/[2,3] (math) . 633
tty stream . 444
ttyflush/0 (built-in) . 230
ttyflush/0 (built-in, ref page) 1320
ttyget/1 (built-in) . 221
ttyget/1 (built-in, ref page) 1320
ttyget0/1 (built-in) . 221
ttyget0/1 (built-in, ref page) 1320
ttynl/0 (built-in) . 222
ttynl/0 (built-in, ref page) 1320
ttyput/1 (built-in) . 222
ttyput/1 (built-in, ref page) 1320
ttyskip/1 (built-in) . 221
ttyskip/1 (built-in, ref page) 1320
ttytab/1 (built-in, ref page) 1320
tutorial, file search path 212
type errors . 315
type tests, C functions for 1352
type tests, predicates for 238, 1004
type-in module . 275
type-in module, changing . 276
type_definition/[2,3] (structs) 661
types (library package) 652

U
unary minus . 235
unbound (definition) . 157
undefine_method/3 (objects) 729
undefined predicates . 120
undefined procedures 120, 247
underscore, recognizing . 615
ungrab_button/3 (ProXL) 871
ungrab_key/3 (ProXL) . 875
ungrab_keyboard/[0,1,2] (ProXL) 874
ungrab_pointer/[0,1,2] (ProXL) 871
ungrab_server/[0,1] (ProXL) 876
unifiability of terms . 597
unification . 183
unification (definition) . 157
unification, and term subsumption 562
unification, explicit . 239
unification, of terms . 562
unify (library package) 562
unify/2 (unify) . 562

1542 Quintus Prolog

uninherit/1 (objects) . 730
uninstall_colormap/1 (ProXL) 844
uninstantiated . 1332
uninterruptible_call/1 (critical) 324
uninterruptible_on_exception/3 (critical)

. 324
union of ordered sets, multiple 548
union of ordered sets, two 548
union of sets, multiple . 545
union of sets, two . 545
union/[3,4] (sets) . 545
unit clause . 179
unit clause (definition) 151, 158
univ . 550
UNIX . 264
unix (library package) . 606
unix shell, spawning . 1321
UNIX, access from Prolog 307
UNIX, limit on virtual memory 264
UNIX, make utility . 348
UNIX-like commands 565, 606
unix/1 (built-in) 307, 308, 599
unix/1 (built-in, ref page) 1321
unknown (Prolog flag) . 1237
unknown predicates . 1325
unknown procedure catching 247, 288
unknown/2 (built-in) . 120
unknown/2 (built-in, ref page) 1324
unknown_predicate_handler/3 (hook) . . 120, 313
unknown_predicate_handler/3 (hook, ref page)

. 1325
unmap_subwindows/1 (ProXL) 786
unquoted token . 631
unreachable code . 51
unregister_event_listener/1 (prologbeans)

. 744
unsigned_16_at, arithmetic functor 236
unsigned_8_at, arithmetic functor 236
update (library package) 652
upper/[1,2] (ctypes) . 588
uppercase letter . 616
use_module/[1,2,3] (built-in) 273
use_module/[1,2,3] (built-in, ref page)

. 1327
use_module/[1-3] (built-in) 357
use_module/1 (built-in), vs ensure_loaded/1

. 273
user-defined stream . 445
user-defined stream structure 446
user-defined, predicates 245, 1079
user_error (stream alias) 226, 1306
user_help/0 (hook) . 1146
user_help/0 (hook, ref page) 1330
user_input (stream alias) 226, 488, 1306
user_input/0, tcp_select/1 output 491
user_output (stream alias) 226, 306, 1306
Using color . 838
Using Graphics Contexts . 831

utility, bitmask handling . 884
Utility, Functions . 884
utility, key handling . 886

V
valid_colormap/1 (ProXL) 845
valid_colormapable/2 (ProXL) 845
valid_cursor/1 (ProXL) . 849
valid_display/1 (ProXL) 852
valid_displayable/2 (ProXL) 852
valid_font/1 (ProXL) . 838
valid_fontable/2 (ProXL) 838
valid_gc/1 (ProXL) . 832
valid_gcable/2 (ProXL) . 832
valid_pixmap/1 (ProXL) . 847
valid_screen/1 (ProXL) . 854
valid_screenable/2 (ProXL) 855
valid_window/1 (ProXL) . 789
valid_windowable/2 (ProXL) 789
var/1 (built-in, ref page) 1332
variable (definition) . 158
variable binding window . 132
variable_names/1, read_term/[2,3] option

. 1254
variables . 180
variables, anonymous . 161
Variables, declarations . 2
variables, instantiation of 1332
variables, meta- . 2, 528
variables, scope of . 180
variables, syntax of . 161
variant/2 (subsumes) . 562
vbqp, file search path . 101
vectors (library package) 652
version (Prolog flag) . 1238
version/[0,1] (built-in, ref page) 1333
visual, conversion to an X visual id 856
visual_id/[2,3] (ProXL) 856
Visuals . 839
vms/[1,2] (built-in, ref page) 1334
void on Bindings. 742
void on PrologSession 739, 740
volatile (definition) . 158
volatile (predicate property) 1227
volatile/1 (declaration) 199
volatile/1 (declaration, ref page) 1335

W
wakeup mechanism . 494
wakeup/1, tcp_select/1 output 491
warning, message severity 326
warnings, style . 24
warp_pointer/8 (ProXL) . 877
when/1, load_files/2 option 1167
white space character, recognizing 616
width of terms if printed . 577

Book Index 1543

Window . 774
window (definition) . 158
Window Manager functions 866
window manager, hints 779, 781
window manager, interaction with. 779
window, attributes . 775, 785
window, callback property 778
window, checking validity 788, 789
window, controlling the lifetime 867
window, creating . 784
window, definition . 751
window, delete properties 786
window, destroying . 784, 785
window, finding . 787
window, icon naming . 779
window, initial hints . 781
window, initial state hint . 781
window, interaction with Window Manager . . . 779
window, map subwindows 786
window, miscellaneous primitives 787
window, naming . 779
window, position . 779
window, properties . 778, 783
window, refresh . 756
window, rotate properties 786
window, shape hints . 779
window, size hints . 779
window, stacking . 787
window, transient property 782
window, unmap subwindows 786
window, window group hint 782
window_children/[1,2] (ProXL) 787
window_event/4 (ProXL) . 859
windowable, checking validity 789
windowable, definition . 755
working directory, changing 307
write (debugger command) 139
Write Predicates . 217
Write Predicates , —, distinctions among 218
write, file_exists/2 option 603
write, popen/3 option . 648
write/[1,2] (built-in) . 217
write/[1,2] (built-in, ref page) 1337
write_bitmap_file/[2,4] (ProXL) 847
write_canonical/[1,2] (built-in) 217
write_canonical/[1,2] (built-in, ref page)

. 1338
write_term/[2,3] (built-in) 217

write_term/[2,3] (built-in, ref page) . . . 1340
writeq/[1,2] (built-in) 217
writeq/[1,2] (built-in, ref page) 1343
writetokens (library package) 653
writing bidirectional code 561
writing characters, to the current output stream

. 618
writing lines, to the current output stream 618
writing pattern matchers over commutative

operators . 537
writing prompts to the terminal 629
writing, lines . 617

X
X Display, finding or converting 855
X Screen, finding or converting 856
X, identity for numbers 237
XENVIRONMENT (environment variable) 889
xevent/1, event value for callbacks 790
XID, finding or converting 855
Xlib Comparison . 890
xlib, argument order . 891
xlib, caching of values . 893
xlib, convenience functions 892
Xlib, conversion to ProXL objects 855
xlib, data structures . 891
xml (library package) . 653
xml_parse/[2,3] (xml) . 592
xml_pp/1 (xml) . 592
xml_subterm/2 (xml) . 592
xor, bitwise . 237
xref (library package) . 640

Y
y0/2 (math) . 633
y1/2 (math) . 633
yes-no questions, asking . 623
yesno/[1,2] (ask) . 623
yn/3 (math) . 633

Z
zero-quote notation for character conversion . . 159
zip (debugger command) 118, 138
zip mode . 118
Zoom Hints . 779

1544 Quintus Prolog

	Introduction
	About this Manual
	Overview
	Organization of the Manual
	Notational Conventions
	Goal Templates and Mode Annotations
	Examples
	Operating System Dependencies

	Bibliographical Notes

	Highlights of release 3
	Embeddability
	QOF Loading and Saving
	QUI: An X-based Development Environment
	Source-linked Debugger
	Other New Features
	Compatibility Issues
	Saved States
	Error Reporting/Handling

	New Built-in Predicates
	New Hook Predicates
	Removed Built-in Predicates

	The Quintus Directory
	Structure of the Quintus Directory under UNIX
	Structure of the Quintus Directory under Windows
	Search Paths

	User's Guide
	Getting Started
	Overview
	Starting Prolog
	Exiting Prolog
	The Top-level Prolog Prompt
	Using the On-line Help System

	Loading Programs into Prolog
	Loading a File into Prolog
	Loading Pre-Compiled (QOF) Files
	Commands in Files
	Syntax Errors
	Style Warnings
	Saving and Restoring a Program State
	Basic Information

	Using an Initialization File

	Running Programs
	Overview
	Interrupting the Execution of a Program
	Errors, Warnings and Informational Messages
	Undefined Predicates
	Executing Commands from Prolog
	Dynamic Predicates
	Prompts

	Limits in Quintus Prolog
	Writing Efficient Programs
	Overview
	The Cut
	Overview
	Making Predicates Determinate
	Placement of Cuts
	Terminating a Backtracking Loop

	Indexing
	Overview
	Data Tables
	Determinacy Detection

	Last Clause Determinacy Detection
	The Quintus Determinacy Checker
	Using the Determinacy Checker
	Declaring Nondeterminacy
	Checker Output
	Example
	Options
	What is Detected

	Last Call Optimization
	Accumulating Parameters
	Accumulating Lists

	Building and Dismantling Terms
	Conditionals and Disjunction
	The Quintus Cross-Referencer
	Introduction
	Basic Use
	Practice and Experience

	The Quintus User Interface
	Quintus User Interface
	Starting Up QUI
	Exiting QUI

	QUI Main Window
	Main Window Menu Bar
	File Pulldown
	Debug Pulldown
	Help Pulldown

	QUI Query History Menu
	QUI Query Interpreter Sub-Window
	Prolog Output and Input
	Key Bindings

	QUI Interrupt Button
	QUI Next Answer Buttons
	QUI Error Dialogue Window

	Edit Windows
	Invoking an Edit Window
	File Pulldown
	Misc Pulldown
	Help Pulldown
	Key Bindings

	Interface to External Editors
	Interface to GNU Emacs
	Invoking GNU Emacs to Edit Files From QUI
	Key Bindings in "qui" mode

	QUI Debug Window
	QUI Help Window
	Invoking Help
	Help Window
	Selecting a Sub-Section from a Menu
	Following Cross-References in Text
	Selecting a Topic in Text

	Help Window Menu Bar
	File Pulldown
	Goto Pulldown
	Invoking Goto Options from Prolog Predicates
	History Pulldown
	Misc Pulldown --- Search

	Customizing and Interfacing with QUI
	The QUI Resource File
	Customizing QUI Resources
	Global Resources
	Labels and Messages
	Menu Entries
	Key Bindings
	Editor Resources
	Debugger Resources
	Help System Resources

	Restrictions on developing programs under QUI
	Hook Predicates
	Embeddable C Function
	UNIX Signal Handling

	The Emacs Interface
	Overview
	Overview
	Environment Variables
	Using Prolog with the Emacs Editor
	Overview
	Terminal and Operating System Requirements
	Entering Prolog and Emacs
	Exiting Emacs
	Suspending an Emacs Session

	The Source Linked Debugger
	Accessing the On-line Manual
	Loading Programs
	Basic Information
	Loading an Entire Buffer
	Loading a Region in a Buffer
	Loading a Single Procedure

	Repeating a Query
	Repeating Queries under Gnu Emacs

	Displaying Previous Input
	Locating Procedures

	The GNU Emacs Interface
	Overview
	Key Bindings
	Prolog Mode
	Prolog Source Code Layout Restrictions
	Rebinding Keys in Your Initialization File
	Programming the Prolog/GNU Emacs Interface
	Submitting Prolog Queries from GNU Emacs
	Invoking Emacs-Lisp Functions from Prolog

	The Visual Basic Interface
	Overview
	How to Call Prolog from Visual Basic
	Opening and Closing a Query
	Finding the Solutions of a Query
	Retrieving Variable Values
	Evaluating a Query with Side-Effects
	Handling Exceptions in Visual Basic

	How to Use the Interface
	Setting Up the interface
	Initializing the Prolog engine
	Deinitializing the Prolog Engine From VB
	Loading the Prolog code

	Examples
	Example 1 - Calculator
	Example 2 - Train
	Example 3 - Queens

	Summary of the Interface Functions

	The Debugger
	Debugging Basics
	Introduction
	The Procedure Box Control Flow Model
	Understanding Prolog Execution Using The Debugger
	Traveling Between Ports
	Basic Traveling Commands
	Spypoints
	Traveling Commands Sensitive to Spypoints
	Commands That Change The Flow Of Control

	Debugger Concepts
	Trace Mode, Debug Mode, And Zip Mode
	Leashing
	Locked Predicates
	Unknown Procedures
	Current Debugging State

	Summary of Predicates

	The Source Linked Debugger
	Introduction
	Showing Your Place In The Source Code
	The Call Port
	The Exit And Done Ports
	The Redo Port
	The Fail Port
	The Head Port
	The Exception Port

	When Source Linking Is Not Possible
	Traveling Between Ports
	Seeing Ancestor Frames
	Debugger Menus
	The File Menu
	The Options Menu
	The Spypoint Menu
	The Window Menu
	The Travel Menu
	The Help Menu

	The Status Panel
	Other Windows
	The Variable Bindings Window
	The Standard Debugger Window
	The Ancestors Window
	Menus For These Windows

	The Standard Debugger
	Format of Debugging Messages
	Format of Head Port Messages
	Format of Exception Port Messages

	Options Available during Debugging
	Introduction
	Basic Control Options
	Printing Options
	Advanced Control Options
	Environment Options
	Help Options

	The Advice Facility
	Use of Advice Predicates
	Performance
	Summary of Predicates

	The Profiler
	Use of the Profiler
	Customized Output
	Performance
	Summary of Predicates

	Glossary
	Glossary

	The Prolog Language
	Syntax
	Overview
	Terms
	Overview
	Integers
	Floating-point Numbers
	Atoms
	Variables
	Foreign Terms

	Compound Terms
	Lists
	Strings As Lists

	Character Escaping
	Operators and their Built-in Predicates
	Overview
	Manipulating and Inspecting Operators
	Syntax Restrictions
	Built-in Operators

	Commenting
	Predicate Specifications
	Formal Syntax
	Overview
	Notation
	Syntax of Sentences as Terms
	Syntax of Terms as Tokens
	Syntax of Tokens as Character Strings
	Notes

	Summary of Predicates

	Semantics
	Programs
	Types of Predicates Supplied with Quintus Prolog
	Hook Predicates
	Redefinable Predicates

	Disjunction
	Declarative and Procedural Semantics
	The Cut
	Occur Check
	Control

	Invoking Prolog
	Prolog Command Line Argument Handling
	The Initialization File

	Exiting Prolog

	Loading Programs
	Overview
	The Load Predicates
	Redefining Procedures during Program Execution
	Predicate List

	Saving and Loading the Prolog Database
	Overview of QOF Files
	Compatibility with save/restore in previous releases
	Foreign Code
	Saved-States
	Selective saving and loading of QOF files
	Initializing Goals in Saved States
	The Initialization Declaration
	Volatile Predicates
	Fine Tuning

	Predicate List

	Files and Directories
	The File Search Path Mechanism
	Defining File Search Paths
	Frequently Used File Specifications
	Filename Defaults
	Predefined file_search_path Facts
	The system file_search_path
	The Library Paths
	Editor Command for Library Search

	List of Predicates

	Input and Output
	Introduction
	About Streams
	Programming Note
	Stream Categories

	Term Input
	Reading Terms: The "Read" Predicates
	Changing the Prompt

	Term Output
	Writing Terms: the "Write" Predicates
	Common Characteristics
	Distinctions Among the "write" Predicates
	Displaying Terms
	Using the portray hook
	Portraying a Clause

	Character Input
	Overview
	Reading Characters
	Peeking
	Skipping
	Finding the End of Line and End of File

	Character Output
	Writing Characters
	New Line
	Tabs
	Formatted Output

	Stream and File Handling
	Stream Objects
	Exceptions related to Streams
	Suppressing Error Messages
	Opening a Stream
	Finding the Current Input Stream
	Finding the current output stream
	Backtracking through Open Streams
	Closing a Stream
	Flushing Output

	Reading the State of Opened Streams
	Stream Position Information for Terminal I/O

	Random Access to Files
	Summary of Predicates and Functions
	Library Support

	Arithmetic
	Overview
	Evaluating Arithmetic Expressions
	Arithmetic Comparison
	Arithmetic Expressions
	Arithmetic calculations
	Peeking into Memory
	Bit-vector Operations
	Character Codes

	Predicate Summary
	Library Support

	Looking at Terms
	Meta-logical Predicates
	Type Checking
	Unification and Subsumption

	Analyzing and Constructing Terms
	Analyzing and Constructing Lists
	Converting between Constants and Text
	Assigning Names to Variables
	Copying Terms
	Comparing Terms
	Introduction
	Standard Order of Terms
	Sorting Terms

	Library Support
	Summary of Predicates

	Looking at the Program State
	Overview
	Associating Predicates with their Properties
	Associating Predicates with Files
	Prolog Flags
	Changing or Querying System Parameters
	Parameters that can be Queried Only

	Load Context
	Predicate Summary

	Interrupting Execution
	Control-c Interrupts
	Interrupt Handling
	Changing Prolog's Control Flow from C
	User-specified signal handlers
	Critical Regions

	Predicate/Function Summary
	Library Support

	Memory Use and Garbage Collection
	Overview
	Reclaiming Space
	Displaying Statistics

	Garbage Collection and Programming Style
	Enabling and Disabling the Garbage Collector
	Monitoring Garbage Collections
	Interaction of Garbage Collection and Heap Expansion
	Invoking the Garbage Collector Directly
	Operating System Interaction
	Atom Garbage Collection
	The Atom Garbage Collector User Interface
	Protecting Atoms in Foreign Memory
	Permanent Atoms
	Details of Atom Registration

	Summary of Predicates

	Modules
	Overview
	Basic Concepts
	Defining a Module
	Converting Non-module-files into Module-files
	Loading a Module
	Visibility Rules
	The Source Module
	The Type-in Module
	Creating a Module Dynamically
	Module Prefixes on Clauses
	Current Modules

	Debugging Code in a Module
	Modules and Loading through the Editor Interface
	Name Clashes
	Obtaining Information about Loaded Modules
	Predicates Defined in a Module
	Predicates Visible in a Module

	Importing Dynamic Predicates
	Module Name Expansion
	The meta_predicate Declaration
	Predicate Summary

	Modification of the Database
	Introduction
	Dynamic and Static Procedures
	Database References
	Adding Clauses to the Database
	Removing Clauses from the Database
	A Note on Efficient Use of retract/1

	Accessing Clauses
	Modification of Running Code: Examples
	Example: assertz
	Example: retract
	Example: abolish

	The Internal Database
	Summary of Predicates

	Sets and Bags: Collecting Solutions to a Goal
	Introduction
	Collecting a Sorted List
	Existential Quantifier

	Collecting a Bag of Solutions
	Collecting All Instances

	Library Support
	Predicate Summary

	Grammar Rules
	Definite Clause Grammars
	How to Use the Grammar Rule Facility
	An Example
	Translation of Grammar Rules into Prolog Clauses
	Listing Grammar Rules

	Summary of Predicates

	On-line Help
	Introduction
	Help Files
	Overview
	Menus
	Cross-References
	Displaying help files

	Emacs Commands for Using the Help System
	Emacs Commands
	Predicate Summary

	Access to the Operating System
	Overview
	Executing Commands from Prolog
	Changing the Working Directory
	Other Commands
	Spawning an Interactive Shell

	Accessing Command Line Arguments
	Arguments as Numbers or as Strings
	Accessing Prolog's Arguments from C

	Predicate Summary
	Library Support

	Errors and Exceptions
	Overview
	Raising Exceptions
	Handling Exceptions
	Protecting a Particular Goal
	Handling Unknown Predicates

	Error Classes
	Instantiation Errors
	Type Errors
	Domain Errors
	Range Errors
	Representation Errors
	Existence Errors
	Permission Errors
	Context Errors
	Consistency Errors
	Syntax Errors
	Resource Errors
	System Errors

	An Example
	Exceptions and Critical Regions
	Summary of Predicates and Functions
	Summary of Relevant Libraries

	Messages
	Overview
	Implementation: Term-Based Messages
	Examples of Using the Message Facility
	Adding messages
	Changing message text
	Intercepting the printing of a message
	Interaction

	Internationalization of Quintus Prolog messages
	Translating the Messages
	Testing and Installing the Translated Messages
	Building a Version of Prolog using the Translated Messages
	Using Kanji characters

	Summary of Predicates

	Creating Executables
	Stand-Alone Programs & Runtime Systems
	Basic Concepts
	Terminology
	Shared Libraries and Delivering Execuatables
	Stand-Alone Programs
	Runtime Systems
	Compiling and Linking
	The Runtime Kernel vs. Development Kernel

	Invoking qpc, the Prolog-to-QOF Compiler
	Invoking qld, the QOF Link eDitor
	Implicit invocation via qpc
	Explicit Invocation

	Dependencies of QOF files
	Generating QOF Files and Dependencies
	Example
	Using the make(1) utility

	File Search Paths and qld
	Embedded Commands and Initialization Files
	Compile-time code vs. Runtime code
	Initialization Files
	Side-Effects in Compile-Time Code
	Modules and Embedded Commands
	Predicates Treated in a Special Way
	Restriction on Compile-Time Code

	Operator Declarations
	Saved-States and QOF files
	Dynamic Foreign Interface
	Linking with QUI

	The Runtime Generator
	Introduction
	Predicates not supported by the Runtime Kernel
	Providing a Starting Point: runtime_entry/1
	Control-c Interrupt Handling
	Shared vs. Static Object Files
	Building DLLs containing Prolog code
	Setting up the environment
	Compiling the Prolog code
	Compiling the C code
	Linking the DLL

	Installing an Application: runtime(File)

	Foreign Language Interface
	Overview
	Embedding Prolog Programs
	Overview
	The Embedding Layer
	Contrasting Old and New Models

	How Embedding Works
	Defining your own main()
	The Embedding Functions for Memory Management
	The Embedding Functions For Input/Output

	Summary of Functions

	Prolog Calling Foreign Code
	Introduction
	Summary of steps

	Using Shared Object Files and Archive Files
	Loading Foreign Executables
	Loading Foreign Files

	Linking Foreign Functions to Prolog Procedures
	Specifying the Argument Passing Interface
	Passing Integers
	Passing an Integer to a Foreign Function
	Returning an Integer from a Foreign Function
	An Integer Function Return Value

	Passing Floats
	Passing a Float to a Foreign Function
	Returning a Float from a Foreign Function
	A Floating-point Function Return Value

	Passing Atoms
	Passing Atoms in Canonical Form
	Passing Atoms as Strings between Prolog and C
	Passing Atoms as Strings to/from Pascal or FORTRAN
	Converting between Atoms and Strings

	Passing Prolog Terms
	Passing a Prolog term to a Foreign Function
	Returning a Prolog term from a Foreign Function
	A Prolog term returned as a value of a Foreign Function

	Passing Pointers
	Important Prolog Assumptions
	Debugging Foreign Code Routines
	Implementation of load_foreign_executable/1
	Implementation of load_foreign_files/2
	Library support for linking foreign code
	Foreign Code Examples: UNIX
	C Interface
	Pascal Interface
	FORTRAN Interface
	Passing pointers between Prolog and Foreign Code

	Summary of Predicates and Functions
	Library Support

	Foreign Functions Calling Prolog
	Introduction
	Summary of steps

	Making Prolog Procedures Callable by Foreign Functions
	Specifying the Argument Passing Interface: extern/1

	Passing Data to and from Prolog
	Passing Integers
	Passing Floats
	Passing Atoms in Canonical Form

	Converting Between Atoms and Strings
	Passing Atoms as Strings
	Passing Terms
	Passing Addresses

	Invoking a Callable Predicate from C
	Looking Up a Callable Prolog Predicate
	Making a Determinate Prolog Query
	Initiating a Nondeterminate Prolog Query
	Requesting a Solution to a Nondeterminate Prolog Query
	Terminating a Nondeterminate Prolog Query

	Examples
	Calling Arbitrary Prolog Goals from C
	Generating Fibonacci Numbers
	Calling a Nondeterminate Predicate
	Nested Prolog Queries

	Calling Prolog from Pascal and FORTRAN
	Summary of Predicates and Functions
	Library Support

	Quintus Prolog Input / Output System
	Overview
	Input/Output Model
	Stream Structure
	Filename of A Stream
	Mode of A Stream
	Format of A Stream
	Maximum Record Length
	Line Border Code
	File Border Code
	Reading Past End Of File
	Prompt String
	Record Trimming
	Seek Type
	Flushing An Output Stream
	Output Stream Buffer Overflow
	Storing Error Condition Of A Stream
	System-Dependent Address In A File Stream
	Bottom Layer Functions

	TTY Stream
	Defining A Customized Prolog Stream
	Summary of Steps
	Defining a Stream Structure
	Opening The User-Defined Stream
	Allocating Space And Setting Field Values For the User-Defined Stream
	Setting Up The QP_stream Structure
	Initialize and Register The Created Stream
	TTY Group For TTY Stream

	The Bottom Layer Functions
	The Bottom Layer Read Function
	The Bottom Layer Write Function
	The Bottom Layer Flush Function
	The Bottom Layer Seek Function
	The Bottom Layer Close Function

	Examples Of User-Defined Streams
	Creating A Binary Stream
	Creating A Stream To Read An Encrypted File
	Creating A Stream Based On C Standard I/O Library

	Built-in C Functions And Macros For I/O
	Backward Compatibility I/O Issues
	Default Stream
	User_defined Streams

	Inter-Process Communication
	tcp: Network Communication Package
	The client/server relationship
	Using tcp
	tcp_trace(-OldValue, +On_or_Off)
	tcp_watch_user(-Old, +On_or_Off)
	tcp_reset

	Maintaining Connections
	tcp_create_listener(?Address, -PassiveSocket)
	tcp_destroy_listener(+PassiveSocket)
	tcp_listener(?PassiveSocket)
	tcp_address_to_file(+ServerFile, +Address)
	tcp_address_from_file(+ServerFile, -Address)
	tcp_address_from_shell(+Host, +ServerFile, -Address)
	tcp_address_from_shell(+Host, +UserId, +ServerFile, -Address)
	tcp_connect(+Address, -Socket)
	tcp_connected(?Socket)
	tcp_connected(?Socket,?PassiveSocket)
	tcp_shutdown(+Socket)
	Short lived connections

	Sending and Receiving Terms
	tcp_select(-Term)
	tcp_select(+Timeout, -Term)
	tcp_send(+Socket, +Term)

	Time Predicates
	tcp_now(-Timeval)
	tcp_time_plus(?Timeval1, ?DeltaTime, ?Timeval2)
	tcp_schedule_wakeup(+Timeval, +Term)
	tcp_scheduled_wakeup(?Timeval, ?Term)
	Canceling Wakeups
	tcp_daily(+Hour, +Minute, +Seconds, -Timeval)
	tcp_date_timeval(?Date, ?Timeval)

	Using Prolog streams
	tcp_select_from(-Term)
	tcp_select_from(+Timeout, -Term)
	tcp_input_stream(?Socket, -Stream)
	tcp_output_stream(?Socket, -Stream)

	The Callback Interface
	tcp_create_input_callback(+Socket, +Goal)
	tcp_destroy_input_callback(+Socket)
	tcp_input_callback(*Socket, *Goal)
	tcp_create_timer_callback(+Timeval, +Goal, -TimerId)
	tcp_destroy_timer_callback(+TimerId)
	tcp_timer_callback(*Timerid, *Goal)
	tcp_accept(+PassiveSocket, -Socket)

	The C functions
	tcp_create_listener()
	tcp_address_to_file()
	tcp_address_from_file()
	tcp_address_from_shell()
	tcp_connect()
	tcp_accept()
	tcp_select()
	tcp_shutdown()

	Examples

	IPC/RPC: Remote Predicate Calling
	Overview
	Prolog Process Calling Prolog Process
	save_servant(+SavedState)
	create_servant(+Machine, +SavedState, +OutFile)
	call_servant(+Goal)
	bag_of_all_servant(?Template, +Goal, -Bag)
	set_of_all_servant(?Template, +Goal, -Set)
	reset_servant
	shutdown_servant

	C Process Calling Prolog Process
	The Prolog Side
	save_ipc_servant(+SavedState)
	The C Side
	QP_ipc_create_servant()
	QP_ipc_lookup()
	QP_ipc_prepare()
	QP_ipc_next()
	QP_ipc_close()
	QP_ipc_shutdown_servant()
	QP_ipc_atom_from_string()
	QP_ipc_string_from_atom()
	Examples

	Tracing
	msg_trace(-OldValue, +OnOrOff)

	Known Bugs

	Library
	Introduction
	Directory Structure
	Status of Library Packages
	Documentation of Library Packages
	Accessing Code Comments

	Notation
	Character Codes
	Mode Annotations

	List Processing
	Introduction
	What is a ``Proper'' List?
	Five List Processing Packages
	Basic List Processing --- library(basics)
	Related Built-in Predicates
	member(?Element, ?List)
	memberchk(+Element, +List)
	nonmember(+Element, +List)

	Lists as Sequences --- library(lists)
	Lists as Sets
	Set Processing --- library(sets)
	Predicates Related to Sets

	Lists as Ordered Sets --- library(ordsets)
	Parts of lists --- library(listparts)

	Term Manipulation
	Introduction
	The Six Term Manipulation Packages
	Finding a Term's Arguments --- library(arg)
	Altering Term Arguments --- library(changearg)
	Checking Terms for Subterms --- library(occurs)
	Note on Argument Order
	Checking Functors --- library(samefunctor)
	Term Subsumption --- library(subsumes)
	Unification --- library(unify)
	library(termdepth)

	Text Processing
	Introduction --- library(strings)
	Access to operating system --- system/1

	Type Testing
	Converting Between Constants and Characters
	name(?Constant, ?Chars)
	atom_chars(?Atom, ?Chars)
	number_chars(?Number, ?Chars)
	char_atom(?Char, ?Atom)

	Comparing Text Objects
	Concatenation
	Concatenation Functions

	Finding the Length and Contents of a Text Object
	Finding the width of a term --- library(printlength)
	Finding and Extracting Substrings
	midstring/[3,4,5,6]
	substring/[4,5]
	subchars/[4,5]
	The "span" family

	Generating Atoms
	Case Conversion --- library(ctypes)
	Note

	XML Parsing and Generation
	Negation
	Introduction --- library(not)
	The ``is-not-provable'' Operator
	``is-not-provable'' vs. ``is-not-true'' --- not(Goal)
	Inequality
	Term1 {@tt @rawbackslashxx }= Term2
	Term1 ~= Term2

	Forcing Goal Determinacy --- once(Goal)
	Summary

	Operations on Files
	Introduction --- library(files)
	Built-in Operations on Files
	Renaming and Deleting Files
	Checking To See If A File Exists
	Other Related Library Files
	library(aropen)
	library(ask)
	library(big_text)
	library(crypt)
	library(directory)
	library(fromonto)
	library(unix)

	Looking Up Files
	Introduction --- library(directory)
	Finding Files in Directories
	Finding Subdirectories
	Finding Properties of Files and Directories
	Summary

	Obtaining User Input
	Introduction
	Classifying Characters --- library(ctypes)
	Reading and Writing Lines --- library(lineio)
	Reading Continued Lines --- library(continued)
	Reading English Sentences
	Overview
	library(readin)
	library(readsent)

	Yes-no Questions, and Others --- library(ask)
	Other Prompted Input --- library(prompt)
	Pascal-like Input --- library(readconstant)

	Interface to Math Library
	Introduction --- library(math)

	Miscellaneous Packages
	library(ctr)
	library(date)
	Arbitrary Expressions --- library(activeread)
	library(addportray)

	Tools
	The tools Directory
	Overview

	The Cross-Referencer --- qpxref
	Determinacy Checker --- qpdet

	Abstracts

	The Structs Package
	Foreign Types
	Declaring Types

	Using Structs with QPC
	Checking Foreign Term Types
	Creating and Destroying Foreign Terms
	Accessing and Modifying Foreign Term Contents
	Casting
	Null Foreign Terms
	Interfacing with Foreign Code
	Examining Type Definitions at Runtime
	Structs to C
	Tips

	The Quintus Objects Package
	Introduction
	Using Quintus Objects
	Defining Classes
	Using Classes
	Looking Ahead

	Simple Classes
	Scope of a Class Definition
	Slots
	Visibility
	Types
	Initial Values
	The null object

	Methods
	Get and Put Methods
	Direct Slot Access
	Send Methods
	Create and Destroy Methods
	Instance Methods

	Inheritance
	Single Inheritance
	Class Definitions
	Slots
	Methods
	Send Super

	Multiple Inheritance
	Class Definitions
	Slots
	Methods
	Abstract and Mixin Classes

	Asking About Classes and Objects
	Objects
	Classes
	Messages

	Term Classes
	Simple Term Classes
	Restricted Term Classes
	Specifying a Term Class Essence

	Technical Details
	Syntax of Class Definitions
	Limitations
	Debugging
	Garbage Collection
	Multiple Inheritance
	Persistence

	Exported Predicates
	<-/2
	<</2
	>>/2
	class/1@hfill directive
	class_ancestor/2
	class_method/1@hfill directive
	class_superclass/2
	class_of/2
	create/2
	current_class/1
	debug_message/0@hfill directive
	define_method/3
	descendant_of/2
	destroy/1
	direct_message/4
	end_class/[0,1]@hfill directive
	fetch_slot/2
	inherit/1@hfill directive
	instance_method/1@hfill directive
	message/4
	nodebug_message/0@hfill directive
	pointer_object/2
	store_slot/2
	undefine_method/3
	uninherit/1@hfill directive

	Glossary

	The PrologBeans Package
	Introduction
	Features
	A First Example
	Java Interface
	Prolog Interface
	Examples
	Embedding Prolog in Java Applications
	Application Servers
	Configuring Tomcat for PrologBeans

	The ProXL Package
	Introduction
	User Benefits
	ProXL Features
	Windows
	Drawing and filling lines and shapes
	Drawing text
	Drawing Pixmaps and drawing into Pixmaps
	Graphics attributes of drawables
	Fonts
	Color and colormaps
	Graphics contexts (GCs)

	Cursors
	Inferring arguments
	Attributes: Specifying properties of ProXL objects
	Handling keyboard and mouse input
	Callbacks
	Refreshing windows
	Errors

	Displays and Screens

	Tutorial
	Displaying a Window on the Screen
	Displaying Text in the Window
	Making the Window the Right Size
	Drawing a Textured Background
	Drawing a Drop Shadow
	Specifying a Title for the Window
	Color
	Specifying a Cursor for the Window
	Specifying a Callback Procedure for a Window Event
	Redrawing a window using a callback procedure
	handle_events and Terminating a Dispatch Loop

	The 'hello.pl' Program

	Windows
	Window Attributes
	Window Manager Interaction: Properties
	Giving the Window a Name
	Giving the Window's Icon a Name
	Suggesting a Size and Shape for the Window
	Suggesting Icon, Initial State, and Other Features
	Transient windows
	Icon Sizes
	Other Window Properties

	Creating and Destroying Windows
	create_window/[2,3]
	destroy_window/1
	destroy_subwindows/1

	Finding and Changing Window Attributes
	get_window_attributes/[2,3]
	put_window_attributes/[2,3]
	rotate_window_properties/[2,3]
	delete_window_properties/[1,2]
	map_subwindows/1
	unmap_subwindows/1

	Miscellaneous Window Primitives
	restack_window/2
	window_children/[1,2]
	current_window/[1,2]

	Selections
	set_selection_owner/[2,3,4]
	get_selection_owner/[2,3]
	convert_selection/[4,5,6]

	Checking Window Validity
	valid_window/1
	valid_windowable/2
	ensure_valid_window/2
	ensure_valid_windowable/3

	Events and Callbacks
	Introduction
	Event Specification
	Events uniquely selected by a single mask
	Events that come in pairs selected by a single mask
	Multiple events selected by a single mask
	Multiple events selected by different masks
	Single events selected by multiple masks
	Events that are always selected

	Event Fields
	button_press and button_release Events
	circulate_notify Event
	circulate_request Event
	client_message Event
	colormap_notify Event
	configure_notify Event
	configure_request Event
	create_notify Event
	destroy_notify Event
	enter_notify and leave_notify Events
	expose Event
	focus_in and focus_out Events
	graphics_expose Event
	no_expose Event
	gravity_notify Event
	keymap_notify Event
	key_press and key_release Events
	map_notify Event
	unmap_notify Event
	mapping_notify Event
	map_request Event
	motion_notify Event
	property_notify Event
	reparent_notify Event
	resize_request Event
	selection_clear Event
	selection_notify Event
	selection_request Event
	visibility_notify Event
	default Event

	Activating the callback mechanism
	handle_events/[0,1,2,3]
	dispatch_event/[1,2,3]
	Exit Variables

	Drawing Primitives
	Clearing and Copying Areas
	clear_area/[5,6]
	clear_window/1
	copy_area/[8,9]
	copy_plane/[9,10]

	Drawing Points
	draw_point/[3,4]
	draw_points/[2,3]
	draw_points_relative/[2,3]

	Drawing Lines
	draw_line/[5,6]
	draw_lines/[2,3]
	draw_lines_relative/[2,3]
	draw_segments/[2,3]

	Drawing and Filling Polygons
	draw_polygon/[2,3]
	draw_polygon_relative/[2,3]
	fill_polygon/[3,4]
	fill_polygon_relative/[3,4]

	Drawing and Filling Rectangles
	draw_rectangle/[5,6]
	draw_rectangles/[2,3]
	fill_rectangle/[5,6]
	fill_rectangles/[2,3]

	Drawing and Filling Arcs
	draw_arc/[7,8]
	draw_arcs/[2,3]
	fill_arc/[7,8]
	fill_arcs/[2,3]

	Drawing and Filling Ellipses and Circles
	draw_ellipse/[5,6]
	draw_ellipses/[2,3]
	fill_ellipse/[5,6]
	fill_ellipses/[2,3]

	Drawing Text
	draw_string/[4,5]
	draw_image_string/[4,5]
	draw_text/[4,5]

	Graphics Attributes and Graphics Contexts
	Graphics Attributes
	Finding and Changing Graphics Attributes
	get_graphics_attributes/2
	put_graphics_attributes/2
	Example

	Creating and Destroying GCs
	create_gc/[2,3]
	release_gc/1
	Using Gcs
	Sharing and Cloning of Gcs

	Checking GC validity
	valid_gc/1
	ensure_valid_gc/2
	valid_gcable/2
	ensure_valid_gcable/3

	Fonts
	Font Attributes
	Loading and Unloading Fonts
	load_font/[2,3]
	release_font/1

	Finding Font Attributes
	get_font_attributes/2

	The Font Search Path
	get_font_path/[1,2]
	set_font_path/[1,2]

	What Fonts Are Available?
	current_font/[1,2,3,4]
	current_font_attributes/[2,3,4,5]

	The Size of a String
	text_width/3
	text_extents/[7,8]
	query_text_extents/[7,8]

	Checking Font Validity
	valid_font/1
	ensure_valid_font/2
	valid_fontable/2
	ensure_valid_fontable/3

	Colors and Colormaps
	Color Specifications
	Visuals
	Using Colors
	Allocating and Freeing Colors
	alloc_color/[2,3,4,5]
	parse_color/[2,3]
	free_colors/[2,3]

	Standard Colormaps
	get_standard_colormap/[2,3]

	Allocating Color Cells and Planes
	alloc_color_cells/5 and alloc_contig_color_cells/5
	alloc_color_planes/[8,9] and alloc_contig_color_planes/[8,9]
	Freeing Color Cells and Planes

	Finding and Changing Colors
	put_color/[2,3]
	put_colors/[1,2]
	get_color/[2,3]
	get_colors/[1,2]

	Creating and Freeing Colormaps
	create_colormap/[1,2,3]
	create_colormap_and_alloc/[1,2,3]
	free_colormap/1
	copy_colormap_and_free/2

	Colormap Installation
	install_colormap/1
	uninstall_colormap/1
	installed_colormap/[1,2]

	Checking Colormap Validity
	valid_colormap/1
	valid_colormapable/2
	ensure_valid_colormap/2
	ensure_valid_colormapable/3

	Pixmaps and Bitmaps
	Pixmap Attributes
	Finding and Changing Pixmap Attributes
	get_pixmap_attributes/[2,3]
	put_pixmap_attributes/[2,3]

	Creating and Freeing Pixmaps
	create_pixmap/[2,3]
	free_pixmap/1

	Reading and Writing Bitmap Files
	read_bitmap_file/[2,3,4,5]
	write_bitmap_file/[2,4]

	Checking Pixmap Validity
	valid_pixmap/1
	ensure_valid_pixmap/2

	Cursors
	Creating and Freeing Cursors
	create_cursor/[2,3,4,5]
	free_cursor/1

	Cursor Utilities
	recolor_cursor/3
	query_best_cursor/[4,5]

	Checking Cursor Validity
	valid_cursor/1
	ensure_valid_cursor/2

	Displays and Screens
	Display Attributes
	get_display_attributes/[1,2]

	Opening and Closing Displays
	open_display/2
	close_display/1

	Flushing and Syncing Displays
	flush/[0,1]
	sync/[0,1] and sync_discard/[0,1]

	Finding Currently Open Displays
	current_display/1
	default_display/1

	Checking Display Validity
	valid_display/1
	valid_displayable/2
	ensure_valid_display/2
	ensure_valid_displayable/3

	Screen Attributes
	get_screen_attributes/[1,2]

	The Default Screen
	default_screen/2

	Checking Screen Validity
	valid_screen/1
	valid_screenable/2
	ensure_valid_screen/2
	ensure_valid_screenable/3

	Interfacing with Foreign Code
	proxl_xlib/[3,4]
	display_xdisplay/2
	screen_xscreen/2
	visual_id/[2,3]

	Event Handling Functions
	active_windows/[0,1]
	events_queued/[2,3]
	pending/[1,2]
	new_event/[1,2]
	dispose_event/1
	next_event/[2,3]
	peek_event/[2,3]
	window_event/4
	check_window_event/4
	mask_event/[3,4]
	check_mask_event/[3,4]
	check_typed_event/[2,3]
	check_typed_window_event/3
	put_back_event/[1,2]
	send_event/[4,5]
	send/[4,5]
	get_event_values/2
	put_event_values/2
	get_motion_events/4

	Handling Errors Under ProXL
	Introduction
	Recoverable Errors
	Fatal Errors
	The ProXL Error Handler
	Error Handling Options
	error_action/[2,3]
	synchronize/[1,2]

	Window Manager Functions
	Controlling the Lifetime of a Window
	change_save_set/[2,3]

	Grabbing the Pointer
	grab_pointer/9
	grab_button/9
	ungrab_button/3
	ungrab_pointer/[0,1,2]
	change_active_pointer_grab/[3,4]

	Grabbing the Keyboard
	grab_keyboard/6
	ungrab_keyboard/[0,1,2]
	grab_key/6
	ungrab_key/3
	allow_events/[1,2,3]

	Grabbing the Server
	grab_server/[0,1]
	ungrab_server/[0,1]

	Miscellaneous Control Functions
	warp_pointer/8
	set_input_focus/3
	get_input_focus/[2,3]
	set_close_down_mode/[1,2]
	kill_client/[0,1,2]

	Pointer Control
	get_pointer_attributes/[1,2]
	put_pointer_attributes/[1,2]

	Keyboard Control
	get_keyboard_attributes/[1,2]
	put_keyboard_attributes/[1,2]
	bell/[1,2]

	Screen Saver Control
	set_screen_saver/[4,5]
	force_screen_saver/[1,2]
	get_screen_saver/[4,5]

	Utility Functions
	Bitmask Handling
	state_mask/2
	buttons_mask/2
	modifiers_mask/2
	event_list_mask/2
	bitset_composition/3

	Key Handling
	rebind_key/[3,4]
	key_keycode/[3,4]
	keysym/[1,2]
	is_key/[2,3]
	key_state/[3,4]
	key_auto_repeat/[3,4]

	Application Preferences
	get_default/[3,4]
	parse_geometry/5
	geometry/[12,13]

	ProXL for Xlib speakers
	Naming Conventions
	Arguments
	Data Structures
	Prolog Terms
	Convenience Functions
	Caching
	Default Screen and Display
	Graphics Contexts
	Default GCs
	Modifying GCs
	Sharing and Cloning of GCs
	Memory Management
	Mixed Language Programming

	The ProXT Package
	Technical Overview and Manual
	Introduction
	Using ProXT
	Naming Conventions
	Predicate Arguments
	Type Matching
	Widget Resources
	Callbacks
	Using ProXT with ProXL
	xif_initialize/3
	widget_window/2
	widget_to_screen/2
	widget_to_display/2
	xif_main_loop/[0,1,2,3]

	Tutorial
	Introduction
	The ProXT programming model
	The Motif Widget Set
	Widget Resources
	Event Handling
	Widget Callbacks
	Translations
	Accelerators
	Event Handlers
	Other Events Types
	Event Handling Loop

	Using The Resource Database
	Interaction with Xlib

	ProXT 3.5 Data Types
	ProXT 3.5 Widget Resource Data Types
	ProXT 3.5 Exported Predicates
	Motif Predicates
	X Toolkit Predicates
	ProXT Specific Predicates

	Changes from ProXT 3.1
	Highlights
	Backward Compatibility

	Prolog Reference Pages
	Reading the Reference pages
	Overview
	Mode Annotations
	Predicate Categories
	Argument Types
	Simple Types
	Extended Types

	Exceptions

	Topical List of Prolog Built-ins
	Arithmetic
	Character I/O
	Control
	Database
	Debugging
	Executables and QOF-Saving
	Execution State
	Filename Manipulation
	File and Stream Handling
	Foreign Interface
	Grammar Rules
	Help
	Hook Predicates
	List Processing
	Loading Programs
	Memory
	Messages
	Modules
	Program State
	Term Comparison
	Term Handling
	Term I/O
	Type Tests

	Built-in Predicates
	!/0
	;/2 --- disjunction
	,/2
	;/2 --- if-then-else
	->/2
	=/2
	=../2
	</2, =:=/2, =</2, ={@tt @rawbackslashxx }=/2, >/2, >=/2
	{@tt @rawbackslashxx }+/1
	==/2, {@tt @rawbackslashxx }==/2
	@</2, @=</2, @>/2, @>=/2
	-->/2
	^/2
	abolish/[1,2]
	abort/0
	absolute_file_name/[2,3]
	add_advice/3@hfill development
	add_spypoint/1@hfill development
	append/3
	arg/3@hfill meta-logical
	assert/[1,2]
	assign/2
	at_end_of_file/[0,1]
	at_end_of_line/[0,1]
	atom/1@hfill meta-logical
	atom_chars/2
	atomic/1@hfill meta-logical
	bagof/3
	break/0@hfill development
	C/3
	call/1
	callable/1@hfill meta-logical
	character_count/2
	check_advice/[0,1]@hfill development
	clause/[2,3]
	close/1
	compare/3
	compile/1
	compound/1@hfill meta-logical
	consult/1
	copy_term/2@hfill meta-logical
	current_advice/3@hfill development
	current_atom/1@hfill meta-logical
	current_input/1
	current_key/2
	current_module/[1,2]
	current_output/1
	current_op/3
	current_predicate/2
	current_spypoint/1@hfill development
	current_stream/3
	db_reference/1@hfill meta-logical
	debug/0@hfill development
	debugging/0@hfill development
	discontiguous/1@hfill declaration
	display/1
	dynamic/1@hfill declaration
	ensure_loaded/1
	erase/1
	expand_term/2@hfill hookable
	extern/1@hfill declaration
	fail/0
	false/0
	file_search_path/2@hfill extendable
	fileerrors/0
	findall/3
	float/1@hfill meta-logical
	flush_output/1
	foreign/[2,3]@hfill hook
	foreign_file/2@hfill hook
	format/[2,3]
	functor/3@hfill meta-logical
	garbage_collect/0
	garbage_collect_atoms/0
	gc/0
	'QU_messages':generate_message/3@hfill extendable
	generate_message_hook/3@hfill hook
	get/[1,2]
	get0/[1,2]
	get_profile_results/4@hfill development
	ground/1@hfill meta-logical
	halt/[0,1]
	hash_term/2
	help/[0,1]@hfill hookable,development
	initialization/1@hfill declaration
	instance/2
	integer/1@hfill meta-logical
	is/2
	keysort/2
	leash/1@hfill development
	length/2
	library_directory/1@hfill extendable
	line_count/2
	line_position/2
	listing/[0,1]
	load_files/[1,2]
	load_foreign_executable/1@hfill hookable
	load_foreign_files/2@hfill hookable
	manual/[0,1]@hfill development
	message_hook/3@hfill hook
	meta_predicate/1@hfill declaration
	mode/1@hfill declaration
	module/1
	module/2@hfill declaration
	multifile/1@hfill declaration
	multifile_assertz/1
	name/2
	nl/[0,1]
	no_style_check/1
	nocheck_advice/[0,1]@hfill development
	nodebug/0@hfill development
	nofileerrors/0
	nogc/0
	nonvar/1@hfill meta-logical
	noprofile/0@hfill development
	nospy/1@hfill development
	nospyall/0@hfill development
	notrace/0@hfill development
	number/1@hfill meta-logical
	number_chars/2
	numbervars/3@hfill meta-logical
	on_exception/3
	op/3
	open/[3,4]
	open_null_stream/1
	otherwise/0
	peek_char/[1,2]
	phrase/[2,3]
	portray/1@hfill hook
	portray_clause/1
	predicate_property/2
	print/1@hfill hookable
	print_message/2@hfill hookable
	print_message_lines/3
	profile/[0,1,2,3]@hfill development
	prolog_flag/[2,3]
	prolog_load_context/2
	prompt/[2,3]
	public/1@hfill declaration
	put/[1,2]
	query_abbreviation/3@hfill extendable
	query_hook/6@hfill hook
	raise_exception/1
	read/[1,2]
	read_term/[2,3]
	reconsult/1
	recorda/3
	recorded/3
	recordz/3
	remove_advice/3@hfill development
	remove_spypoint/1@hfill development
	repeat/0
	restore/1
	retract/1
	retractall/1
	runtime_entry/1@hfill hook
	save_modules/2
	save_predicates/2
	save_program/[1,2]
	see/1
	seeing/1
	seek/4
	seen/0
	set_input/1
	set_output/1
	setof/3
	show_profile_results/[0,1,2]@hfill development
	simple/1@hfill meta-logical
	skip/[1,2]
	skip_line/[0,1]
	sort/2
	source_file/[1,2,3]
	spy/1@hfill development
	statistics/[0,2]
	stream_code/2
	stream_position/[2,3]
	style_check/1
	subsumes_chk/2@hfill meta-logical
	tab/[1,2]
	tell/1
	telling/1
	term_expansion/2@hfill hook
	told/0
	trace/0@hfill development
	trimcore/0
	true/0
	ttyflush/0, ttyget/1, ttyget0/1, ttynl/0, ttyput/1, ttyskip/1, ttytab/1
	unix/1
	unknown/2
	unknown_predicate_handler/3@hfill hook
	use_module/[1,2,3]
	user_help/0@hfill hook
	var/1@hfill meta-logical
	version/[0,1]
	vms/[1,2]
	volatile/1@hfill declaration
	write/[1,2]
	write_canonical/[1,2]
	write_term/[2,3]
	writeq/[1,2]

	C Reference Pages
	Return Values and Errors
	Topical List of C Functions
	C Errors
	Character I/O
	Exceptions
	Files and Streams
	Foreign Interface
	Input Services
	main()
	Memory Management
	Signal Handling
	Terms in C
	Term I/O
	Type Tests

	C Functions
	QP_action()
	QP_add_*()
	QP_add_tty()
	QP_atom_from_string(), QP_atom_from_padded_string()
	QP_char_count()
	QP_clearerr()
	QP_close_query()
	QP_compare()
	QP_cons_*()
	QP_cut_query()
	QP_error_message()
	QP_exception_term()
	QP_fclose()
	QP_fdopen()
	QP_ferror()
	QP_fgetc()
	QP_fgets()
	QP_flush()
	QP_fnewln()
	QP_fopen()
	QP_fpeekc()
	QP_fprintf()
	QP_fputc()
	QP_fputs()
	QP_fread()
	QP_fskipln()
	QP_fwrite()
	QP_get_*()
	QP_getchar()
	QP_getpos()
	QP_initialize()
	QP_is_*()
	QP_line_count()
	QP_line_position()
	QP_malloc(), QP_free()
	QP_new_term_ref()
	QP_newline()
	QP_newln()
	QP_next_solution()
	QP_open_query()
	QP_peekc()
	QP_peekchar()
	QP_perror()
	QP_pred()
	QP_predicate()
	QP_prepare_stream()
	QP_printf()
	QP_put_*()
	QP_puts()
	QP_query()
	QP_register_atom(), QP_unregister_atom()
	QP_register_stream()
	QP_remove_*()
	QP_rewind()
	QP_seek()
	QP_select()
	QP_setinput()
	QP_setoutput()
	QP_setpos()
	QP_skipline()
	QP_skipln()
	QP_string_from_atom(), QP_padded_string_from_atom()
	QP_tab()
	QP_tabto()
	QP_term_type()
	QP_toplevel()
	QP_trimcore()
	QP_ungetc()
	QP_unify()
	QP_vfprintf()
	QP_wait_input()
	QU_alloc_mem(), QU_alloc_init_mem(), QU_free_mem()
	QU_fdopen()@hfill user-redefinable
	QU_free_mem()@hfill user-redefinable
	QU_initio()@hfill user-redefinable
	QU_open()@hfill user-redefinable
	QU_stream_param()@hfill user-redefinable

	Command Reference Pages
	Command Line Utilities
	prolog --- Quintus Prolog Development System
	qcon --- QOF consolidator
	qgetpath --- Get parameters of Quintus utilities and runtime applications
	qld --- QOF link editor
	qnm --- print QOF file information
	qpc --- Quintus Prolog compiler
	qplm --- Quintus Prolog license manager
	qsetpath --- Set parameters of Quintus utilities and runtime applications
	qui --- Quintus User Interface

	Predicate Index
	Keystroke Index
	Book Index

